
Chapter 5


Time-Dependent Methods–2


This brief Chapter includes a number of extensions of the material in Chapter 4, as well as 

providing introductions to a number of more specialized topics that would be of interest to 

anyone attempting to use the methods for large-scale practical problems. References are given 

for fuller coverage. 

5.1 Monte Carlo/Ensemble Methods 

5.1.1 Ensemble Methods and Particle Filters 

When a model is non-linear, one of the fundamental computational steps of the Kalman filter 

(and any related calculation such as a smoother) is no longer possible. Consider a Kalman filter 

problem in which the initial conditions, x̃ (0) > contain errors characterized by the covariance 

matrix, P (0) > and the zero-mean disturbance or control, u (0) > is unknown with covariance, 

Q (0) = The state forecast step, Eq. (4.49) proceeds as before. Computation of the forecast 

error covariance, Eq. (4.50), however, which sums the error owing to the initial conditions and 
Wthat of the unknown controls, A (0) P (0) A (0)W + �Q� > depends directly upon the linearity 

assumption, and can no longer be carried out rigorously. For weak nonlinearities, the extended 

or linearized Kalman filters and associated smoothers may be adequate. But when linearizing 

assumptions fail, some other method must be used. A commonly discussed example of a non-

linear (but scalar) model is, 
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which is nonlinear in both the evolution equation and in the measurement; %w> � are Gaussian w 

white noise processes.152 Extended Kalman filters work badly for this low-dimensional example. 

The basic idea behind so-called ensemble or Monte Carlo methods is in some ways even 

simpler than the use of Eq. (4.50). (In the signal processing literature, closely related approaches 

are usually called “sequential Monte Carlo methods,” or “particle filtering”.153) One directly 

˜simulates a su!ciently large number of forecasts, x(l) (w> �) > all having the same statistical 
properties, that P (w> �) can be estimated by brute force computation from the many simulations. 

If a su!ciently large ensemble can be generated, one can contemplate estimating not just the 

second moments, but calculating the empirical frequency function for the forecast step. 
˜To see how this approach might work, generate an ensemble of initial conditions, X (0) > 

where each column of the  Q × O> O ? Q matrix corresponds to a possible initial condition 

x (0) and P (0) = Form a similar ensemble for ˜consistent with both ˜ u (0) based upon hu (0)i = 0> 

and Q (0) = (We discuss generation of such ensembles below.) Then one can run the model 
˜ ˜on each column of X (0) > with a disturbance from the corresponding column of U (0) > and 

compute the ensemble of forecasts X̃ (1> �) = Computation of A (0) P (0) A (0)W requires running 

the model 2Q times, where computation of X̃ (1> �) requires only O such model runs. Assuming 

that the true mean of x (1) is zero, estimate, 

O X1˜{ensemble1} P (1> �) =  ˜ X (1> �)W =
1 

X (1> �) ˜ xm (1> �) ̃˜ xm (1> �)W (5.1) 
O O 

m=1 

where ˜ ˜ �)xm (1> �) is column m of X (w> �) > as an estimate of P (1> = Note that if the mean is 

computed from the columns of X̃> and subtracted from the estimate, the factor in front becomes 

1@ (O � 1) = With P̃ (1> �) known, the filter average step (4.51) can be carried out, although if 

the probability densities of the model and data errors are di�erent, the average may have little 

meaning. Because the average is a linear one, the conventional filter error covariance calculation, 

Eq. (4.53) is still appropriate, and one can continue in this fashion through the filter loop. In 

essence, this approach characterizes the so-called ensemble Kalman filter method. The main 

issue here concerns the reliability of the estimates for small ensemble sizes.154 Because of its 

structure, if O is less than Q> the maximum rank of P̃ (1> �) is n = O ? Q>  and the matrix 

will be singular. Singularity implies that some structures (those in the nullspace of P̃ (1> �)) are  

impossible in the initial conditions–a potentially troublesome outcome. 

In principle, one can use the ensemble members to produce estimates of the complete prob-

ability densities of ˜ u> no matter how non-linear the model–leading to the use of maximum x> ̃

likelihood methods. These are computationally more demanding, however. Even small ensem-

bles provide at least a qualitative indication of where maximum uncertainty is likely to lie, but 

their use should not stretch beyond their actual limited information content. 
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How does one generate ensemble members with zero mean and given spatial covariance, 

P (0)? Let 

P (0) = V�VW > D E 
(s)

and suppose �(s) is white noise from a pseudo-random number generator such that, � = 0>l l D E 
(s)
d
(s)

�l m = �lm where s is the ensemble member label. Form 

Q X 
(s)
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s
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m=1 

Then it follows that, 
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= P (0) >= �m � vm vmm 
m=1 

as required. It is readily confirmed too, that the ensemble members are uncorrelated with each 

other. 

The members of the ensemble of initial conditions can have highly non-Gaussian probability 

densities. One would then select the �(s) from populations with whatever is the appropriate prob-m 

ability density. 155 More generally, the initial condition disturbances may have specific structures 

related to the dynamics. Some of those structures may give rise to particularly rapidly growing 

disturbances, and which if excited can give an ensemble spread much larger than that obtained 

from purely random components. A very large e�ort in weather forecasting in particular, has 

gone into generating small ensembles that have a useful breadth.156 Unknown model parameters 

extend far beyond initial conditions, including for example, mixing parameterizations, boundary 

conditions, source/sink components, etc. Ensembles can be generated by calculating solutions 

from random perturbations to any and all of these problem elements simultaneously. 

