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2.4 Least-Squares 

Much of what follows in this book can be described using very elegant and powerful mathematical 

tools. On the other hand, by restricting ourselves to discrete models and finite numbers of 

measurements (all that ever goes into a digital computer), almost everything can also be viewed 

as a form of ordinary least-squares, providing a much more intuitive approach than one through 

functional analysis. It is thus useful to go back and review what “everyone knows” about this 

most-familiar of all approximation methods. 

2.4.1 Basic Formulation 
{pagestraightl 

Consider the elementary problem motivated by the “data” shown in figure 2.2. w is supposed 

to be an independent variable, which could be time, or a spatial coordinate or just an index. 

Some physical variable, call it �(w), perhaps temperature at a point in a laboratory tank, has 

been measured at coordinates w = wl, 1 � l � P , as depicted in the figure. 

We have reason to believe that there is a linear relationship between �(w) and w in the form 

Continued on next page...



42 CHAPTER 2 BASIC MACHINERY 

-20 

0 

20 

40 

60 

80 

100 

120 

y
 

0 5 10 15 20 25 30 35 40 45 50 
TIME 

Figure 2.2: “Data” generated through the rule | = 1 + 2w + qw, where  hqwi = 0> hqlqm i = 9�lm 

shown as + connected by the solid line. Dashed line is the simple least-squares fit, 

|̃ = 1=69± 0=83 + (1=98± 0=03) w= Residuals are plotted as open circles, and at least 

visually, show no obvious structure. Note that the fit is correct within its estimated 

standard errors. The sample variance of the estimated noise was used for calculating 

the uncertainty, not the theoretical value. {fig3_2.eps} 

�(w) = d + ew, so that the measurements are, 

|(wl) = �(wl) + q(wl) = d + ewl + q(wl)> (2.87) {33001} 

where q(w) is the inevitable measurement noise. The straight-line relationship might as well be 

referred to as a “model,” as it represents our present conception of the data structure. We want 

to determine d, e. 

The set of observations can be written in the general standard form, 

{33002} Ex + n = y (2.88) 

where, 6565<
AAAAAAAAAAAAAA

;
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Equation sets like (2.88) are seen in many practical situations, including the ones described in 

Chapter 1. The matrix E in general represents arbitrarily complicated linear relations between 

|(wP ) q(wP ) 
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the parameters x> and the observations y= In some real cases, it has many thousands of rows 

and columns. Its construction involves specifying what those relations are, and in a very general 

sense, it requires a “model” of the data set. Unfortunately, the term “model” is used in a 

variety of other ways in this context, including statistical assumptions, and often for auxiliary 

relationships among the elements of x which are independent of those contained in E= To separate 

these di�erence usages, we will sometimes append various adjectives to the use (“statistical 

model”, “exact relationships” etc.). 

One sometimes sees (2.88) written as 

Ex � y 

or even 

Ex = y = 

But Eq. (2.88) is preferable, because it explicitly recognizes that n = 0 is exceptional. Some-

times, by happenstance or arrangement, one finds P = Q and that E has an inverse. But the 

obvious solution, x = E31 y, leads to the conclusion, n = 0, which should be unacceptable if 

the y are the result of measurements. We will need to return to this case, but for now, let us 

consider the commonplace problem where P A  Q  . 

Then, one often sees a “best possible” solution–defined as producing the smallest possible 

value of nW n, that is the minimum of 

P X 
2M = q = n W n = (y � Ex)W (y � Ex) = (2.90) {33004} l


l=1


(Whether the smallest noise solution really is the best one is considered later.) In the special 

case of the straight-line model, 
P X 

M = (|l d ewl)
2 = (2.91) {33004a} � � 

l=1 

M is an example of what is called an “objective” or “cost” function.30 

Taking the di�erential of (2.91) with respect to d, e or x (using (2.32)) and setting it to zero 

produces, µ ¶X CM CM W 

gM = g{l = gx 
C{l Cx 

l ¡
= 2 EW y � EW Ex 

¢W 
gx = 0= (2.92) 

This equation is of the form X 
gM = dlg{l = 0= (2.93) 
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It is an elementary result of multivariable calculus that an extreme value (here a minimum) of 

