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3.2 Sampling 

Chapter 2, on P. 130, we discussed the problem of making a uniformly gridded map from 

irregularly spaced observations. But not any set of observartions proves adequate to the purpose. 

The most fundamental problem generally arises under the topic of “sampling” and “sampling 

error.” This subject is a large and interesting one in its own right,60 and we can only outline 

the basic ideas. 

Continued on next page...
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The simplest and most fundamental idea derives from consideration of a one-dimensional 

continuous function, i(t)> where t is an arbitrary independent variable, usually either time or 

space, and i(t) is supposed to be sampled uniformly at intervals, �t> an infinite number of times 

to produce the infinite set of sample values {i(q�t)}, �4 � q � 4. The sampling theorem, 
or sometimes the “Shannon-Whittaker Sampling Theorem”61 is a statement of the conditions 

under which i(t) should be reconstructable from the sample values. Let the Fourier transform 

of i(t) be defined as Z 
{36023} î(u) =  

" 

i(t)h2l�utgt > (3.14) 
3" 

and assumed to exist. The sampling theorem asserts that a necessary and su!cient and assumed 

to exist condition to perfectly reconstruct i(t) from its samples is that, 

{36024} |î(u)| = 0  > |u| � 1@(2�t) = (3.15) 

From the theorem emerges the Shannon-Whittaker formula for the reconstruction, 

X 
i(t) =  

" 

i(q�t)
sin[(2�@2�t)(t � q�t)]

{36025} = (3.16)
(2�@2�t)(t � q�t)

q=3" 

Mathematically, the Shannon-Whittaker theorem is surprising–because it provides a condition 

under which a function at an uncountable infinity of points–the continuous line–can be per-

fectly reconstructed from information known only at a countable infinity, q�t> of them. For 

present purposes, an intuitive interpretation is all we seek and this is perhaps best done by 

considering a special case in which the conditions of the theorem are violated. 

Figure 3.2 displays an ordinary sinusoid whose Fourier transform can be represented as 

ˆ{36026} i(u) =  1 
2 (�(u � u0) � �(u + u0)) > (3.17) 

which is sampled as depicted, and in violation of the sampling theorem. It is quite clear that 

there is at least one more perfect sinusoid, the one depicted with the dashed line, which is 

completely consistent with all the sample points and which cannot be distinguished from it 

using the measurements alone. A little thought shows that the apparent frequency of this new 

sinusoid is, 
q

{36027} ud = u0 ± (3.18) 
�t 

such that 
1 

{36028} |ud| � = (3.19)
2�t 

The samples cannot distinguish the true high frequency sinusoid from this low frequency one, 

and the high frequency can be said to masquerade or “alias” as the lower frequency one.62 The 
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Figure 3.2: E�ects of undersampling a periodic function: solid curve is | (w) = sin  (2�w@8) sam-

pled at time intervals of �w = 0=1= The dashed curve is the same function, but 

sampled at intervals �w = 7= With this undersampling, the curve of frequency 

v = 1@8 time units > is aliased into one that appears to have a periodicity of pe-

riod vd = 1@8 � 1@7 = 1@56 ? 1@14= That is, the aliased curve appears to have a 

sampsine.eps} period of 56 time units. 

Fourier transform of a sampled function is easily seen to be periodic with period 1@�t in the 

transform domain, that is, in the u space.63 Because of this periodicity, there is no point in 

computing its values for frequencies outside |u| � 1@2�t (we make the convention that this 

“baseband,” i.e., the fundamental interval for computation, is symmetric about u = 0, over  a  

distance 1@2�t; see fig. 3.3). Frequencies of absolute value larger than 1@2�t, the  so-called  

Nyquist frequency, cannot be distinguished from those in the baseband, and alias into it. Fig. 

3.3 shows a densely sampled, non-periodic function and its Fourier transform compared to that 

obtained from the undersampled version overlain. Undersampling is a very unforgiving practice. 