Example. 

Let the initial estimate for the mass-spring oscillator of the Example on P. 194, be x̃ (0) = 

[1> 1]W , and  have error covariance 

P (0) = 

;
AA?
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Figure 5.1: (Left) Empirical histogram of an ensemble of 100 values of {̃1 (0) obtained from a 

log-normal distribution with parameters (1,1). A similar ensemble of values was 

generated for {2 (0) > with no correlation between the two. The random variables 

are regarded as di�erent realizations of the noise occurring in the true value x (0) = 

[1> 1]W =(Right) Historgram of 100 realizations of {1 (w = 500) from the mass spring 

oscillator (n = 0=1>�w = 1> u  = 0=01). Note the tendency for the frequency function 

lognorm1.eps} to tend towards Gaussian. 

It is thought that the errors follow a log-normal distribution, ³ ´1 
s (�) =  s

2�� 
exp � (ln � � 1)2 @2 = (5.2) {lognorm1} 

˜An ensemble of initial conditions of the form x (0) = [1> 1]W + � was generated, producing a 

frequency function (histogram) of values for {1(0) as shown in Fig. 5.1. After 500 time steps ˜


(with n = 0=1> u  = 0=01>�w = 1)  ̃ 
{1 (500) tends toward Gaussian, and in this linear system, it 

would be reasonable to calculate  the  mean position as  {1 (500) where the overbar indicates an ˜

average of the ensemble, and the error of the mean position is computed simply from its standard 

deviation in the ensemble. The latter can be used in the Kalman averaging step. But in a highly 

non-Gaussian distribution, as seen in the left panel of Fig. 5.1, the sample mean and variance 

may di�er greatly from the true mean and variance owing to the presence of a few strong outliers. 

(One would be strongly advised to work with the logarithm of {1 (0) ; see Aitchison and Brown, ˜


1957; such a transformation would not be possible with ˜
{1 (500) because it can be negative.) 

Calculation of probability densities, or the defining low moments of the probability densities 

for filter/smoother solutions can also be approached by solving equations for the evolution of the 
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densities or moments. Dynamical evolution equations can be used to write an explicit equation 

(the so-called Fokker-Planck, or Kolmogorov equation in the physics and mathematics literature, 

respectively) for the evolution of the state probability density. 157 Because the solution of such 

equations in high dimensions is forbidding, one can alternatively seek approximate equations for 

the evolution of the low moments. 

This subject is a large and sophisticated one; a growing literature describes applications at 

various levels of approximation in oceanography and meteorology. But we must leave it to the 

references to deal with it further.158 

5.2 Numerical Engineering: The Search for Practicality 

Estimation theory is comparatively straightforward in its goals, and in the methods of solution. 

When it comes to real problems, particularly those involving fluids, the main issues tend to 

be much less the principle of what one wants to do (it is usually reasonably clear), and more 

the problems of practicality. Even linear three dimensional fluid models, particularly those 

arising in the geophysical world, readily overwhelm the largest available computers, storage 

devices, and investigators, even when one exploits the special structure of the simultaneous 

equations represented by time-evolving models. The major issues are primarily those of “nu-

merical engineering”–finding practical methods adequate for a particular goal, while keeping 

the underlying theory in mind as a guideline. Engineering involves all aspects of the problem, 

including the forward model, the algorithms for doing minimization, representation and com-

putation of weight matrices, finding adequate estimates of model, and overall system errors. 

Because of the diversity of the problems that arise, only some very general description of various 

applications and remedies can be described here. 

5.2.1 Meteorological Assimilation 

“Data assimilation ” is a term widely used in numerical weather prediction (NWP) to describe 

the process of combining a forecast with current observations for the primary purpose of updating 

a dynamical model–usually in preparation for another forecast. In this book, we use the term 

“state estimation” for the more general problem of forming model/data combinations, and will 

reserve “assimilation” for the specific meteorological application. For fluid models, forecasting 

is probably more highly developed in meteorology than in any other field. Astronomers fore-

casting planetary or cometary positions have a longer history, and ballistic engineers are greatly 

experienced with a range of trajectory and impact prediction problems. But the meteorological 

problem is of much greater dimension than any of these, and the economic stakes are so high, 
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that many person-years have been devoted to making and improving weather forecasts. The 

field is thus a highly developed one, and worth examination. A correspondingly large literature 

on meteorological assimilation exists.159 

Much data assimilation involves simplified forms of objective mapping, in which the model 

dynamics are used in a primitive fashion to help choose covariances in both time and space 

for interpolation as in Chapter 2.160 . The formal uncertainties of the forecast are not usually 

computed–the forecaster learns empirically, and very quickly, whether and which aspects of his 

forecast are any good. If something works, then one keeps on doing it; if it doesn’t work, one 

changes it. Because of the short time scale, feedback from the public, the military, farmers, 

the aviation industry, etc., is fast and vehement. Theory often takes a backseat to practical 

experience. It is important to note that, despite the dense fog of jargon that has come to 

surround meteorological practice, that the methods in actual use remain, almost universally, 

attempts at the approximate least-squares fitting of a time-evolving atmospheric model to the 

oncoming observations. The primary goal is forecasting, rather than smoothing. 

