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2.7 Minimum Variance Estimation & Simultaneous Equations 

The fundamental objective for least-squares is minimization of the noise norm (2.90), although 

we complicated the discussion somewhat by introducing trade-o�s against kx̃k, various  weights  in  

the norms, and even the restriction that x̃ should satisfy certain equations exactly. Least-squares 

methods, whether used directly as in (2.96) or indirectly through the vector representations of the 

SVD, are fundamentally deterministic. Statistics were used only to understand the sensitivity 

of the solutions to noise, and to obtain measures of the expected deviation of the solution from 

some supposed truth. 

But there is another, very di�erent, approach to obtaining estimates of the solution to 

equation sets like (2.88), directed more clearly toward the physical goal: to find an estimate 

x̃ which deviates as little as possible in the mean-square from the true solution. That is, we 

wish to minimize the statistical quantities h(x̃l � {l)2i for all l= The next section is devoted 

to understanding how to find such an ˜ n), through an excursion into x (and the corresponding ˜


statistical estimation theory. It is far from obvious that this ˜
x should bear any resemblance to 

one of the least-squares estimates; but as will be seen, under some circumstances the two are 

identical. Their possible identity is extremely useful, but has apparently led many investigators 

to seriously confuse the methodologies, and therefore the interpretation of the result. 

2.7.1 The Fundamental Result 

Suppose we are interested in making an estimate of a physical variable, x, which  might  be  a  

vector or a scalar, and is either constant or varying with space and time. To be definite, let 

x be a function of an independent variable r, written discretely as rm (it might be a vector of 

space coordinates, or a scalar time, or an accountant’s label). Let us make some suppositions 



128 CHAPTER 2 BASIC MACHINERY 

about what is usually called “prior information.” In particular, suppose we have an estimate of 

the low-order statistics describing x, that is, specifying its mean and second moments: 

hxi = 0 > hx(rl)x(rm )
W i = R{{(rl> rm ) = (2.386) {36001} 

To make this problem concrete, one might think of x as being the temperature anomaly (about 

the mean) at a fixed depth in the ocean (a scalar) and rm a vector of horizontal positions; or 

conductivity in a well, where rm would be the depth coordinate, and x is the vector of scalars at 

any location, rs> {s = { (rs). Alternatively, x might be the temperature at a fixed point, with 

um being the scalar of time. But if the field of interest is the velocity vector, then each element 

of x is itself a vector, and one can extend the notation in a straightforward fashion. To keep the 

notation a little cleaner, however, we will treat the elements of x as scalars. 

Now  suppose that we have some observations,  |l, as a function of the same coordinate rl, 

with a known, zero mean, and second moments 

{36002} R|| (rl> rm ) =  hy (rl) y (rm )
W i > R{| (rl> rm ) =  hx(rl)y(rm )

W i > 1 l> m P (2.387) � � 

(the individual observation elements can also be vectors–for example, two or three components 

of velocity and a temperature at a point–but as with x, the modifications required to treat this 

case are straightforward, and we here assume scalar observations). Could the measurements be 

used to make an estimate of x at a point r̃� where no measurement is available? Or could many 

measurements be useto obtain a better estimate even at points where there exists a measure-

ment? The idea is to exploit the concept that finite covariances carry predictive capabilities 

from known variables to unknown ones. A specific example would be to suppose the measure-

ments are of temperature |(rm ) =  |0(rm ) +  q(rm ), where  q is the noise and we wish to estimate 

the temperature at di�erent locations, perhaps on a regular grid r̃�, 1 � � � Q . This  special  

problem is one of gridding or mapmaking (the tilde is placed on r� as a device to emphasize 

that this is a location where an estimate is sought; the numerical values of these places or labels 

are assumed known). Alternatively, and somewhat more interesting, perhaps the measurements 

are more indirect, with |(ul) representing a velocity field component at depth in a fluid and 

believed connected through a di�erential equation to the temperature field. We might want to 

estimate the temperature from measurements of the velocity. 