M is found where gM = 0= Because the {l are free to vary independently, gM will vanish only if 

the coe!cients of the g{l are separately zero or, 

{normal1} EW y � EW Ex = 0= (2.94) 

That is, 

{33005} EW Ex = EW y> (2.95) 

called the “normal equations.” Note that Eq. (2.94) asserts that the columns of E are orthogonal 

(that is “normal”) to n = y � Ex= Making the sometimes-valid-assumption that (EW E)31 exists, 

˜{33006} x = (EW E)31EW y = (2.96) 

By looking at the second derivatives of M with respect to x> we could show what is intuitively 

clear–that we have a minimum and not a maximum. The solution is written as x̃ rather than as 

x because the relationship between (2.96) and the “correct” value is obscure. Fig. 2.2, displays 

the fit along with the residuals, 

£ ¤
{33007} ˜ x = I E(EW E)31EW y = (2.97)n = y � E˜ � 

That is, the P equations have been used to estimate Q values, ˜ nl, or  P +Qxl, and  P values ˜

altogether. The combination 

{H1} H = E(EW E)31EW (2.98) 

occurs su!ciently often that it is worth a special symbol. Note the “idempotent” property 

H2 = H= If the solution x̃ is substituted into the original equations, the result is, 

E˜ y> (2.99)x = Hy = ˜

and 

{orthog1} n ˜˜W y = [(I H)y]W 
Hy = 0= (2.100) � 

The residuals are orthogonal (normal) to the inferred noise-free “data” ỹ= 

All of this is easy and familiar and applies to any set of simultaneous linear equations, not 

just the straight-line example. Before proceeding, let us apply some of the statistical machinery 

to understanding (2.96). Notice that no statistics were used in obtaining (2.96), but we can 

nonetheless ask the extent to which this value for x̃ is a�ected by the random elements: the 

noise in y. Let  y0 be the value of y that would be obtained in the hypothetical situation for 

which n = 0. Assume further that hni = 0 and that Rqq = Cqq = hnn
W i is known. Then the 

expected value of x̃ is, 

{33008} hx̃i = (EW E)31EW y0 = (2.101) 
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 ® 
2Figure 2.3: Here the “data” were generated from a quadratic rule, | = 1  +  w2 + q (w) > q = 900= 

Note that only the first 1 � w � 20 data points are used. An incorrect straight line 

fit was used resulting in |̃ = (�76=3 ± 17=3) + (20=98 ± 1=4) w> which is incorrect, but 

the residuals at least visually, do not appear unacceptable. At this point some might 

be inclined to claim the model has been “verified,” or “validated.” {fig3_4.eps} 

If the matrix inverse exists, then in many situations, including the problem of fitting a straight-

line to data, perfect observations would produce the correct answer, and Eq. (2.96) provides 

an unbiased estimate of the true solution, hx̃i = x. A more transparent demonstration of this 

geunbiassed1} result will be given on P. 105. 

On the other hand, if the data were actually produced from physics governed for example, by 

a quadratic rule, �(w) =  d + fw2, then fitting the linear rule to such observations, even if they are 

perfect, could never produce the right answer and the solution would be biassed. An example 

of such a fit is shown in figures 2.3, 2.4. Such errors are conceptually distinguishable from the 

noise of observation, and are properly labeled “model errors.” 

Assume however, that the correct model is being used, and therefore that hx̃i = x. Then  

the uncertainty of the solution is, 

x x)(˜= h(˜ x x)W i� � 

= (EW E)31EW hnn W i E(EW E)31 (2.102) {33009} 

= (EW E)31 EW Rqq E(E
W E)31 = 

2In the special case, R = �qI, that is, no correlation between the noise in di�erent equations 

(white noise), Eq. (2.102) simplifies to, 

2P = �q(E
W E)31 = (2.103) {33010} 

If we are not confident that hx̃i = x, perhaps because of doubts about the straight-line model, 

x̃ P C= x̃
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Figure 2.4: The same situation as in Fig. 2.3, except the series was extended to 50 points. Now 

the residuals (‘r’) are visually structured, and one would have a powerful suggestion 

that some hypothesis (something about the model or data) is not correct. This 

straightline fit should be rejected as being inconsistent with the assumption that the 

residuals ar unstructured: the model has been “invalidated.” {fig3_5.eps} 

x̃Eqs. (2.102)—(2.103) are still interpretable, but as Fx̃ x h˜ the covariance of  ̃= G2(˜� xi)� x. The  p
{ is usually defined to be ± F˜l x

If applied to the straight-line fit of x. 