5.2.2 Nudging and Objective Mapping 

A number of meteorological schemes can be understood by referring back to the Kalman filter 

averaging step, £ ¤
˜ x(w> �) +K(w) y(w)� E˜{67001} x(w) = ˜ x(w> �) = (5.3) 

This equation has the form of a predictor-corrector–the dynamical forecast of x̃(w> �) is com-
pared to the observations and corrected on the basis of the discrepancies. Some assimilation 

schemes represent guesses for K rather than the computation of the optimum choice, which we 

know–for a linear model–is given by the Kalman gain, replacing (5.3) with, 

£ ¤
˜ x(w> �) +Kp y(w)� E˜{67002} x(w) = ˜ x(w> �) (5.4) 

where Kp is a modified gain matrix. Thus, in “nudging”, Kp is diagonal or nearly so, with 

elements which are weights that the forecaster assigns to the individual observations.161 To the 

extent that the measurements have uncorrelated noise, as might be true of pointwise meteoro-

logical instruments like anemometers, and the forecast error is also nearly spatially uncorrelated, 

pushing the model values pointwise to the data may be very e�ective. If, in (5.4), the obser-

vations y(w) are direct measurements of state vector elements (e.g., if the state vector includes 

the density and y(w) represents observed densities), then E(w) is very simple–but only if the 

measurement point coincides with one of the model grid points. If, as is often true, the mea-

surements occur between model grid points, E is an interpolation operator from the model grid 

to the data location. In the most usual situation, there are many more model grid points than 
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data points, and this direction for the interpolation is the most reasonable and accurate. With 

more data points than model grid points, one might better interchange the direction of the 

interpolation. Formally, this interchange is readily accomplished by rewriting (5.3) as, 

£ ¤
x(w) = ˜˜ x(w> �) +KpE E+ y(w)� x(w> �) (5.5) {67003} 

where E+ is any right inverse of E in the sense of Chapter 2, for example, the Gauss-Markov 

interpolator or some plausible approximation to it. 

There are potential pitfalls of nudging, however. If the data have spatially correlated errors, 

as is true of many real observation systems, then the model is being driven toward spatial 

structures that are erroneous. More generally, the expected great variation in time and space 

of the relative errors of model forecast and observations cannot be accounted for with a fixed 

diagonal gain matrix. A great burden is placed upon the insights and skill of the investigator who 

must choose the weights. Finally, one can calculate the uncertainty of the weighted average (5.4), 

using this suboptimal gain, but it requires that one specify the true covariances. As noted, 

however, in NWP formal uncertainty estimates are not of much interest. User feedback is, 

however, rarely available when the goal is understanding–the estimation problem–rather than 

forecasting the system for public consumption. When forecasts are made in many contexts, e.g., 

for decadal climate change, the time scale is often so long as to preclude direct test of the result. 

As with the full Kalman filter, the “analysis step” where the model forecast is averaged with 

the observations, there is a jump in the state vector as the model is pulled (usually) toward 

the observations. Because the goal is usually forecasting, this state vector discontinuity is not 

usually of any concern, except to someone instead interested in understanding the time evolution 

of the atmosphere. 

Another more flexible, approximate form of time-dependent estimation can also be under-

stood in terms of the Kalman filter equations. In the filter update equation (4.51), all elements 

of the state vector are modified to some degree, given any di�erence between the measurements 

and the model-prediction of those measurements. The uncertainty of the statevector is always 

modified whenever data become available, even if the model should perfectly predict the ob-

servations. As time evolves, information from measurements in one part of the model domain 

is distributed by the model dynamics over the entire domain, leading to correlations in the 

uncertainties of all the elements. 

One might suppose that some models propagate information in such a way that the error 

correlations diminish rapidly with increasing spatial and temporal separation. Supposing this 

to be true (and one must be aware that fluid models are capable of propagating information, be 

it accurate or erroneous, over long distances and times), static approximations can be found in 
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which the problem is reduced back to the objective mapping methods employed in Chapter 2. 

The model is used to make an estimate of the field at time w, x̃(w> �), and one then finds the 

prediction error �y(w) =  y(w) � Ex̃(w> �). A best estimate of �x(w) is sought based upon the 

covariances of �y(w), �x(w), etc.–that is, objective mapping–and the improved estimate is, 

{67006} x(w) = ˜ x(w) = ˜˜ x(w> �) +�˜ x(w> �) +R{{EW (ER{{E
W +Rqq)

31 �y > (5.6) 

which has the form of a Kalman filter update, but in which the state uncertainty matrix, P, 

is replaced in the gain matrix, K, by  R{{ representing the prior covariance of �x. R{{ is 

fixed, with no dynamical evolution of the gain matrix permitted. Viewed as a generalization of 

nudging, this appoach, it permits one to specify spatial structure in the noise covariance through 

choice of a nondiagonal Rqq. The weighting of the �y and the modification for x̃ is then much 

more complex than in pure nudging. 

The major issues are the specification of R{{, Rqq. Most attempts to use these methods 

have been simulations by modelers who were content to ignore the problem of determining Rqq 

or to assume that the noise was purely white. In principle, estimates of R{{ can be found either 

from observations or from the model itself. 