Given the previous statistical discussion (P. 30), it is reasonable to ask for an estimate ˜ r�),{(˜

whose dispersion about its true value, {(r̃�) is as small as possible, that is, 

S (r̃�> r̃�) =  h(˜ r�) � {(˜ {(˜{(˜ r�))(˜ r� ) � {(˜ ˜=r))i|r� 
r̃� � 

is to be minimized. If we would like to answer the question for more than one point, and if we 

would like to understand the covariance of the errors of our estimates at various points r̃�, then  
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we can form a vector of values to be estimated, {{̃(r�)} � x̃> and the uncertainty among them, 

{36003} 
P(r̃�> r̃� ) =  h({̃(r̃�) � {(r̃�))({̃(r̃� ) � {(r̃� ))i 

= h(x̃ � x)(x̃ � x)W i > 1 � � � Q >  1 � � � Q >  
(2.388) 

where the diagonal elements, P(r̃�> r̃�), are  to  be  individually minimized (not in the sum of 

squares). Thus we seek the solution with minimum variance about the correct value. 

What should the relationship be between data and estimate? At least initially, one might 

try a linear combination of data, 

P X 
{̃(r̃�) =  E(r̃�> rm )|(rm ) > (2.389) {36004} 

m=1 

for all �, which makes the diagonal elements of P in (2.388) as small as possible. By letting B 

be an Q × P matrix all the points can be handled at once, 

x̃ (r̃�) =  B(r̃�> rm )y (rm ) = (2.390) {36005} 

(This notation is redundant. Eq. (2.390) is a shorthand for (2.389), in which the argument has 

been put into B explicitly as a reminder that there is a summation over all the data locations 

rm for all mapping locations r̃�, but it is automatically accounted for by the usual matrix 

multiplication convention. It su!ces to write x̃ = By=) 

An important result, often called the “Gauss-Markov theorem,” produces the values of B 

that will minimize the diagonal elements of P. 54 Substituting (2.390) into (2.388) and expanding, 

P(r̃�> r̃� ) =  h(B(r̃�> rm )y (rm ) � x(r̃�))(B(r̃� > ro)y (ro) � x(r̃� ))
W i 

� h(By � x)(By � x)W i 

= B 
 
yy W ® � 

 
xy W ® BW � B 

 
yx W ® + 

 
xx W ® 

(2.391) {36006} 

Using R{| = RW 
|{, Eq.  (2.391) is,  

P = BR|| BW � R{| BW � BRW 
{| + R{{ = (2.392) {36007} 

Notice that because R{{ represents the moments of x evaluated at the estimation positions, it 

is a function of r̃�, r̃� , whereas  R{| involves covariances of y at the data positions with x at 

the estimation positions, and is consequently a function R{| (r̃�> rm ). 

Now, using the matrix identity (2.38)–that is, completing the square (adding and subtract-

ing R{| R31 
|| R

W 
{| ), (2.392) becomes, 

P = (B � R{| R
31 
|| )R|| (B � R{| R

31 
|| )
W � R{| R

31 
|| R

W 
{| + R{{ = (2.393) {36009} 
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Setting r̃� = r̃� so that (2.393) is the variance of the estimate at point r̃� about its true 

value, and noting that all three terms in Eq. (2.393) are positive definite, minimization of any 

diagonal element of P is obtained by choosing B so that the first term vanishes or, 

¡ ¢
B(r̃�> rm ) =  R{| (r̃�> rl) R|| rl> rm 

31 
= R{| R31 = (2.394) {36010}|| 

(The diagonal elements of (B R{| R
31 R{| R

31 
|| )
W need to be written out explicitly� || )R|| (B � 

to see that Eq. (2=394) is necessary. Consider the 2 × 2 case: The first term of Eq. (2.393) is of 

the form,
 ;
AA?


;
AA? 

< 
AA@ 

AA> 

;
AA? 

< 
AA@ 

AA> 

F11 F12 

F21 F22 

< 
AA@ 

AA>


W 

F11 F12 U11 U12 

U21 U22 

>
A
A=

A
A A
AF21 F22 =
 =


where C = B R{|R
31= Then, one has the diagonal of,||� 

;
AA?