The consequences of aliasing range from the negligible to the disastrous. A simple example 

is that of the principal lunar tide, usually labelled P2, with a period of  12=42 hours, u = 1=932 

cycles/day. An observer measures the height of sea level at a fixed time, say 10 AM. each day so 

that �t = 1  day. Applying the formula (3.18), the apparent frequency of the tide will be =0676 

cycles/day for a period of about 14=8 days (q = 2). To the extent that the observer understands 

what is going on, she will not conclude that the principal lunar tide has a period of 14=8 days, 

but will realize that the true period can be computed through (3.18) from the apparent one. 

But without that understanding, some bizarre theory might be produced.64 

The reader should object that the Shannon-Whittaker theorem applies only to an infinite 

number of perfect samples and that one never has either perfect samples or an infinite number 



166 CHAPTER 3 EXTENSIONS OF METHODS 

-2 

0 

2 

4 

' 
' 

-0.4 

-0.2 

0 

0.2 

0.4 

s
 

y
(n

 
t)

, 
y
(7

m
 

t)
 

R
l(
F

(y
),

 R
l(

F
(y

 
))

 

0 50 100 150 -0.2 -0.1 0 0.1 0.2 
t CYCLES/UNIT TIME 

Figure 3.3: (Left panel), a non-periodic function sampled at intervals �w = 0=1> and the same 

function sampled at intervals �w = 7 time units. (Right panel). Real part of the 

Fourier components of the two functions shown in the left panel. The subsampled 

function has a Fourier transform confined to |v| � 1@(2 · 7) while that of the original, 

more densely sampled function extends to |v| � 1@0=1 = 10> most of which is not 

displayed. Note that the subsampled function has a very di�erent Fourier transform 

from that of the original densely sampled one. Both transforms are periodic in 

frequency v, with period equal to the width of their corresponding basebands. (This 

periodicity is suppressed in the plot.) Note in particular how erroneous an estimate 

of the temporal derivative of the undersampled function would be in comparison to 

sampgenl.eps} the highly sampled one. 
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of them. In particular, it is true that if the duration of the data in the t domain is finite, then it 

is impossible for the Fourier transform to vanish over any finite interval, much less the infinite 

interval above the Nyquist frequency. 65 Nonetheless, the rule of thumb that results from (3.16) 

has been found to be quite a good one. The deviations from the assumptions of the theorem are 

usually dealt with by asserting that sampling should be done so that, 

�t ¿ 1@2u0 = (3.20) {36029} 

(The example in Fig. 3.3 demonstrates that Fourier transforms of finite duration sampled signals 

are nonetheless useful.) Many extensions and variations of the sampling theorem exist–taking 

account of the finite time duration , the use of “burst-sampling” and known function derivatives, 

etc.66 Most of these variations are sensitive to noise. There are also extensions to multiple 

dimensions,67 which are required for mapmaking purposes. Because failure to acknowledge the 

possibility that a signal is undersampled is so dire, one concludes that consideration of sampling 

is critical to any discussion of field data. 

3.2.1 One-Dimensional Interpolation 

Let there be two observations [|1> |2]W = [{1 +q1> {2 +q2]
W located at positions [u1> u2]W where ql 

are the observation noise. We require an estimate of {(ũ), where  u1 ? ũ ?  u2. The formula (3.16) 

is unusable–there are only two noisy observations, not an infinite number of perfect ones. We 

could try using linear interpolation: 

{̃(ũ) =  
|u2 � ũ| 
|u2 � u1| 

|(u1) +  
|u1 � ũ| 
|u2 � u1| 

|(u2) = (3.21) {36030} 

If there are Q data points, u1, 1 � l � Q , then another possibility is Aitken-Lagrange 

interpolation:68 

P X 
{̃(ũ) =  om (ũ)|m > (3.22) {36031a} 

m=1 

om (ũ) =  
(ũ � u1) · · · (ũ � uP ) 
(um � u1) · · · (um � uP ) 

= (3.23) {36031b} 

Eqs. (3.21)-(3.23) are only two of many possible interpolation formulas. When would one be 

better than the other? How good are the estimates? To answer these questions, let us take a 

di�erent tack, and employ the Gauss-Markov theorem, assuming we know something about the 

necessary covariances. 