Methods that permit data to be employed from finite-time durations, weighting them in-

versely with their deviation from some nominal central time, are localized approximations to 

smoothing algorithms of the Wiener type. Many variations on these methods are possible, in-

cluding the replacement of R{{ by its eigenvectors (the singular vectors or EOFs), which again 

can be computed either from the model or from data. Improvements could be made by com-

parison of the covariance matrices used against the estimates emerging from the calculations of 

x(w), ˜˜ n(w). 

All practical linearized assimilation methods are a weighted average of a model estimate of 

the oceanic state with one inferred from the observations. If the model and the observations 

are physically inconsistent, the forced combination will be impossible to interpret. Thus, the 

first step in any assimilation procedure has to be to demonstrate that model physics and data 

represent the same fluid–with disagreement being within the error bounds of both. Following 

this confirmation of physical consistency, one recognizes that the weighted average of model 

and data will be useful only if the weights make sense–chosen to at least well-approximate the 

relative uncertainties of these two. Otherwise, the result of the combination is an average of 

“apples and oranges.” 
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5.3 Approximate Filter/Smoother Methods 

This book has been primarily devoted to the principles underlying various state estimation 

methods, rather than to addressing practical issues of implementation. A few methods were 

introduced to reduce computation (Lagrange multipliers, and of ensemble methods), avoiding 

the computation of the covariance matrices in the sequential (smoother) methods). Lagrange 

multiplier methods are attractive because they do not demand the covariance matrices; but their 

main weakness is that they therefore do not provide them. 

Unsurprisingly therefore, numerous approaches have attempted to approximate the full 

results of the filter/smoother algorithms, both to reduce the burden of the state estimates 

themselves and of the corresponding error covariances. We examine some examples of such 

approaches.162 

Steady-state Approximation 

Consider, as an example, the Kalman filter, Eqs. (4.49-4.53) of Chapter 4. The error covariances, 

P (w> �) > P (w) are propagated as, 

WP(w> ) =  A(w � 1)P(w � 1)A(w � 1)W + �Q(w � 1)� > (5.7) {riccati1} �

£ ¤
P(w) =  P(w> �) �P(w> �)E(w)W E(w)P(w> )E(w)W + R(w) 31 

E(w)P(w> �)> (5.8) {riccati2} �

and does not involve the actual data (as is true of all linear estimates). These equations can 

be simply time-stepped from P (0) to any time w, assuming the availability of R (w) > E (w) and 

P (0) = Knowledge of P (w) then permits the finding of K (w) > and both are determined before 

any observations actually exist. 

Let the model and data stream be time independent, A (w) =  A> E (w) =  E> Q (w)=  Q> R (w)=  R= 

Substituting for P (w> �) one has, 

P (w) =  AP (w � 1) AW + (5.9) £ 
¤

¤ © £ ¤ ª
�Q� W � AP (w � 1) AW + �Q� W EW E AP (w � 1) AW + �Q� W EW + R 

31 
× £ 

WE AP (w � 1) AW + �Q� > w  = 0> 1> ===  

Suppose the di�erence equation (5.9) approaches a steady-state. That is, as w >$ 4
P (w)=  P (w � 1) � = Then it follows from Eq. (4.52), that K (w) =  K" also becomes steady. P" 

Once P and K cease to change, the computational load of the filter is enormously reduced: the 
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Figure 5.2: Coupled mass-spring oscillator (after McCuskey, 1959). Rest positions of the two 

ssspring.tif} masses define the coordinates t1>2= 

model must be run only once at each time-step. This reduction in load leads one to understand 

under what circumstances Eq. (5.9), does asymptote to a steady-state, and then for methods to 

determine that state. With K" known, one can, if one chooses, use it in place of K (w), even dur-

ing the period when the steady-state is invalid. To the extent that the system “forgets” its initial 

conditions, experience suggests that eventually the estimated state will converge to the correct 

one, even though the initial transient is not properly computed. (A steady-Kalman filter is a 

“Wiener filter;” they are usually applied by fast convolution methods (which we omit).163 Simi-

lar considerations apply to the problem of obtaining steady-state solutions (Wiener smoother) to 

the evolution equation for the RTS smoother; further discussion can be found in the references. 

Example. Consider two masses coupled to each other and the boundaries as indicated in 

Fig. 5.2. A governing set of di�erential equations for the position, tl of each oscillator (not to 

be confused with the generic control variable), is readily shown to be, 

2g q gq
{mass21} M +D + Lq = f = (5.10) 

gw2 gw 

Here, M> D> K are matrices, q (w) = [t1 (w) > t2 (w)]
W is the non-equilibrium displacement of the 

masses, and f is the forcing vector. To generate the simplest case, take M = pI2> so that the 

masses are identical; D = uI2> so that the dissipation is of ordinary Rayleigh type, and 

;
AA?


O=

2n n�

< 
AA@ 

AA>AA= n 2n�

couples the masses through the connecting springs. Using a simple one-sided discretization of
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Eq. (5.10), a canonical statespace approximation is, 

x (q+ 1) = Ax (q) + fg (q) 

�w)2 

;
AA? 