< 
AA@ 

AA>

>


F2 
12U2211U11 + F12F11 (U21 + U12) +  F2 · 

AA=
 ·= F2 
22U2221U11 + F21F22 (U21 + U12) +  F2 

and these diagonals vanish (with U11> U22 A 0> only if F11 = F12 = F21 = F22 = 0  or, 

|| ). Thus the minimum variance estimate is,B = R{| R31 

¡ ¢ 
˜ r�) =  R{| (˜ || rl> rm y (rm ) > (2.395){36011} x(˜ r�> rl) R

31 

and the actual minimum value of the diagonal elements of P is found by substituting back 

into (2.392) producing, 

{36012} P(˜ || (rm > rn)R
W r�> r̃� ) =  R{{(r̃�> r̃� ) � R{| (r̃�> rm )R31 
{| (r̃� > rn) = (2.396) 

{pagemap1} 

The bias of (2.396) is 

{36013} hx̃ xi = R{| R31 x = (2.397)� || hyi � 

If hyi = x = 0, the estimator is unbiased , and called a “best linear unbiased estimator,” or 

“BLUE”; otherwise it is biassed. The whole development here began with the assumption that 

hxi = hyi = 0;  what is usually done is to remove the sample mean from the observations y> and 

to ignore the di�erence between the true and sample means. An example of using this machinery 

for mapping purposes will be seen in Ch. 3. Under some circumstances, this approximation is 

unacceptable, and one must account for the mapping error introduced by the use of the sample 

mean. A general approach falls under the label of “kriging”, which is also briefly discussed in 

Chapter 3. 
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2.7.2 Linear Algebraic Equations 

The result (2.394)—(2.396) is the abstract general case and is deceptively simple. Invocation of 

the physical problem of interpolating temperatures etc., is not necessary: the only information 

actually used is that there are finite covariances between x> y> n. Although we will explicitly 

explore its use for mapping in Chapter 3, suppose instead that the observations are related to 

the unknown vector x as in our canonical problem, that is, through a set of linear equations: 

Ex + n = y. The measurement covariance, R|| , can then be computed directly as: 

R|| = h(Ex + n)(Ex + n)W i = ER{{EW + Rqq = (2.398) {36014} 

The unnecessary, but simplifying and often excellent, assumption was made that the cross-terms 

of form, 

R{q = RW 
q{ = 0> (2.399) {36015} 

so that 

R{| = hx(Ex + n)W i = R{{EW > (2.400) {36016} 

that is, there is no correlation between the measurement noise and the actual state vector (e.g., 

that the noise in a temperature measurement does not depend upon whether the true value is 

10� or 25�). 

Under these circumstances, Eqs. (2.395), (2.396) take on the form: 

¡ ¢
x̃ = R{{EW ER{{E

W +Rqq 
31 
y (2.401) 

n = y � E˜˜ x (2.402) ¡ ¢
P = R{{�R{{EW ER{{E

W +Rqq 
31 
ER{{ (2.403) 

These latter expressions are extremely important; they permit discussion of the solution to 

a set of linear algebraic equations in the presence of noise using information concerning the 

statistics of both the noise and the solution. Notice that they are identical to the least-squares 

expression (2.136) if S = R{{, W = Rqq, except that there the uncertainty was estimated 

about the mean solution; here it is taken about the true one. As is generally true of all linear 

methods, the uncertainty, P, is independent of the actual data, and can be computed in advance 

should one wish. 

From the matrix inversion lemma, Eqs. (2.401, 2.403) can be rewritten 
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¡ ¢31 
˜ {{ +E

W 
qq qq y (2.404) x = R31 R31E EW R31 

n = y � E˜˜ x (2.405) ¡ ¢31 
P = R31 R31E (2.406) {{ +E

W 
qq 

Although these alternate forms are algebraically and numerically identical to Eqs. (2.401-

2.403), the size of the matrices to be inverted changes from P × P matrices to Q × Q , where  

E is P × Q (but note that Rqq is P × P ; the  e!cacy of this alternate form may depend upon 

whether the inverse of Rqq is known). Depending upon the relative magnitudes of P , Q , one  

form may be much preferable to the other. Finally, (2.406) has an important interpretation we 

will discuss when we come to recursive methods. Recall, too, the options we had with the SVD 

of solving P × P or Q × Q problems. Note that in the limit of complete a priori ignorance of ° ° 
the solution, °R31 ° $ 0> Eqs. (2.404, 2.406) reduce to, {{ 

¡ ¢
x= EW R31E EW R31˜ qq 

31 
qq y> ¡ ¢31 

P= EW R31E >qq 

the conventional weighted least-squares solution, now with P = C{{= More generally, the pres-

{{ introduces a bias into the solution so that h˜ = x> which, however, produces ence of finite R31 xi 6

a smaller solution variance than in the unbiased solution. 