Suppose either h{i = hqi = 0  or that a known value has been removed from both (this just 

keeps our notation a bit simpler). Then, 
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Figure 3.4: (Both panels) Solid curve is the “true” curve, { (u) > from which noisy samples 

(denoted ‘x’) have been obtained. { (u) was generated to have a true covari-¡ ¢ 
ance V = exp  u2@100 and the “data”, | (ul) =  { (ul) +  ql where hqli = 0>�
hqlqm i = (1@4) �lm , the values generated from a Gaussian probability density. In 

the lower panel, linear interpolation is used to generate the estimated values of { (u) 

(dashed line). The estimates are identical to the observations at u = ul= In the upper 

panel, objective mapping was used to make the estimates (dashed line). Note that 

{ (ul) 6˜ = | (ul), and that an error bar is available–as plotted. The true values are 

generally within one standard deviation of the estimated value (but about 35% of 

the estimated values would be expected to lie outside the error bars), and the esti-

mated value is within two standard deviations of the correct one everywhere. The 

errors in the estimates, {̃ (ul) � { (ul) are clearly spatially correlated, and can be 

inferred from Eq. 3.28 (not shown). The values of { (u) were generated to have the 

inferred covariance V> by forming the matrix, S= wrhsolw} (V (ul> um )) > and obtaining 

its symmetric factorization , S = U�UW = x (u) =  U��, where  the  elements  of  � 

are pseudo-random numbers. {interp1.eps} 
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u> um ) � h{(˜ u)({(um ) +  q(um ))i = R{{(˜R{| (˜ u)|(um )i = h{(˜ u> um )> (3.24) 

R|| (ul> um ) � h({(ul) +  q(ul))({(um ) +  q(um ))i (3.25) 

= R{{(ul> um ) +  Rqq(ul> um ) > (3.26) 

where it has been assumed that h{(u)q(t)i = 0. 

From (2.394), the best linear interpolator is 

P X 
˜ u> r) =  R{{(˜x = By> B(˜ u> um ) {R{{ + Rqq}

31 (3.27) {36033a} ml 
m=1 

({R{{ + Rqq}
31 means the ml element of the inverse matrix) and the minimum possible error ml 

which results is 

P P XX 
u�> ũ� ) =  R{{(˜ u�> um ){R{{ + Rqq}

31R{{(ul> ũ� ) (3.28) {36033b} P(˜ u�> ũ� ) � R{{(˜ ml 
m l 

u> ũ) are both scalars), and ˜ x.(here R{{, P(˜ n = y � ˜

Results for both linear interpolation and objective mapping are shown in Fig. 3.4. Notice 

that like other interpolation methods, the optimal one is simply a linear combination of the 

data. If any other set of weights B is chosen, then the interpolation is not as good as it could 

be in the mean-square error sense; the error of any such scheme can be obtained by substituting 

it into (2.391) and evaluating the result (the true covariances still need to be known). 

Looking back now at the two familiar formulas (3=21> 3=22), it is clear what is happening: 

they represent a choice of B. Unless the covariance is such as to produce one of the two sets 

of weights as the optimum choice, neither Aitken-Lagrange nor linear (nor any other common 

choice, like a spline) is the best one could do. Alternatively, if either of (3.21), (3.22)—(3.23) was 

thought to be the best one, they are equivalent to specifying the solution and noise covariances. 

If interpolation is done for two points, ũ�, ũ� > the error of the two estimates will usually 

be correlated, and represented by P(ũ�> ũ� ). Knowledge of the correlations between the errors 

in di�erent interpolated points is often essential–for example, if one wishes to interpolate to 

uniformly spaced grid points so as to make estimates of derivatives of {. Such derivatives might 

be numerically meaningless if the mapping errors are small scale (relative to the grid spacing) 

and of large amplitude. But if the mapping errors are large scale compared to the grid, the 

derivatives may tend to remove the error and produce better estimates than for { itself. 