< 
AA@ 

AA>

> x (q) = 


�
 W2I2�L ( @p (�1 + u�w) I2 

t1 (q) t2 (q) t1 (q� 1) t2 (q� 1)

¸
>A=
AA= 

�

I2 0 

0 

¸W 

=fg (q) = (�w)2 
f (q)W 

Taking n = 1>p  = 1> u  = =01>�w = 0=25> and i to be a unit variance zero mean forcing of t1 

alone (no forcing applied to t2)> a realization of ¸
that E = 1 0  0 0 so that each time step, only {1 (q), that is the position t1 is measured. µ ¶
Assume P (0) = diag 1 1 1  1 > diag(R) = [1> 0]> and Q = I4 = Then time-stepping Eq. (5.9) 

leads to the results for the diagonal elements of P (q) as depicted in Fig. 5.3. Both S11> S12 

(and the o�-diagonal elements as well) reach steady-state values before w = q�w = 10= At that 

time, K (w) has become a constant, and one can cease updating either it or the P (w) = ( P (w>�) 
has of course, also reached a steady-state.) 

How might one find the steady-state of Eq. (5.9)–if it exists? Several methods are known. 

One of them has been used in the above example: time-step the equation until it asymptotes. 

� 

Other algorithms exist, including a remarkable one called “doubling.” In this algorithm, one 

time steps the equation from w = 0> P (0) > to obtain P (1�w) = One then doubles  the time step  

to compute P (3�w) > doubles again for P (6�w) > etc. With this geometric increase in the time 

step, convergence, if it occurs, is extremely rapid. A simplified equation is treated this way in 

the Chapter Appendix.164 

When does a steady-state exist? In general, uncertainty grows because of errors in initial 

conditions, and the unknown system perturbations (unknown controls, u). Information that 

reduces uncertainty is provided by the incoming data stream. Under the right circumstances, 

one can reach an equilibrium where the new information just balances the new uncertainties. 

A quantitative answer to the question depends directly upon the discussion in Chapter 4 of 

the observability of the system. Although we omit the formal derivation, one can understand 

physically why those requirements must be met. Suppose there is an element of the model 

which is not observable. Then any error, e.g., in its initial conditions, could grow indefinitely, 

undetected, without bound. Such growth would mean that the corresponding elements of P 

would have to grow, and there would be no steady-state. Suppose to the contrary, that such 

growth is observed. Then if those elements are controllable, one can find controls, u (w) > such 

t1 (w) > t2 (w) is shown in Fig. 5.3. Now assume 
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Figure 5.3: Uppermost panel shows the positions, tl (w) > l  = 1> 2> for the coupled mass-spring 

oscillator. Second and third panels show S11 (w) > S22 (w) under the assumption that � ¸
E = 1 0 0 0 > that is only t1 (w) is measured (with noise). Both S11 (w) > S22 (w) 

asymptote to a steady-state, albeit S11 (w) ?? S22 (w) = Lowest two panels show � ¸
S11 (w) > S22 (w) when the observation matrix is changed to E = 1 1 0 0 –that �
is the observation is of the relative separation of the two masses. In this case, the 

uncertainty in the absolute positions continues to grow and a steady-state is not 

reached (there is no dissipation in this example). {controbserv.e 
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that the growth is halted; if the elements are not controllable, then they will continue to grow. 

Note that neither x (w) > nor u (w) will generally become steady–the state continues to evolve. 

In the situation shown in Fig. 5.3, when there is a single measurement of the position, 

t1 (w) > the eigenvalues of the observability matrix, O> range in magnitude from 1.9 down to 

0.0067. Albeit there will be considerable uncertainty involved, one can fully determine the initial 

conditions from the observations. In contrast, when only the relative position, t2 (w) � t1 (w) is 

measured, two of the eigenvalues of R vanish identically, the system is not completely observable, 

as as seen in Fig. 5.3, and the uncertainties continue to grow without bound. If one were 

discussing the smoothing algorithm errors, the structure of � would enter similarly. 165 

5.4 Reduced State Methods 

The computational load of the Kalman filter and smoothers grows approximately as the cube 

of the state vector dimension. Thus either decoupling the problem into several smaller prob-

lems, or removing elements of the state vector, can have a very large payback in terms of the 

computational load reduction. (If one could solve the problem as two (q@2)3 problems rather 

than as one-q3 problem the di�erence in load is a factor of four.) One method for solving 

large fluid state problems is based upon the assumption that large spatial scales in a fluid flow 

evolve largely independent of small scales, and that it is the largest scales that are of primary 

interest.166 Let D be a matrix operator that has the e�ect of averaging a vector spatially, so 

that x0 (w) = Dx (w) is a spatial average of x (w) > with an equivalent reduced dimension, Q 0. (We  

refer to the “coarse-state” and “fine-state”.) Then if P (w) is  the error covariance of  x (w) > 

D E ¡ ¢ ¡
˜

¢W 
˜0 0 0 0 x x x x = P0 (w) = DP (w)DW = � � 

will be of dimension Q 0 × Q 0 rather than Q × Q= Now assume further that D has a left-inverse, 

D+> as described in Chapter 2, that would map the coarse state to the finer one. Suppose 

further that one has a coarse resolution model capable of propagating x0= This model might be 

obtained from the fine-resolution model: 

