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3.4 Linear Programming 

In a number of important geophysical fluid problems, the objective functions are linear rather 

than quadratic functions. Fluid property fluxes such as heat–for example, scalar properties, P 
Fl are carried by a fluid flow at rates Fl{l> which are linear functions of x. If one sought 

the extreme fluxes of F, it would require finding the extremal values of the corresponding 

linear function. Least squares does not produce useful answers in such problems because linear 

objective functions achieve their minima or maxima only at plus or minus infinity–unless the 

elements of x are bounded. The methods of linear programming are generally directed at finding 

extremal properties of linear objective functions subject to bounding constraints. In general 

Continued on next page...
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terms, such problems can be written as, 

minimize : M = c W x > 

E1x = y1> (3.41) {eq:52001} 

E2x � y2> (3.42) {eq:52002} 

E3x � y3 > (3.43) {eq:52003} 

a � x � b > (3.44) {eq:52004} 

that is, as a collection of equality and inequality constraints of both greater than or less than 

form, plus bounds on the individual elements of x. In distinction to the least squares and 

minimum variance equations we have hitherto been discussing, these are hard constraints; they 

cannot be violated at all in an acceptable solution. 

Linear programming problems are normally reduced to what is referred to as a canonical 

form, although di�erent authors use di�erent definitions of what it is. But all such problems are 

reducible to, 

minimize : M = c W x > (3.45) {eq:52005} 

Ex � y (3.46) {eq:52006} 

x � 0 = (3.47) {eq:52007} 

The use of a minimum rather than a maximum is readily reversed by introducing a minus sign, 

and the inequality is similarly readily reversed. The last relationship, requiring purely positive 

elements in x, is obtained without di!culty by simple translation. 

Linear programming problems are widespread in many fields including, especially, financial 

and industrial management where they are used to maximize profits, or minimize costs, in, say, 

a manufacturing process. Necessarily then, the amount of a product of each type is positive, and 

the inequalities reflect such things as the need to consume no more than the available amounts 

of raw materials. In some cases, M is then literally a "cost" function. General methodologies 

were first developed during World War II in what became known as “operations research” 

(“operational research” in the U.K.)78, although special cases were known much earlier. Since 

then, because of the economic stake in practical use of linear programming, immense e�ort has 

been devoted both to textbook discussion and e!cient, easy-to-use software.79 Given this highly 

accessible literature and software, we will not actually describe the methodologies of solution, 

but merely make a few general points. 
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The original solution algorithm invented by G. Dantzig is usually known as the “simplex 

method” (a simplex is a convex geometric shape). It is a highly e!cient search method conducted 

along the bounding constraints of the problem. In general, it is possible to show that the 

outcome of a linear programming problem falls into several distinct categories: (1) The system 

is “infeasible,” meaning that it is contradictory and there is no solution; (2) the system is 

unbounded, meaning that the minimum lies at negative infinity; (3) there is a unique minimizing 

solution; and (4) there is a unique finite minimum, but it is achieved by an infinite number of 

solutions x. 

The last situation is equivalent to observing that if there are two minimizing solutions, 

there must be an infinite number of them because then any linear combination of the two 

solutions is also a solution. Alternatively, if one makes up a matrix from the coe!cients of 

x in Equations (3.45)—(3.47), one can ask whether it has a nullspace. If one or more such 

vectors exists, it is also orthogonal to the objective function, and it can be assigned an arbitrary 

amplitude without changing M . One distinguishes between feasible solutions, meaning those 

that satisfy the inequality and equality constraints but which are not minimizing, and optimal 

solutions, which are both feasible and minimize the objective function. 

An interesting and useful feature of a linear programming problem is that equations (3.45)— 

(3.47) have a "dual": 

{eq:52008} maximize : M2 = y W 
µ > (3.48) 

{eq:52009} EW 
µ � c (3.49) 

{eq:52010} µ � 0 = (3.50) 

It is possible to show that the minimum of M must equal the maximum of M2. The  reader  

may want to compare the structure of the original (the “primal”) and dual equations with those 

relating the Lagrange multipliers to x discussed in Chapter 2. In the present case, the important 

relationship is, 
CM 

{eq:52011} = �l = (3.51)
C|l 

That is, in a linear program, the dual solution provides the sensitivity of the objective function to 

perturbations in the constraint parameters y. Duality theory pervades optimization problems, 

and the relationship to Lagrange multipliers is no accident.80 Some simplex algorithms, called 

the “dual simplex,” take advantage of the di�erent dimensions of the primal and dual problems 

to accelerate solution. In recent years much attention has focused upon a new, nonsimplex 

method of solution81 known as the “Karmackar” or “interior set” method. 

Linear programming is also valuable for solving estimation or approximation problems in 

which norms other than the 2-norms, which have been the focus of this book, are used. For 
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example, suppose that one sought the solution to the constraints Ex + n = y, P A  Q  , but P P 
2subject not to the conventional minimum of M = l ql , but that of M = |ql| (a 1-norm). l 

Such norms are less sensitive to outliers than are the 2-norms and are said to be “robust.” The 

maximum likelihood idea connects 2-norms to Gaussian statistics, and similarly, 1-norms are 

related to maximum likelihood in exponential statistics.82 Reduction of such problems to linear 
+programming is carried out by setting, ql = q + �q3l , q � 0, q3 � 0, and the objective function l l l 

is, X¡ ¢ 
min : M = q + + q3 (3.52) {eq:52012} l l 

l 

Other norms, the most important83 of which is the so-called infinity norm, which minimizes the 

maximum element of an objective function, are also reducible to linear programming. 