Both linear and Lagrangian weights will produce estimates which are exactly equal to the 

observed values if ũ� = us, that is, on the data points themselves. Such a result is characteristic 
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of “true interpolation.” If no noise is present, then the observed value is the correct one to use 

at a data point. In contrast, the Gauss-Markov estimate will di�er from the data values at the 

data points, because the estimator attempts to reduce the noise in the data by averaging over 

all observations, not just the one at the local point. The Gauss-Markov estimate is thus not a 

true interpolator; it is instead a “smoother.” One can recover true interpolation if kRqqk$ 0, 

although the matrix being inverted in (3.27), (3.28) can become singular. The weights B can 

be fairly complicated if there is any structure at all in either of R{{, Rqq. The estimator takes 

explicit account of the expected spatial structure of both x, n to weight the data in such a way 

as to most e�ectively “kill” the noise relative to the signal. One is guaranteed that no other 

linear filter can do better. 

If kRqqk À kR{{k, x̃ $ 0, manifesting the bias in the estimator; this bias was deliberately 

introduced so as to minimize the uncertainty (minimum variance about the true value). Thus, 

interpolated values tend toward zero, particularly far from the data points. For this reason, it 

is common to use expressions such as (2.411) to first remove the mean, prior to mapping the 

residual, adding the estimated mean back in afterward. The interpolated values of the residuals 

are nearly unbiased, because their true mean is nearly zero. Rigorous estimates of P for this 

approach require some care, as the mapped residuals contain variances owing to the uncertainty 

of the estimated mean,69 but the corrections are commonly ignored. 

As we have seen, the addition of small positive numbers to the diagonal of a matrix usually 

renders it non-singular. In the formally noise-free case, Rqq $ 0> and one has the prospect 

that R{{ by itself may be singular. To understand the meaning of this situation, consider the 

general case, involving both matrices. Then the symmetric form of the SVD of the sum of the 

two matrices is, 

{36034} R{{ + Rqq = U�UW = (3.29) 

If the sum covariance is positive definite, � will be square with N = P and the inverse will 

exist. If the sum is not positive definite, but is only semi-definite, one or more of the singular 

values will vanish. The meaning is that there are possible structures in the data which have 

been assigned to neither the noise field nor the solution field. This situation is realistic only if 

one is truly confident that y does not contain such structures. In that case, the solution, 

˜{36035} x = R{{(R{{ + Rqq)31 y = R{{(U�31UW )y> (3.30) 

will have components of the form 0@0, the denominator corresponding to the zero singular values 

and the numerator to the absent, impossible, structures of y. One can arrange that the ratio of 

these terms should be set to zero (e.g., by using the SVD). But such a delicate balance is not 

necessary. If one simply adds a small white noise covariance to R{{ + Rqq $ R{{ + Rqq + �2I, 
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or R{{ $ R{{ + �2I> one is assured, by the discussion of tapering, that the result is no longer 

singular–all structures in the field are being assigned either to the noise or the solution (or in 

part to both). 

Anyone using a Gauss-Markov estimator to make maps must do checks that the result is 

consistent with the prior estimates of R{{, Rqq. Such checks include determining whether 

the di�erence between the mapped values at the data points and the observed values have 

numerical values consistent with the assumed noise variance; a further check involves the sample 

autocovariance, of ñ and its test against Rqq (see books on regression for such tests). The 

mapped field should also have a variance and covariance consistent with the prior estimate R{{. 

If these tests are not passed, the entire result should be rejected. 

3.2.2 Higher Dimensional Mapping 

We can now immediately write down the optimal interpolation formulas for an arbitrary distri-

bution of data in two or more dimensions. Let the positions where data are measured be the set 

rm with measured value y(rm ), containing noise n. It is assumed that aliasing errors are unim-

portant. The mean value of the field is first estimated and subtracted from the measurements 

and we proceed as though the true mean were zero.70 Fundamentally, it is nothing more than 

an application of the Gauss-Markov theorem in two (most commonly) dimensions.71 

One proceeds exactly as in the case where the positions are scalars, minimizing the ex-

pected mean-square di�erence between the estimated and the true field x(r̃�). The  result  

is (3.27), (3.28), except that now everything is a function of the vector positions. If the field 

being mapped is also a vector (e.g., two components of velocity) with known covariances between 

the two components, then the elements of B become matrices. The observations could also be 

vectors at each point. 