0 0 0Dx (w + 1)  =  DA (w)D+ x (w)+DBD+ u (w) +D�D+ q (w) 

0 0 0 or, x (w + 1)  =  A0 x (w)+B0 u (w) > 

where u0 (w) =  Du (w) > A0 = DA (w)D+> B0 = DBD+ , etc. Then the Kalman filter (and 

smoother) can be applied to x0 (w) and the filtered data, Dy (w) = One can estimate, 

˜ 0 x (w) = D+ x (w) > 
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and 

w)D+W=P (w) = D+P0 ( (5.11) {reduced1} 

Given P (w) one has K (w) for the fine-state, under the assumption that Eq. (5.11), based wholly 

upon the large-scales, is adequate. One can put any small scales in the fine-state observations 

into the data error of the coarse-state. A further reduction in computational load can be made by 

assuming a steady-state for P0 (w) > P (w), and finding it using the doubling algorithm. In Chapter 

7 we will describe an application of this method. The main issue with its general validity would 

lie with the assumption that errors in the fine state do not strongly influence the error budget 

of the coarse-state. This assumption cannot in general be correct (spatially averaged equations 

of fluid motion are not proper representations of the equations governing the averaged fields), 

and one must carefully assess the behavior of the algorithm as it evolves. 

Determination of D, D+ is important. In principle, the Gauss-Markov mapping procedures, 

as described in Chapter 2, would be appropriate (and would include error estimates should one 

choose to use them). Various strategies for reducing storage and computation are available.167 

Other approaches to state reduction. The Eckart-Young-Mirsky Theorem, described in Chap-

ter 2, shows that sometimes a comparatively small number of singular vectors can represent a 

field with considerable accuracy. Here “small” is measured relative to the number of grid points 

or basis functions used by the underlying model.168 Suppose that the state vector x (w) = V� (w) > 

where V is the matrix of vl, the singular vectors of a large span of model–that is, the matrix � ¸
to which the Eckart-Young-Mirsky theorem is applied is x (0) x (2) . .  x (wQ) –and 

then truncated to some acceptable sub-set, 

x (w) � VN� (w) = 

Taking the canonical, full, model, 

VW NA (w)VN� (w) +VW N�VNq (w)Nx (w + 1) = VW NBVNu (w) +VW 

or, 
0 � (w + 1) = A0 (w)� (w) +B0 u (w) + � q (w) > 

where, A0 (w) =  VW A (w)VN > B0 = VW BVN > etc. is an evolution equation for the new state N N

vector � (w) whose dimension is N ??  Q=  (If A is time-independent, an alternative is to diag-

onalize it in the canonical equation by using its singular vector decomposition.169) Then  each  

mode can be handled independently. As with the coarse-to-fine resolution transformation, one 

is assuming that errors in the suppressed singular vectors (those banished to the nullspace) do 

not significantly a�ect the errors of those retained. One must be vigilant, and test the original 

assumptions against the solution obtained. 
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5.5 Uncertainty in Lagrange Multiplier Method 

When using the Lagrange multiplier approach, the issue of estimating the uncertainty of the 

solution remains, even if the system is linear. One approach is to calculate it from the covariance 

evolution equation of the filter/smoother. When one wishes to avoid that computational load, 

some limited information about it can be obtained from the Hessian of the cost function at the 

solution point.170 

Understanding of the Hessian is central to quadratic norm optimization problems in general. 

Let � represent all of the variables being optimized, including x(w), u(w) for all w. Let  �W be the 

optimal value that is sought. Then, as with the static problems of Chapter 2, if we are close 

enough to �W in the search process, the objective function is locally, 

M = constant + (� �W)W H(� �W) +  �M� � 

where H is the Hessian and �M is a higher-order correction. The discussion of the behavior of 

the solution in the vicinity of the estimated optimal value proceeds then, exactly as before, with 

row and column scaling being relevant, and issues of ill-conditioning, solution variances, etc., all 

depending upon the eigenvalues and eigenvectors of H. 171 

The only problem, albeit a di!cult one, is that the dimensions of H are square of the 

dimensions of x(w) plus u(w) over the entire time history of the model and data. Finding ways to 

understand the solution structure and uncertainty with realistic fluids and large-scale datasets 

remains as one of the most important immediate challenges. (See the applications in Chapter 

7.) 

5.6 Non-normal Systems 

Consider a forward model, 

x (w)=  Ax (w � 1) > (5.12) {nonn1} 

with w again an integer. In general, the underlying physics will fail to be self-adjoint and hence 

A will be non-normal, that is, A 6= AW . We suppose the system is unforced, but is started with 

initial conditions x (0) which are a realization of white noise with variance �2= Thus at time w 

x (w) =  Aw x (0) (5.13) 

Recalling the discussion in Chapter 3, P. 161, it follows immediately that the eigenvalues 

and right eigenvectors of Aw satisfy, 
wAw gl=�l gl= (5.14) 
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Expanding x (0) in the right eigenvectors of A> 

Q X 
x (0) = �l (0) gl (5.15) 

l=1 

and, 
Q X 

x (w) =  �l
w �l (0) gl (5.16) 

l=1 

Stability of the model demands that all |�l| � 1= But the lack of orthogonality of the gl means 

that some of the �l may be very large, despite the white noise properties of x (0) = This result 

implies that some elements of x (w) can become very large, even though the limit � w l $ 0, w $4  

means that they are actually transients. To an onlooker, the large response of the system to a 

bounded initial disturbance may make the system look unstable. Furthermore, the disturbance 

may become so large that the system becomes non-linear, and possibly non-linearly unstable.172 

That is, stable fluid systems may well appear to be unstable owing to the rapid growth of 

transients, or linearly stable systems may become unstable in the finite amplitude sense if the 

transients of the linearized system become large enough. 

