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CHAPTER 1 INTRODUCTION 

1.3 More Examples 

e:boxmodel1} A Tracer Box Model 

In scientific practice, one often has observations of elements of the solution of the di�erential

 

system or other model. Such situations vary enormously in the complexity and sophistication

 

of both the data and the model. A useful and interesting example of a simple system, with

 

applications in many fields, is one in which there is a large reservoir (Figure 1.2) connected to a

 

number of source regions which provide fluid to the reservoir. One would like to determine the

 

agetracerfig} rate of mass transfer from each source region to the reservoir. 

We suppose that some chemical tracer or dye, F0 is measured in the reservoir, and that the

 

concentrations of the dye, Fl, in each source region are known. Let the unknown transfer rates

 

be Ml0 (transfer from source l to reservoir 0). Then we must have, 

{tracer1} F1M10 + F2M20 + ==== + FQ MQ 0 = F0M0"> (1.18)

 

which says that for a steady-state, the rate of transfer in, must equal the rate of transfer out

 

(written M0")= To conserve mass, 

{tracer2} M10 + M20 + ==== + MQ 0 = M0" = (1.19)

 

This model has produced for us two equations in Q + 1  unknowns, [M10>M20> ===MQ 0> M0"] which

 

evidently is insu!cient information if Q A  1= The equations have also been written as though
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Figure 1.2: A simple reservoir problem in which there are multiple sources of flow, at rates Ml0> 

each carrying an identifiable property Fl, perhaps a chemical concentration. In the 

forward problem, given Ml0> Fl one could calculate F0= One form of inverse problem  

{reserv1.tif} provides F0 and the Fl and seeks the values of Ml0= 

everything were perfect. If, for example, the tracer concentrations Fl were measured with finite 

precision and accuracy (they always are), one might try to accommodate the resulting inaccuracy 

as, 

F1M10 + F2M20 + ==== +FQ MQ 0 + q = F0M0" (1.20) {tracer3} 

where q represents the resulting error in the equation. Its introduction, of course, produces 

another unknown. If the reservoir were capable of some degree of storage or fluctuation in level, 

one might want to introduce an error term into (1.19) as well. One should also notice, that 

as formulated, one of the apparently infinite number of solutions to Eqs. (6.1, 1.19) includes 

Ml0 = M0" = 0–no flow at all. More information is required if this null solution is to be excluded. 

To make the problem slightly more interesting, suppose that the tracer F is radioactive, and 

decays with a decay constant �= Eq. (6.1) becomes 

F1M10 + F2M20 + ==== + FQ MQ 0 � F0M0" = �F0 (1.21)�

Now if F0 A 0> the zero solution for Mlm is no longer possible, but we still have many more 

unknowns than equations. These equations are once again in the canonical linear form Ax = b= 
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Figure 1.3: Generic tomographic problem in two dimensions. Measurements are made by inte-

grating through an otherwise impenetrable solid between the transmitting sources 

and receivers using x-rays, sound, radio waves, etc. Properties can be anything mea-

surable, including travel times, intensities, group velocities etc. The tomographic 

problem is to reconstruct the interior from these integrals. In the particular config-

uration shown, the source and receiver are supposed to revolve so that a very large 

number of paths can be built up. It is also supposed that the division into small rect-

angles is an adequate representation. In principle, one can have many more integrals 

than the number of squares defining the unknowns. {tomog1.tif} 
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A Tomographic Problem 

So-called tomographic problems occur in many fields, most notably in medicine, but also in 

materials testing, oceanography, meteorology and geophysics. Generically, they arise when one 

is faced with the problem of inferring the distribution of properties inside an area or volume 

based upon a series of integrals through the region. Consider Fig. 1.3., where to be specific, 

suppose we are looking at the top of the head of a patient lying supine in a so-called CAT-

scanner. The two external shell sectors represent in (a) a source of x-rays and, in (b) a set of 

x-ray detectors. X-rays are emitted from the source and travel through the patient along the 

indicated lines where the intensity of the received beam is measured. Let the absorptivity/unit 