The solution (2.401-2.403, 2.404-2.406) is an “estimator”; it was found by demanding a 

solution with the minimum dispersion about the true solution and is found, surprisingly, to 

be identical with the tapered, weighted least-squares solution when S = R{{> W = R > theqq

least-squares objective function weights are chosen, as is commonly done. This correspondence 

of the two solutions often leads them to be seriously confused. It is essential to recognize that 

the logic of the derivations are quite distinct: We were free in the least-squares derivation to use 

weight matrices which were anything we wished–as long as appropriate inverses existed. 

The correspondence of least-squares with what is usually known as minimum variance es-

timation can be understood by recognizing that the Gauss-Markov estimator was derived by 

minimizing a quadratic objective function. The least-squares estimate was obtained from mini-

mizing a summation which is a sample estimate of the Gauss-Markov objective function when 

S = R{{> W = R .qq



2.7 MINIMUM VARIANCE ESTIMATION & SIMULTANEOUS EQUATIONS133 

2.7.3 Testing After the Fact 

As with any statistical estimator, an essential step is the testing after an apparent solution has 

x, n is consistent with the assumed prior statistics reflectedbeen found, that the behavior of ˜ ˜

in R{{, Rqq, and any assumptions about their means or other properties. Such a posteriori 

checks are both necessary and very demanding. One sometimes hears it said that estimation 

using Gauss-Markov and related methods is “pulling solutions out of the air” because the prior 

covariance matrices R{{, Rqq often are only poorly known. But producing solutions which pass 

the test of consistency with the prior covariances can be very di!cult. It is also true that the 

solutions tend to be somewhat insensitive to the details of the prior covariances and it is easy 

to become overly concerned with the detailed structure of R{{, Rqq. 

As stated previously, it is also rare to be faced with a situation in which one is truly ignorant 

of the covariances, true ignorance meaning that arbitrarily large or small numerical values of {l, 

ql would be acceptable. In the box inversions of Chapter 1 (to be revisited in Chapter 5), solution 

velocities of order 1000 cm/s might be regarded as absurd, and their absurdity is readily asserted 

by choosing R{{ = diag(10cm/s)
2 , which reflects a mild belief that velocities are 0(10cm/s) with 

no known correlations with each other. Testing of statistical estimates against prior hypotheses 

is a highly developed field in applied statistics, and we leave it to the references already listed 

for their discussion. Should such tests be failed, one must reject the solutions ˜ n and ask whyx, ˜

they failed–as it usually implies an incorrect model, (E> and the assumed statistics of solution 

and/or noise). 

Example 

The underdetermined system 

6
5
;
AA? 

AA= 

1 1  

1 

< 
AA@ 

AA>

x + n =


997

1 1  1 ::8
> 

1 1 1  1� � �

with noise variance hnn W i = =01I, has a solution, if R{{ = I, of 

�
 �
W ¸W 

=


¸
x̃ = EW (EEW + =01I)31 y = 0 =4988 =4988 0 ˜> n = =0025 =0025� 
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If the solution was thought to be large scale and smooth, one might use the covariance 
;
A
AAAAAAAAA

<
A
AAAAAAAAA

1 =999 =998 =997


=?
AAAAAAAAAA

@
A
AAAAAAAAA

999 1 =999 =998 
R{{ = > 

=998 =999 1 =999


>= 997 =998 =999 1
=

which produces a solution, 
�
 ¸W 

>
x̃ = 0=2402 ± 0=028 0=2595 ± 0=0264 0=2595 ± 0=0264 0=2402 ± 0=0283
�


ñ = 0=0006 0=9615�
¸W 

>


which has the desired large-scale property. (One might worry a bit about the structure of the 

residuals; but two equations are wholly inadequate to draw any conclusions.) 

2.7.4 Use of Basis Functions 
sisfunctions} 

A superficially di�erent way of dealing with prior statistical information is often commonly used. 

Suppose that the indices of {l refer to a spatial or temporal position, call it ul, so  that  {l = {(ul). 

