
281 5.3 APPROXIMATE FILTER/SMOOTHER METHODS 

5.3 Approximate Filter/Smoother Methods 

This book has been primarily devoted to the principles underlying various state estimation 

methods, rather than to addressing practical issues of implementation. A few methods were 

introduced to reduce computation (Lagrange multipliers, and of ensemble methods), avoiding 

the computation of the covariance matrices in the sequential (smoother) methods). Lagrange 

multiplier methods are attractive because they do not demand the covariance matrices; but their 

main weakness is that they therefore do not provide them. 

Unsurprisingly therefore, numerous approaches have attempted to approximate the full 

results of the filter/smoother algorithms, both to reduce the burden of the state estimates 

themselves and of the corresponding error covariances. We examine some examples of such 

approaches.162 

Steady-state Approximation 

Consider, as an example, the Kalman filter, Eqs. (4.49-4.53) of Chapter 4. The error covariances, 

P (w> �) > P (w) are propagated as, 

WP(w> ) =  A(w � 1)P(w � 1)A(w � 1)W + �Q(w � 1)� > (5.7) {riccati1} �

£ ¤
P(w) =  P(w> �) �P(w> �)E(w)W E(w)P(w> )E(w)W + R(w) 31 

E(w)P(w> �)> (5.8) {riccati2} �

and does not involve the actual data (as is true of all linear estimates). These equations can 

be simply time-stepped from P (0) to any time w, assuming the availability of R (w) > E (w) and 

P (0) = Knowledge of P (w) then permits the finding of K (w) > and both are determined before 

any observations actually exist. 

Let the model and data stream be time independent, A (w) =  A> E (w) =  E> Q (w)=  Q> R (w)=  R= 

Substituting for P (w> �) one has, 

P (w) =  AP (w � 1) AW + (5.9) £ 
¤

¤ © £ ¤ ª
�Q� W � AP (w � 1) AW + �Q� W EW E AP (w � 1) AW + �Q� W EW + R 

31 
× £ 

WE AP (w � 1) AW + �Q� > w  = 0> 1> ===  

Suppose the di�erence equation (5.9) approaches a steady-state. That is, as w >$ 4
P (w)=  P (w � 1) � = Then it follows from Eq. (4.52), that K (w) =  K" also becomes steady. P" 

Once P and K cease to change, the computational load of the filter is enormously reduced: the 
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Figure 5.2: Coupled mass-spring oscillator (after McCuskey, 1959). Rest positions of the two 

ssspring.tif} masses define the coordinates t1>2= 

model must be run only once at each time-step. This reduction in load leads one to understand 

under what circumstances Eq. (5.9), does asymptote to a steady-state, and then for methods to 

determine that state. With K" known, one can, if one chooses, use it in place of K (w), even dur-

ing the period when the steady-state is invalid. To the extent that the system “forgets” its initial 

conditions, experience suggests that eventually the estimated state will converge to the correct 

one, even though the initial transient is not properly computed. (A steady-Kalman filter is a 

“Wiener filter;” they are usually applied by fast convolution methods (which we omit).163 Simi-

lar considerations apply to the problem of obtaining steady-state solutions (Wiener smoother) to 

the evolution equation for the RTS smoother; further discussion can be found in the references. 

Example. Consider two masses coupled to each other and the boundaries as indicated in 

Fig. 5.2. A governing set of di�erential equations for the position, tl of each oscillator (not to 

be confused with the generic control variable), is readily shown to be, 

2g q gq
{mass21} M +D + Lq = f = (5.10) 

gw2 gw 

Here, M> D> K are matrices, q (w) = [t1 (w) > t2 (w)]
W is the non-equilibrium displacement of the 

masses, and f is the forcing vector. To generate the simplest case, take M = pI2> so that the 

masses are identical; D = uI2> so that the dissipation is of ordinary Rayleigh type, and 

;
AA?


O=

2n n�

< 
AA@ 

AA>AA= n 2n�

couples the masses through the connecting springs. Using a simple one-sided discretization of
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Eq. (5.10), a canonical statespace approximation is, 

x (q+ 1) = Ax (q) + fg (q) 

�w)2 

;
AA? 