Now consider the forced situation with time-independent A> 

{nonnmod2} x (w)=  Ax (w � 1) +q (w � 1) = (5.17) 

Take the Fourier transform of the di�erence equation (5.17), using the result173 that if the 

transform of x (w) is, X " 

ˆ x (w) h32�lvw> (5.18)x (v) =  
w=0 

x (v) = Solving for ˆthen the transform of x (w � 1) is h32�lvˆ x (v) > we obtain ¡ ¢
ˆ ˆ{xhat} x (v) =  h32�lvI A 

31 
q (v) = (5.19)�¡ ¢

h32�lvIWe will call A 31, the “resolvent” of A> in analogy to the continuous case terminology �
of functional analysis.174 If the resolvent is infinite for real values of v = vl it implies x̂ (vl) is 

an eigenvector of A and an ordinary resonance is possible. For the mass-spring oscillator of 

Chapter 2, the complex eigenvalues of A produce v1>2 = ±0=0507 + 0=0008l> and the damped 

oscillator has no true resonance. Should any eigenvalue have a negative imaginary part, leading ¯ ¯ 
to ¯h32�lvlw ̄  A 1> the system would be unstable. 

Define } = h32�lv> to be interpreted as an analytic continuation of v into the complex plane. 

The unit circle |}| = 1  defines the locus of real frequencies. The gist of the discussion of what ° ° ° °
are called “pseudo-spectra” is the possibility that the norm of the resolvent °(}I A)31 ° may �
become very large, but still finite, on |}| = 1  without there being either instability or resonance, 

giving the illusion of linear instability. 



289 5.6 NON-NORMAL SYSTEMS 

5.6.1 POPs and Optimal Modes 

For any linear model in canonical form, the right eigenvectors of A can be used directly to repre-

sent fluid motions,175 as an alternative e.g., to the singular vectors (EOFs). These eigenvectors 

were called “principal oscillation patterns,” or POPs by K. Hasselmann. Because A is usually 

not symmetric (not self-adjoint), the eigenvalues are usually complex, and there is no guarantee 

that the eigenvectors are a spanning set. But assuming that they provide an adequate expansion 

basis–usually tested by trying them–the right eigenvectors are used in pairs when there are 

complex conjugate eigenvalues. The expansion coe!cients of the time-evolving field are readily 

shown to be the eigenvectors of AW –that is, the eigenvectors of the adjoint model. Assuming 

that the eigenvectors are not grossly deficient as a basis, and/or one is interested in only a few 

dominant modes of motion, the POP approach gives a reasonably e!cient representation of the 

field. 

Alternatively, even when A 6= AW , it always has an SVD and one can try to use the singular 

vectors of A–directly–to represent the time evolving field. The complication is that successive 

multiplications by non-symmetric A transfers the projection from the U vectors to the V vectors 

and back again. Write A = U�VW and assume, as is normally true of a model, that it is full 

rank N = Q and � is square. Using Eqs. (4.97, 4.99), in the absence of observations, 

x (w) =  Ax (w � 1) > (5.20) 

µ (w � 1) = AW 
µ (w) > (5.21) 

one can always write, 

x(w) =  V�(w)> (5.22) {69004} 

where d is a set of vector coe!cients. Write the adjoint solution as, 

µ(w) =  U�(w)= (5.23) {69005} 

Multiply (5.20) by µ (w � 1)W > and (5.21) by x (w)W and subtracting, 

µ (w � 1)W 
Ax (w � 1)= x (w)W 

AW 
µ (w) =  µ (w)W 

Ax (w) > (5.24) {en1} 

or using (5.22, 5.23), 

�(w � 1)W ��(w � 1) = � (w)W �� (w)W > (5.25) {69006} 

which can be interpreted as an energy conservation principle, summed over modes, if the ul, vl 

are regarded as eigenmodes of the model. 

Assume kAk ? 1 so that the system is fully stable. We can ask what disturbance of unit 

magnitude at time w � 1> say, would lead to the largest magnitude of x (w)? That is, we maximize 
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kAq (w� 1)k subject to kq (w� 1)k = 1= This requirement is equivalent to solving the constrained 

maximization problem for the stationary values of, 

³ ´ 
M = q (w� 1)W 

AW Aq (w� 1) �2� q (w� 1)W 
q (w� 1) �1 > (5.26) 

where � is a scalar Lagrange multiplier, and which leads to the normal equations, 

{nneig1} AW Aq (w� 1) = �q (w� 1) > (5.27) 

{nneig2} q (w� 1)W 
q (w� 1) = 1 (5.28) 

2Eq. (5.27) shows that the solution is q (w� 1)= v1> � = �1 the first singular vector and value of 

A with (5.28) automatically satisfied. the particular choice of � assures we obtain a maximum 

rather than a minimum. With q (w� 1) proportional to the v1 singular vector of A , it maximizes 

the growth rate of  x (w) =176 The initial response would be just u1, the corresponding singular 

vector. If the time step is very small compared to the growth rates of model structures, the 

analysis can be applied instead to Aw1 > that is, the transition matrix after w1 time steps. The 

next largest singular value will give the second fastest growing mode, etc. 