Then it is often sensible to consider expanding the unknown x in a set of basis functions, Im , 

for example, sines and cosines, Chebyschev polynomials, ordinary polynomials, etc. One might 

write 
O X 

{(ul) =  �m Im (ul) 
m=1 

<
AAAAAAAAAA

;
AAAAA

or


I1(u1) I2(u1) · · ·  IO(u1) 

I1(u2) I2(u2) · · ·  IO(u2) 

AAAAA?
 @
A
AAAAAAAAA

>
 � = [�1 · · ·�O]
W x = F� > F = A
AAAAAAAAA

· · · ·


>=I1(uQ ) I2(uQ ) · · ·  IO(uQ ) 

which, when substituted into (2.88), produces 

{36019} L� + n = y > L = EF = (2.407) 

If O ? P  ? Q , one can convert an underdetermined system into one which is formally overde-

termined and, of course, the reverse is possible as well. It should be apparent, however, that the 
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solution to (2.407) will have a covariance structure dictated in large part by that contained in 

the basis functions chosen, and thus there is no fundamental gain in employing basis functions 

although they may be convenient, numerically or otherwise. If P�� denotes the uncertainty of 

� then, 

P = FP��FW > (2.408) 

is the uncertainty of x̃= If there are special conditions applying to x, such as boundary conditions 

at certain positions, uE , a choice of basis function satisfying those conditions could be more 

convenient than appending them as additional equations. 

Example 

If, in the last example, one attempts a solution as a first order polynomial, 

{l = d+ eul> u1 = 0> u2 = 1> u3 = 2> = = =  

the system will become two equations in the two unknowns d, e: 
6565 

997 

< 
AA@ 

AA> 

65 

4 6  d 

0 0  �

;
AA?997 

997

d 1::8


::8

::8
EF + n = >=
AA=
 1e
 e 

and if no prior information about the covariance of d, e is provided, 

[d̃> ẽ] =  [0=0769> 0=1154] > 
�
 ¸

˜ W >x = 0=0769 ± 0=0077 0=1923 ± 0=0192 0=3076 ± 0=0308 0=4230 ± 0=0423

ñ = [0=0002> 1=00]W >�

which is also large  scale and  smooth,  but  clearly di�erent than that from the Gauss-Markov 

estimator. Although this latter solution has been obtained from a just-determined system, it is 

not clearly “better.” If a linear trend is expected in the solution, then the polynomial expansion is 

certainly convenient–although such a structure can be imposed through use of R{{ by specifying 

a growing variance with ul. 

2.7.5 Determining a Mean Value 

Let the measurements of the physical quantity continue to be denoted |l and suppose that 

each is made up of an unknown large scale mean, p, plus a deviation from that mean of �l. 

Then, 

p+ �l = |l > 1 l P (2.409) {36020a}� � 
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or 

Dp + � = y > D = 1 1  1  · · ·  

� 
1

¸W 

> (2.410) {36020b} 

and we seek a best estimate, p̃, of  p. In (2.409) or (2.410) the unknown x has become the 

scalar p, and the deviation of the field from its mean is the noise, that is, � n, whose true � 

mean is zero. The problem is evidently a special case of the use of basis functions, in which only 

one function–a zerowk—order polynomial, p, is retained. 

Set Rqq = h�� W i. If, for example, we were looking for a large-scale mean temperature in a 

fluid flow filled with eddies, then Rqq is the sum of the covariance of the eddy field plus that of 

observational errors and any other fields contributing to the di�erence between |l and the true 

mean p. 2To be general, suppose R{{ = hp
2i = p0> and from (2.404), 

{36021b} 

˜

½ ¾
1 31 

p
p = 2 qq 

0 
+DW R31D DW R31 

qq y 

= 
1 

1@p2 
qq D qq y= 

0 +D
W R31 DW R31 

(2.411) 

(DW R31D is a scalar).55 
qq The expected uncertainty of this estimate is (2.406), 

{36021c} S = 

½ ¾
2 qq 
0 
+DW R31D = 

1 31 1 
p 1@p2 

qq D0 +D
W R31 > (2.412) 

(also a scalar). 