“standard error” of ˜

of data for distinguishing di�erent possible estimates of ˜

x̃ and is used to understand the adequacy ll 

x d> ̃fig. 2.2, we obtain an estimate, ˜W = [˜ e] = [1=69 ± 0=83> 1=98 ± 0=03]> which are within one 

standard deviation of the true values, [d> e] = [1> 2]. If the noise in y is Gaussian, it follows that 

i and covariance Cx x̃the probability density of x̃ is also Gaussian, with mean h˜ x̃. Of  course,  if 


n is not Gaussian, then the estimate won’t be either, and one must be wary of the utility of 

the standard errors. A Gaussian, or other, assumption should be regarded as part of the model 

definition. The uncertainty of the residuals as, D E 
n h˜ n h˜{cnn1} Cqq = (˜� ni) (˜ ni)W = (I � H) Rqq (I H)W (2.104) � � 

2 2 = �q (I H)2 = �q (I � H) >� 

where zero-mean white noise was assumed, and H was defined in Eq. (2.98). Notice that the 

true noise, n> was assumed to be white, but that the estimated noise, ñ> has a non-diagonal 

covariance and so in a formal sense does not have the expected covariance. We return to this 

point below. 

The fit of a straight-line to observations demonstrates many of the issues involved in making 

inferences from real, noisy data that appear in more complex situations. In figure 2.5, the correct 

model used to generate the data was the same as in Fig. 2.2, but the noise level is very high. 

The parameters [˜ e] are numerically inexact, but consistent within one standard error with the d> ̃
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 ® 
Figure 2.5: The same situation as in Fig. 2.2, | = 1  +  2w> except q2 = 900 to give very noisy 

data. Now the best fitting straight line is | = (6=62 ± 6=50) + (1=85 ± 0=22) w which 

includes the correct answer within one standard error. Note that the intercept value 

{fig3_3.eps} is indistinguishable from zero. 

correct values, which is all one can hope for. 

In figure 2.3, a quadratic model | = 1  +  w2 + q (w) was used to generate the numbers, with 

 ® 
q2 = 900= Using only the first 20 points, and fitting an incorrect model produces a reasonable 

straight-line fit to the data as shown. Modeling a quadratic field with a linear model produces a 

systematic or “model” error, which is not easy to detect here. One sometimes hears it said that 

“least-squares failed” in situations such as this one. But this conclusion shows a fundamental 

misunderstanding: least-squares did exactly what it was asked to do–to produce the best-fitting 

straight-line to the data. Here, one might conclude that “the straight-line fit is consistent with 

the data.” Such a conclusion is completely di�erent from asserting that one has proven a straight-

line fit correctly “explains” the data or, in modeler’s jargon, that the model has been “verified” 

or “validated.” If the outcome of the fit were su!ciently important, one might try more powerful 

tests on the q̃l than a mere visual comparison. Such tests might lead to rejection of the straight-

line hypothesis; but even if the tests are passed, the model has never been verified: it has only 

been shown to be consistent with the available data. 

If the situation remains unsatisfactory (perhaps one suspects the model is inadequate, but 

there are not enough data to produce su!ciently powerful tests), it can be very frustrating. But 

sometimes the only remedy is to obtain more data. So in Fig. 2.4, the number of observations 

was extended to 50 points. Now, even visually, the q̃l are obviously structured, and one would 

almost surely reject any hypothesis that a straight-line was an adequate representation of the 

data. The model has been invalidated. If one fits a quadratic rule, | = d + ew + fw2, a perfectly 



48
 CHAPTER 2 BASIC MACHINERY 

-500 

0 

500 

1000 

1500 

2000 

2500 

3000 

y
 

0 5 10 15 20 25 30 35 40 45 50 

TIME 

Figure 2.6: Same as Fig. 2.4, except a more complete model, | = d + ew + fw2 was used, and 

which gives acceptable residuals. {fig3_6.eps} 

acceptable solution is found; see Fig. 2.6. 