length within the patient be a function, f (r) > where r is the vector position within the patient’s 

head. Consider one source at rv and a receptor at rh connected by the path as indicated. Then 

the intensity measured at the receptor is, 
Z 
rh 

L (rv> ru) =  f (r (v)) gv> (1.22) {tomog1} 
rv 

where v is the arc-length along the path. The basic tomographic problem is to determine f (r) 

for all r in the patient, from measurements of L= In the medical problem, the shell sectors rotate 

around the patient, and an enormous number of integrals along (almost) all possible paths are 

obtained. An analytical solution to this problem, as the number of paths becomes infinite, is 

produced by the Radon transform.4 Given that tumors and the like have a di�erent absorptivity 

than does normal tissue, the reconstructed image of f (r) permits physicians to “see” inside the 

patient. In most other situations, however, the number of paths tends to be much smaller than 

the formal number of unknowns and other solution methods must be found. 

Note first, however, that we should modify Eq. (1.22) to reflect the inability of any system 

to produce a perfect measurement of the integral, and so more realistically we write, 
Z 
rh 

L (rv> ru) =  f (r (v)) gv + q (rv> ru) > (1.23) {tomog2} 
rv 

where q is the measurement noise. 

To proceed, surround the patient with a bounding square (Fig. 1=4)–simply to produce a 

simple geometry–and divide the area into sub-squares as indicated, each numbered in sequence, 

1 � m � Q= These squares are supposed su!ciently small that f (r) is e�ectively constant within 

them. Also number the paths, 1 � l � P= Then Eq. (1.23) can be approximated with arbitrary 

accuracy (by letting the sub-square dimensions become arbitrarily small) as, 

Q X 
Ll = fm �ulm + ql= (1.24) {tomog3} 

m=1 
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Figure 1.4: Simplified geometry for defining a tomographic problem. Some squares may have 

no integrals passing through them; others may be multiply-covered. Boxes outside 

the physical body can be handled in a number of ways, including the addition of 

constraints setting the corresponding fm = 0= {tomog2.tif} 

Here �ulm is the arc length of path l within square m (most of them will vanish for any particular 

path). Once again, these last equations are of the form 

Ex + n = y> (1.25) {canon1} 

where here, E = {�ulm } > x = [fm ]> n = [ql] = Quite commonly there are many more unknown 

fm than there are integrals Ll= (In the present context, there is no distinction between writing 

matrices A> E= E will generally be used where noise elements are present, and A where none are 

intended.) 

Tomographic measurements do not always consist of x-ray intensities. In seismology or 

oceanography, for example, fm is commonly 1@ym where ym is the speed of sound or seismic waves 

within the area; L is then a travel time rather than an intensity. The equations remain the same, 

however. This methodology also works in three-dimensions, the paths need not be straight lines 

and there are many generalizations.5 A problem of great practical importance is determining 

what one can say about the solutions to Eqs. (4.34) even where many more unknowns exist 

than formal pieces of information |l. 

As with all these problems, many other forms of discretization are possible. For example, 
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Figure 1.5: Volume of fluid bounded on four open sides across which fluid is supposed to flow. 

Mass is conserved, giving one relationship among the fluid transports yl; conservation 

of one or more other tracers Fl leads to additional useful relationships. {track1.tif} 

the continuous function f (r) can be expanded, 

X X 
f (r) =  dqpWq (u{)Wp (u|) > (1.26) 

t s 

where r =(u{> u| ) > and the Wq are any suitable expansion functions (sines and cosines, Chebyschev 

polynomials, etc.). The linear equations (4.34) then represent constraints leading to the deter-

mination of the dqp = 

A Second Tracer Problem 

Consider the closed volume in Fig. 1.5 enclosed by four boundaries as shown. There are 

steady flows, yl (}) > 1 � l � 4 either into or out of the volume, each carrying a corresponding 

fluid of constant density �0. } is the vertical coordinate. If the width of each boundary is ol> the 

statement that mass is conserved within the volume is simply, 

u Z 0 X 
ol�0 yl (}) g} = 0> (1.27) {box1} 

l=1 3k 

where the convention is made that flows into the box are positive, and flows out are negative. 