The estimates may appear somewhat unfamiliar; they reduce to more common expressions 

in certain limits. Let the �l be uncorrelated, with uniform variance �2; Rqq is then diagonal 

and (2.411) reduces to, 

{36022a} p̃ = 
1 

|l = 
p0 

(1@p2 
0 +P@�

2)�2 �2 +Pp2 |l > 
P P X 2 X 

l=1 0 l=1 

(2.413) 

where the relations DW D =P , DW y = l=1 |l were used. The expected value of the estimate 
PP 

is 

{36022b} 
2 X 2 

pi = 
�2 +

p

Pp2 h|li = 0 = p>  
0 l 0 

P 

h ˜ 0 p

�2 +Pp2 Pp  6 (2.414) 

that is, it is biassed, as inferred above, unless h|li = 0, implying  p = 0. P becomes, 

{36022c} S = 
1 

1@p2 
0 +P@�

2 
= 

� p2 2 
0 

�2 +Pp2 
0 
= (2.415) 

Under the further assumption that p2 ,0 $4

1 
P X 

{36022d} p̃ = 
P 

|l > (2.416) 
l=1 

{36022e} S = � @P > 2 (2.417) 
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which are the ordinary average and its variance (the latter expression is the well-known “square 

root of P rule” for the standard deviation of an average; recall Eq. (2.43)); h ̃pi in (2.416) 

is readily seen to be the true mean–this estimate has become unbiased. But the magnitude 

of (2.417) always exceeds that of (2.415)–acceptance of bias in the estimate (2.413) reduces 

gemeanvalue2} the uncertainty of the result–a common trade-o� in estimation problems. 

Eqs. (2.411)—(2.412) are the more general estimation rule–accounting through Rqq for cor-

relations in the observations and their irregular distribution. Because many samples are not 

independent, (2.417) may be extremely optimistic. Eq. (2.412) gives one the appropriate ex-

pression for the variance when the data are correlated (that is, when there are fewer degrees of 

freedom than the number of sample points). 

Example 

The mean is needed for the P =500 values of the measured time series, shown in Fig. 

˜2.14. If one calculates the ordinary average, p = �20=0> and the standard error, treating the 

measurements as uncorrelated, is by Eq. (2.417) is ±0=31= If on the other hand, one uses the 

covariance function displayed in Fig. 2.14, and (Eqs. 2.411, 2.412) with p
20 $4> one obtains

p̃ = �23=7> with a standard error of ±20= The true mean of the time series is actually zero (it 

was generated that way), and one sees the dire e�ects of assuming uncorrelated measurement 

noise, when the correlation is actually very strong. Within 2 standard deviations (a so-called 95% 

confidence interval for the mean), one finds, correctly, that the sample mean is indistinguishable 

from zero, whereas the mean assuming uncorrelated noise would appear to be very well determined 

and markedly di�erent from zero. 56 (One might be tempted to apply a transformation to render 

the observations uncorrelated before averaging, and so treat the result as having P degrees-of-

freedom. But recall, e.g. that for Gaussian variables (P. 37), the resulting numbers will have 

di�erent variances, and one would be averaging apples and oranges. 

The use of the prior estimate, p
20, is interesting. Letting p
20 go to infinity does not mean


that an infinite mean is expected ((2.416) is finite). It is is merely a statement that there is 

no information whatever, before we start, as to the magnitude of the true average–it could be 

arbitrarily large (or small and of either sign) and if it came out that way, would be acceptable. 

Such a situation is, of course, unlikely and even though we might choose not to use information 

concerning the probable size of the solution, we should remain aware that we could do so (the 

importance of the prior estimate diminishes as P grows–so that with an infinite amount of 

data it has no e�ect at all on the estimate). If a prior estimate of p itself is available, rather 

than just its mean square, the problem should be reformulated as one for the estimate of the 

perturbation about this value. 
2
0It is very important not to be tempted into making a first estimate of p by using (2.416), 
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Figure 2.14: Time series |w (upper panel) whose mean is required. Lower panel displays the 

autocovariance h|w|w0 i as a function of |w w0| (in this special case, it does not� 

corrmean.eps} depend upon w> w0 separately.) True mean of |w is zero by construction. 

substituting into (2.413), thinking to reduce the error variance. For the Gauss-Markov theorem 

to be valid, the prior information must be truly independent of the data being used. 