< 
AA@ 

AA>

> x (q) = 


�
 W2I2�L ( @p (�1 + u�w) I2 

t1 (q) t2 (q) t1 (q� 1) t2 (q� 1)

¸
>A=
AA= 

�

I2 0 

0 

¸W 

=fg (q) = (�w)2 
f (q)W 

Taking n = 1>p  = 1> u  = =01>�w = 0=25> and i to be a unit variance zero mean forcing of t1 

alone (no forcing applied to t2)> a realization of ¸
that E = 1 0  0 0 so that each time step, only {1 (q), that is the position t1 is measured. µ ¶
Assume P (0) = diag 1 1 1  1 > diag(R) = [1> 0]> and Q = I4 = Then time-stepping Eq. (5.9) 

leads to the results for the diagonal elements of P (q) as depicted in Fig. 5.3. Both S11> S12 

(and the o�-diagonal elements as well) reach steady-state values before w = q�w = 10= At that 

time, K (w) has become a constant, and one can cease updating either it or the P (w) = ( P (w>�) 
has of course, also reached a steady-state.) 

How might one find the steady-state of Eq. (5.9)–if it exists? Several methods are known. 

One of them has been used in the above example: time-step the equation until it asymptotes. 

� 

Other algorithms exist, including a remarkable one called “doubling.” In this algorithm, one 

time steps the equation from w = 0> P (0) > to obtain P (1�w) = One then doubles  the time step  

to compute P (3�w) > doubles again for P (6�w) > etc. With this geometric increase in the time 

step, convergence, if it occurs, is extremely rapid. A simplified equation is treated this way in 

the Chapter Appendix.164 

When does a steady-state exist? In general, uncertainty grows because of errors in initial 

conditions, and the unknown system perturbations (unknown controls, u). Information that 

reduces uncertainty is provided by the incoming data stream. Under the right circumstances, 

one can reach an equilibrium where the new information just balances the new uncertainties. 

A quantitative answer to the question depends directly upon the discussion in Chapter 4 of 

the observability of the system. Although we omit the formal derivation, one can understand 

physically why those requirements must be met. Suppose there is an element of the model 

which is not observable. Then any error, e.g., in its initial conditions, could grow indefinitely, 

undetected, without bound. Such growth would mean that the corresponding elements of P 

would have to grow, and there would be no steady-state. Suppose to the contrary, that such 

growth is observed. Then if those elements are controllable, one can find controls, u (w) > such 

t1 (w) > t2 (w) is shown in Fig. 5.3. Now assume 
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Figure 5.3: Uppermost panel shows the positions, tl (w) > l  = 1> 2> for the coupled mass-spring 

oscillator. Second and third panels show S11 (w) > S22 (w) under the assumption that � ¸
E = 1 0 0 0 > that is only t1 (w) is measured (with noise). Both S11 (w) > S22 (w) 

asymptote to a steady-state, albeit S11 (w) ?? S22 (w) = Lowest two panels show � ¸
S11 (w) > S22 (w) when the observation matrix is changed to E = 1 1 0 0 –that �
is the observation is of the relative separation of the two masses. In this case, the 

uncertainty in the absolute positions continues to grow and a steady-state is not 

reached (there is no dissipation in this example). {controbserv.e 
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that the growth is halted; if the elements are not controllable, then they will continue to grow. 

Note that neither x (w) > nor u (w) will generally become steady–the state continues to evolve. 

In the situation shown in Fig. 5.3, when there is a single measurement of the position, 

t1 (w) > the eigenvalues of the observability matrix, O> range in magnitude from 1.9 down to 

0.0067. Albeit there will be considerable uncertainty involved, one can fully determine the initial 

conditions from the observations. In contrast, when only the relative position, t2 (w) � t1 (w) is 

measured, two of the eigenvalues of R vanish identically, the system is not completely observable, 

as as seen in Fig. 5.3, and the uncertainties continue to grow without bound. If one were 

discussing the smoothing algorithm errors, the structure of � would enter similarly. 165 