} = �k is the lower boundary of the volume and } = 0 is the top one. If the yl are unknown, 

Eq. (1.27) represents one equation (constraint) in four unknowns, 
Z 0 

3k 
yl (}) g}> 1 � l � 4= (1.28) 

One possible, if boring, solution is yl (}) = 0= To make the problem somewhat more interesting, 

we now suppose that for some mysterious reason, the vertical derivatives, y0 l (}) =  gyl (}) @g}> 
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are known so that, Z } 
yl(}) =  yl 

0 (}) g} + el (}0) > (1.29) 
3}r 

where }0 is a convenient place to start the integration (but can be any value). el are integration 

constants (el = yl (}0)) which remain unknown. Constraint (1.27) becomes, 

4 �Z X Z 0 } ¡ ¢ 
0 ol�0 y }0 g}0 + el (}0)

¸ 

g} = 0> (1.30)l 
l=1 3k 3}r 

or, 
4 4 Z 0 Z }X X ¡ ¢ 

0{box2} kolel (}0) = � ol g} y }0 g}0 (1.31)l 
l=1 l=1 3k 3}r 

where the right-hand side is known. Eq. (1.31) is still one equation in four unknown el, but 

the zero-solution is no longer possible, unless the right-hand side vanishes. Eq. (1.31) is a 

statement that the weighted average of the el on the left-hand-side is known. If one seeks to 

obtain estimates of the el separately, more information is required. 

Suppose that information pertains to a tracer, perhaps a red-dye, known to be conservative, 

and that the box concentration of red-dye, F> is  known to be in a steady-state.  Then  conservation  

of F becomes, 

Z4 � Z 0 X Z 0 }X ¡ ¢ ¡ ¢ 
0{box3} kol Fl (}) g}

¸ 

el = 
4 

ol g} Fl }
0 y }0 g}0> (1.32) 

l=1 3k 
� 
l=1 3k 3}r 

l 

where Fl (}) is the concentration of red-dye on each boundary. Eq. (1.32) provides a second 

relationship for the four unknown el. One might try to measure another dye concentration, 

perhaps green dye, and write an equation for this second tracer, exactly analogous to (1.32). 

With enough such dye measurements, one might obtain more constraint equations than unknown 

el= In any case, no matter how many dyes are measured, the resulting equation set is of the form 

(1.9). The number of boundaries is not limited to four, but can be either fewer, or many more.6 

Vibrating String 

Consider a uniform vibrating string anchored at its ends u{ = 0> u{ = O= The free motion of  

the string is governed by the wave equation 

C2� 1 C2� 
= 0> f2 = W@�>  (1.33)

Cu2 
{ 
� 
f2 Cw2 

where W is the tension, and � the density. Free modes of vibration (eigen-frequencies) are found 

to exist at discrete frequencies, vt > 

t�f 
{vibrate2} 2�vt = > t  = 1> 2> 3> ===> (1.34)

O 
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and which is the solution to a classical forward problem. A number of interesting and useful 

inverse problems can be formulated. For example, given vt ± �vt , 1 t P> to determine O>� � 

or f= These are particularly simple problems, because there is only one parameter, either f or O 

to determine. More generally, it is obvious from Eq. (1.34) that one has information only about 

the ratio f@O–they could not be determined separately. 

Suppose, however, that the density varies along the string, � = � (u{) > so that f = f (u{). 

Then (it may be confirmed) that the observed frequencies are no longer given by Eq. (1.34), 

but by expressions involving the integral of f over the length of the string. An important 

problem is then to infer f (u{), and hence � (u{) = One might wonder whether, under these new 

circumstances, O can be determined independently of f? 

A host of such problems, in which the observed frequencies of free modes are used to infer 

properties of media in one to three dimensions exists. The most elaborate applications are in 

geophysics and solar physics, where the normal mode frequencies of the vibrating whole earth 

or sun are used to infer the interior properties for the earth (density and elastic parameters).7 

A good exercise is to render the spatially variable string problem in discrete form. 