One must always confirm, after the fact, that M , which is a direct function of the residuals, 

behaves as expected when the solution is substituted. In particular, its expected value, 

P X 
 ®
2{expJ1} hM i = ql = P � Q> (2.105) 

l 


 ® 
assuming that the ql have been scaled so that each has an expected value q2 = 1= Thatl 

there are only P � Q independent terms in (2.105) follows from the Q supposed-independent 

constraints linking the variables. For any particular solution, ˜ n> M  will be a random variable, x> ̃

whose expectation is (2.105). Assuming the ql are at least approximately Gaussian, M itself is 

the sum of P � Q independent "2 
1 variables, and is therefore distributed in "2 = One can and P 3Q 

should make histograms of the individual q2 to check them against the expected "2 
1 probability l 

density. This type of argument leads to the large literature on hypothesis testing. 

As an illustration of the random behavior of residuals, 30 equations, Ex + n = y in 15 

unknowns were constructed, such that EW E was non-singular. Fifty di�erent values of y were 

then constructed by generating 50 separate n using a pseudo-random number generator. An 

ensemble of 50 di�erent solutions were calculated using (2.96), producing 50×30 = 1500 separate 

values of ˜2 1ql . These are plotted in Fig. 2.7 and compared to "2= The corresponding value, P30 ˜2M̃ (s) = ql , was found for each set of equations, and also plotted. A corresponding frequency 1 

˜
15> with reasonably good results. The empirical function for M (s) is compared in Fig. 2.7 to "2 

mean value of all M̃l is 14.3. Any particular solution may, completely correctly, produce individual 

 ® 

residuals q2 di�ering considerably from the mean of "2 = 1> and similarly, their sums, the ˜l 1 
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Figure 2.7: "2 
1 probability density (left panel), and the empirical frequency function of all residu-

2als, ˜l from 50 separate experiments for simple least-squares solution of Ex + n = y=q

There is at least rough agreement between the theoretical and calculated frequency 

functions. Middle panel displays the 50 values of Ml computed from the same ex-

periments in the left panel. Right panel displays the empirical frequency function 

for the Ml as compared to the theoretical value of "2 
15> (dashed line). Tests exist, 

not discussed here, of the hypothesis that the calculated Ml are consistent with the 

theoretical distribution. {fig3_8.eps} 


 ® 
M (s) may di�er greatly from "2 = 15= But one can readily calculate the probability of finding 15 

a much larger or smaller  value,  and employ it to help evaluate the  possibility that one  has used  

an incorrect model. 

Visual tests for randomness of residuals have obvious limitations, and elaborate statistical 

tests in addition to the comparison with "2 exist to help determine objectively whether one 

should accept or reject the hypothesis that no significant structure remains in a sequence of 

numbers. Books on regression analysis31 should be consulted for general methodologies. As an 

indication of what can be done, figure 2.8 shows the “sample autocorrelation,” 

1 PP 3|� | 
ql ̃l=1!̃qq(� ) =  P ˜ ql+� 

> (2.106) {autocorr1} 
1 PP 2qP l=1 ˜l 

for the residuals of the fits shown in figs. 2=4> 2.6 is displayed. For white noise, D E 
!̃ (� ) = �0� > (2.107) {whitecovar} 

and deviations of the estimated !̃ (w) from Eq. (2.107) can be used in simple tests. The adequate 

fit (Fig. 2.6) produces an autocorrelation of the residuals indistinguishable from a delta function 

at the origin, while the inadequate fit, shows a great deal of structure which would lead to the 
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Figure 2.8: Autocorrelations of the estimated residuals in Figs. 2.4 (dashed line), and 2.6 (solid). 

The latter is indistinguishable, by statistical test, from a delta function at the origin, 

and so with this test, the residuals are not distinguishable from white noise. {fig3_7.eps} 

conclusion that the residuals are too di�erent from white noise to be acceptable. (Not all cases 

are this obvious.). 