5.7 Adaptive Problems 

A major  point of concern in estimation procedures  based upon Gauss-Markov type methods  lies  

in specification of the various covariance matrices, especially those describing the model error 

(here included in Q(w)). The reader will probably have concluded that there is, however, nothing 

precluding deduction of the covariance matrices from the model and observations, given that 

adequate numbers of observations are available. For example, it is straightforward to show that 

if a Kalman filter is operating properly, then the so-called innovation, y(w) � Ex̃(w>�), should 

be uncorrelated with all previous measurements: 

{66013} hy(w 0) [y(w) � Ex̃(w>�)]i = 0  > w0 ? w  (5.29) 

(recall Ch. 2, Eq. (2.431)). To the extent that (5.29) is not satisfied, the covariances need to be 

modified, and algorithms can be formulated for driving the system toward this condition. The 

possibilities for such procedures are known under the title “adaptive estimation.”177 

The major issues here are that accurate determination of a covariance matrix of a field, 

hz (w) z (w0)i > requires a vast volume of data. Note in particular that if the mean of the field 

z (w) 6= 0> and it is inaccurately removed from the estimates, then major errors can creep into 

the estimated second moments. This bias problem is a very serious one in adaptive methods. 
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In practical use of adaptive methods, it is common to reduce the problem dimensionality 

by modelling the error covariance matrices, that is by assuming a particular, simplified struc-

ture described by only a number of parameters much less than the number of matrix elements 

(accounting for the matrix symmetry). We must leave this subject to the references. 

Appendix to Chapter. Doubling 

We wish to make the doubling algorithm plausible.178 Consider the matrix equation, 

Bn+1 = FBn F +C> (5.30) {doubling1} 

and we seek to time-step it. Starting with B1> one has, time stepping as far as n = 3> 

B2 = FB1F
W +C>


B3 = FB2FW +C = F2B1F2W +FQFW +C>


B4 = FB3F
W +C


= F2B2F2W +FCFW +C 

= F2B2F2W +B2> 

that is, B4 is  given in terms  of  B2= More generally, putting Mn+1 =M
2 

nn , Nn+1 =MnNnM
W +Nn , 

with M1= F> N1 = Q> then M2n = F
2n 
> Nn+1 = B2n and one is solving Eq. (5.30) so that the 

time step doubles at each iteration. An extension of this idea underlies the doubling algorithm 

used for the Riccati equation. 

Notes 
152 See for example, Kitagawa and Sato (2001) for references. 
153 See, e.g., Arulampalam et al. (2002). Their development relies on a straightforward Bayesian approach. 
154 See Evensen (1996) and the references there for a more complete discussion. 
155 See Press et al. (1992) for detailed help concerning generating values from known probability distributions. 
156 Kalnay (2003). 
157 See Gardiner (1985) for a complete discussion 
158 Evensen (1994, 1996) are good starting points for practical applications, insofar as problem dimension have 

permitted. See Kalnay (2003) for a broad discussion of the specific numerical weather forecasting problem. 
159 See the reviews by Lorenc (1986), Daley, (1991); or Ghil & Malanotte-Rizzoli, 1991). 
160 Usually called “3D-VAR”, by meteorologists, although like “4D-VAR” it is neither variational nor restricted 

to three dimensions. 
161 Anthes (1974) 
162 Gelb (1974, Chs. 7,8) has a general discussion of the computation reduction problem, primarily in the 

continuous time context, but the principles are identical. 
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163
Kalman’s (1960) filter derivation was specifically directed at extending the Wiener theory to the transient 

situation, and it evidently reduces back to the Wiener theory when a steady-state is appropriate.) 
164
Anderson and Moore (1979) should be consulted for a complete discussion.

165 Fukumori et al. (1993) discuss this problem in greater generality for a fluid flow.

166
Fukumori (1995), who interchanges the roles of D> D+ = 
167
A general discussion of various options for carrying out the transformations between fine and coarse states is 

provided by Fieguth et al. (2003). 
168
Used for example, by Cane et al. (1996). 
169
E.g., Brogan (1985). 
170
Thacker (1989) and Marotzke and Wunsch (1993). 
171
Tziperman et al. (1992b) grapple with ill-conditioning in their results; the ill-conditioning is interpretable as 

arising from a nullspace in the Hessian. 
172
This potential confusion is the essence of the conclusions drawn by Farrell (1989), and Farrell and Moore 

(1993) and leads to the discussion by Trefethen (1997, 1999) of pseudo-spectra. 
173
Bracewell (1978) 
174
Trefethen (1997) 
175
Hasselmann (1988); von Storch et al., (1988, 1993). 
176
The meteorological literature, e.g., Farrell and Moore (1993), renamed this singular vector as the “optimal” 

vector. 
177
Among textbooks that discuss this subject are those of Haykin (1986), Goodwin and Sin (1984), and 

Ljung (1987). 
178
Following Anderson and Moore (1979, p. 67). 
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