An example of a two-dimensional map is shown in figure 3.5:. The “data points”, |(rl)> 
˜ 

are the x-s, while estimates of {(rl) on the uniform grid were wanted. The a priori noise was 
2set to hni = 0, Rqq = hqlqm i = �2 

q�lm , �q = 1, and the true field covariance was hxi = 0, 

R{{ = hx(rl)x(rm )i = S0 exp �|rl � rm |2@O2, S0 = 25, O2 = 100. Figure 3.5 also shows the 

estimated values and Figs. 3.5, 3.6 the error variance estimate of the mapped values. Notice 

that far from the data points, the estimated values are 0 :  the mapped field goes asymptotically 

to the estimated true mean, with the error variance rising to the full value of 25, which cannot 

be exceeded. That is to say, when we are mapping far from any data point, the only real 

information available is provided by the prior statistics–that the mean is 0, and the variance 

about that mean is 25. So the expected uncertainty of the mapped field, in the absence of data, 

cannot exceed the prior estimate of how far from the mean the true value is likely to be. The 
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Figure 3.5: (Upper) Observations, shown as solid dots, from which a uniformly gridded map is 

desired. Contours were constructred using a fixed covariance and the Gauss-Markov 

estimate ( 3.27). Noise was assumed white with a variance of 1. (Lower) Expected 

standard error of the mapped field in the top panel. Values tend, far from the 

observations points, to a variance of 25, which was the specified field variance, and 

hence the largest expected error is 
s
25= Note the minima centered on the data points. {ocip3_15ab.ti 

best estimate is then the mean itself. 

A complex error structure of the mapped field exists–even in the vicinity of the data points. 

Should a model be “driven” by this mapped field, one would need to make some provision in 

the model accounting for the spatial change in the expected errors of this forcing. 

In practice, most published objective mapping (often called “OI” for “objective interpola-

tion,” although we as we have seen, it is not true interpolation) has been based upon simple 

analytical statements of the covariances R{{, Rqq as used in the example: that is, they are 

commonly assumed to be spatially stationary and isotropic (depending upon |rl � rm | and not 

upon the two positions separately nor upon their orientation). The use of analytic forms removes 

the necessity for finding, storing, and computing with the potentially very large P × P data 
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Figure 3.6: One of the rows of P corresponding to the grid point in Fig. 3.5 at 39�N, 282�E. 

Displays the expected correlations that occur in the errors of the mapped field. These 

errors would be important e.g., in any use that di�erentiated the mapped field. For 

cip3_15c.tif} plotting purposes, the variance was normalized to 1. 
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covariance matrices in which hypothetically every data or grid point has a di�erent covariance 

with every other data or grid point. But the analytical convenience often distorts the solutions, 

as many fluid flows and other fields are neither spatially stationary nor isotropic.72 

3.2.3 Mapping Derivatives 

A common problem in setting up fluid models is the need to specify the fields of quantities 

such as temperature, density, etc., on a regular model grid. One also often must specify the 

derivatives of these fields for use in advection-di�usion equations, 

CF 
{36036} + v · F = N 2F> (3.31)

Cw 
u u 

where F is any scalar field of interest. Suppose one wished to estimate a spatial derivative as a 

one-sided di�erence, 

{36037} = (3.32) 
CF(ũ1) � 

F(ũ1) � F(ũ2) 
Cu ũ1 ũ2� 

Then one might think simply to subtract the two estimates made from eq. (3.27), producing 

CF(ũ1) 1 
{36038} u1> um ) � R{{(ũ2> um ))(R{{ + Rqq)31 y= (3.33)

Cu 
� 
�u 

(R{{(˜

Alternatively, suppose we tried to estimate CF@Cu directly from (2.390), using x = F(u1) � 

F(u2). R|| = R{{ + Rqq, which describes the data, does not change. R{| does change: 

{36039} R{| = h(F(˜ u2))(F(um ) +  q(um ))i = R{{(˜ u2> um ) > (3.34)u1) � F(˜ u1> um ) � R{{(˜

which when substituted into (2.394) produces (3.33). Thus, the optimal map of the finite di�er-

ence field is simply the di�erence of the mapped values. More generally, the optimally mapped 

value of any linear combination of the values is that linear combination of the maps.73 