As already pointed out, the residuals of the least-squares fit cannot be expected to be pre-

cisely white noise. Because there are P -relationships among the parameters of the problem 

(P -equations), and the number of x̃ elements determined is Q> there are P � Q-degrees of 

freedom in the determination of ñ and structures are  imposed upon them.  The failure, for  this  

reason, of ñ strictly to be white noise, is generally only an issue in practice when P �Q becomes 

small compared to P=32 

2.4.2 Weighted and Tapered Least-Squares 

The least-squares solution (2.96)—(2.97) was derived by minimizing the objective function (2.90), 

in  which each residual element  is  given equal  weight. An important feature of least-squares is 

that we can give whatever emphasis we please to minimizing individual equation residuals, for 

example, by introducing an objective function, 

X 
2{33011} M = Z 31 ql > (2.108) ll 

l 

where Zll are any numbers desired. The choice Zll = 1> as used above, might be reasonable, 

but it is clearly an arbitrary one which without further justification does not produce a solution 

with any special claim to significance. In the least-squares context, we are free to make any 

other reasonable choice, including demanding that some residuals should be much smaller than 

others–perhaps just to see if it is possible. 

A general formalism is obtained by defining a diagonal weight matrix, Z = diag(Zll). Divide 
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each equation by 
s
Zll, 

{33012} Z 3W@2 
X 
Hlm {m +Z 3W@2 

ql =Z 3W@2|l> (2.109) ll ll ll 
l 

or 
0 0E0 x + n = y 

(2.110) {33013} 
E0 =W3W@2 y 0 =W3W@2E> n 0 =W3W@2 n> y 

where we used the fact that the square root of a diagonal matrix is the diagonal matrix of 

element-by-element square roots. Such a matrix is its own transpose. The operation in (2.109) 

or (2.110) is usually called “row-scaling” because it operates on the rows of E (as well as on n, 

y). 

For the new equations (2.110), the objective function, 

0 W (y 0M = n 0W n = (y 0 E0 x) E0 x) (2.111) � � 

W W = n W31 n = (y � Ex) W31(y � Ex)> 

weights the residuals as desired. If, for some reason, W is non-diagonal, but symmetric and 

positive-definite, then it has a Cholesky decomposition, (see P. 38) and, 

W =WW@2W1@2 > 

and (2.110) remains valid more generally.


The values ˜ n, minimizing (2.111) are,
x, ˜

˜ 0 x = (E0W E0)31E0W y = (EW W31E)31EW W31 y> 
(2.112) {33015} £ ¤

n =WW@2 0˜ n = I E(EW W31E)31EW W31 y>� 

C{{ = (E
W W31E)31EW W31RqqW

31E(EW W31E)31 = (2.113) {33016} 

Uniform diagonal weights are clearly a special case. The rationale for choosing di�ering diagonal 

weights, or a non-diagonal W> is probably not very obvious to the reader. Often one chooses 

W = Rqq = {hqlqm i}, that is, the weight matrix is chosen to be the expected second moment 

matrix of the residuals. Then 

 ®

0 0W n n = I> 
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and Eq. (2.113) simplifies to 

C{{ = (E
W R31E)31 = (2.114) {33017}qq 

In this special case, the weighting (2.110) has a ready interpretation: The equations (and hence 

the residuals) are rotated and stretched so that in the new coordinate system of ql
0 , the  covari-

ances are all diagonal and the variances are all unity. Under these circumstances, an objective 

function X 
M = q 02 

l 
l 

as used in the original form of least-squares (Eq. (2.90)) is a reasonable choice. 

Consider the system 

{1 + {2 + q1 = 1  

{1 � {2 + q2 = 2  

{1 � 2{2 + q3 = 4= 



 ® 
q2 = �2> the least-squares solution is x̃ =[2=0> 0=5]W 
lThen if hqli = 0> = Now suppose that


<
AAAAAA

;
AAAAAA 1 0=99 0=98

?
 @

A
AAAAA

hqlqm i = =
0=99 1 0=99 

0=98 0=99 4 

A
AAAAA >= 

Then from Eq. (2.112), x̃ = [1=51> 0=48]W = Calculation of the two di�erent solution uncertainties�
is left to the reader. 

But we emphasize that this choice of W is a very special one and has confused many users 

of inverse methods. To emphasize again: Least-squares is an approximation procedure in which 

W is a set of weights wholly at the disposal of the investigator; setting W = Rqq is a special 

case whose significance is best understood after we examine a di�erent, statistical, estimation 

procedure. 

Whether the equations are scaled or not, the previous limitations of the simple least-squares 

solutions remain. In particular, we still have the problem that the solution may produce elements 

in ˜ ˜x, n, whose relative values are not in accord with expected or reasonable behavior and 

the solution uncertainty or variances could be unusably large, as the solution is determined, 

mechanically, and automatically, from combinations such as (EW W31E)31 . Operators like these 

are neither controllable nor very easy to understand; if any of the the matrices is singular, they 

will not even exist. 
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x, n, C{{ could be It was long ago recognized that some control over the magnitudes of ˜ ˜

obtained in the simple least-squares context by modifying the objective function (2.108) to have 

an additional term: 

M 0 = n W W31 n + � 2 x W x (2.115) 

= (y �Ex)W W31(y �Ex) + � 2 x W x> (2.116) 

in which �2 is a positive constant. 

If the minimum of (2.115) is sought by setting the derivatives with respect to x to zero, we 

obtain, 

¡ ¢31 
˜ 2x= EW W31E+� I EW W31 y (2.117) 

n=y �E˜˜ x (2.118) 

C{{ = (2.119) ¡ ¢31 ¡ ¢312 2EW W31E+� I EW W31RqqW
31E EW W31E+� I = 

xk2 $ 0, ˜By letting �2 $ 0, the solution 2.112, 2.113 is recovered, and if �2 , k˜ n $ y;$ 4
�2 is called a “trade-o� parameter,” because it trades the magnitude of ˜ n. By  

x. The expected value of ˜

x against that of ˜

varying the size of �2 we gain some influence over the norm of the residuals relative to that of 

˜ x is now, £ ¤
h˜ 2xi = EW W31E + � I

31 
EW W31 y0 = (2.120) {33020} 

If the true solution is believed to be (2.101), then this new solution is biassed. But the variance 

of x̃ has been reduced, (2.119), by introduction of �2 A 0–that is, the acceptance of a bias 

reduces the variance, possibly very greatly. Eqs. (2.117-2.118) are sometimes known as the 

“tapered least-squares” solution, a label whose implication becomes clear later. Cqq, which  is  

not displayed, is readily found by direct computation as in Eq. (2.104). 

The most basic, and commonly seen form of this solution assumes W = Rqq = I> and then, 

˜ 2x = EW E+� I 
31 
EW y (2.121) ¡

¡
¢
¢

¡ ¢312C{{ = EW E+� 2I 
31 
EW E EW E+� I > (2.122) 
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a special case. 

A physical motivation for the modified objective function (2.115) is obtained by noticing 

that a preference for a bounded kxk is easily produced by adding an equation set, x + n1 = 0> 

so that the combined set is, 

{combined1} Ex + n = y (2.123) 

{combined2} x + n1 = 0 (2.124) 

or 

E1x + n2 = y2 ;
AA?
E 

{33021} E1 =


< 
AA@ 

AA>

>
 W W n2 = [ W �2 W ] > y2 = [yW 0W ] > (2.125)n n1AA=
�
2I 

and in which  �2 expresses a preference for fitting the first or second sets more closely. Then M in 

Eq. (2.115) becomes the natural objective function to use. A preference that x � x0 is readily 

imposed instead, with an obvious change in (2.115) or (2.124). 

Note the important points, to be shown later, that the matrix inverses in Eqs. (2.117-2.118) 

will always exist, as long as �2 A 0, and that the expressions remain valid even if P ? Q . 

Tapered least-squares produces some control over the sum of squares of the relative norms of x̃, 

˜ {n, but still does not produce control over the individual elements ˜l. 

To gain some of that control, we can further generalize the objective function by introducing 

another non-singular Q × Q weight matrix, S (which is usually symmetric) and, 

WM = n W W31 n + x S31 x (2.126) 

W= (y � Ex)W W31(y � Ex) + x S31 x > (2.127) 

for which Eq. (2.115) is a special case. Setting the derivatives with respect to x to zero results 

in, 

¡ ¢31 
x̃= EW W31E + S31 EW W31 y> (2.128) 

n=y � E˜˜ x> (2.129) 

C{{ = (2.130) ¡ ¢31 ¡ ¢31 
EW W31E + S31 EW W31RqqW

31E EW W31E + S31 > 
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and Eqs. (2.117-2.119) are a special case, with S31 = �2I= C{{ simplifies if Rqq = W= 

Suppose S> W are positive definite and symmetric and thus have Cholesky decompositions. 

Then we can employ both matrices directly on the equations, Ex + n = y> 

W3W@2ES3W@2SW@2 x + W3W@2 n=W3W@2 y (2.131) 

0 0 0E0 x +n =y (2.132) 

E0 =W3W@2 0 = S3W@2 0 = W3W@2ESW@2> x x> n 0 = W3W@2 n> y y (2.133) 

The use of S in this way is “column scaling” because it weights the columns of E. With  Eqs.  

(2.132) the obvious objective function is, 

0 0W 0M = n 0W n + x x > (2.134) {33027} 

which is identical to Eq. (2.126) in the original variables, and the solution must be that in Eqs. 

(2.128-2.130). 

Like W, one is completely free to choose S as one pleases. A common example is to write, 

where F is Q ×Q , 

S = FW F 
<
AAAAAAAAAA

;
AAAAAAAAAA

1 1 0  · · ·  0�

?0 1  
2 

� @
AAAAAAAAAA

0 

. . . . . . . . . . . . . . . 

1 (2.135)· · ·  {33025} 
F = � >A
AAAAAAAAA >=0 · · ·  · · ·  0 1  

2 P 
l({l � {l+1)2 , which can be regarded as a “smoothest”whose e�ect is to minimize a term �

solution, and using �2 to trade smoothness against the size of kñk2, �F is obtained from the 

Cholesky decomposition of S. 

By invoking the matrix inversion lemma, an alternative form for Eqs. (2=128 � 2=130) is 

found, 

¡ ¢31 
x̃ = SEW ESEW +W y> (2.136) 

n = y � E˜˜ x> (2.137) ¡ ¢ ¡ ¢31 
C{{ = SEW ESEW +W 

31 
Rqq ESE

W +W ES= (2.138) 
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A choice of which form to use is sometimes made on the basis of the dimensions of the matrices 

being inverted. Note again that W = Rqq is a special case. 

So far, all of this is conventional. But we have made a special point of displaying explicitly not 

x, but those of the residuals, ˜only the elements ˜ n. Notice that although we have considered only 

the formally over-determined system, P A Q , we  always determine not only the Q�elements 
of ˜ ˜x, but also the P -elements of n, for a total of P + Q values–extracted from the P -

ql forces changes in ˜equations. It is apparent that any change in any element ˜ x. In  this  view,  

to which we adhere, systems of equations involving observations always contain more unknowns 

than equations. Another way to make the point is to re-write Eqs. (2.88) without distinction 

between x>n as, 

E1�= y> (2.139) 

E1 = {E> IP } > � 
W =[x>n]W = (2.140) 

A combined weight matrix,
 ;
AA?
S 0 


<
AA@ 

AA>

> (2.141)S1 =
AA=
0 W 


would be used, and any distinction between the x>n solution elements is suppressed. Eqs. (2=139) 

are a formally underdetermined system, derived from the formally over-determined observed one. 

This identity leads us to the problem of formal underdetermination in the next Section. 

In general with least-squares problems, the solution we seek can be regarded as any of the 

following equivalents: 

x> ˜1. The  ̃ n satisfying 

Ex+ n = y= (2.142) 

2. x> ˜˜ n satisfying the normal equations arising from M (Eq. 2.126). 

3. x> ˜˜ n producing the minimum of M in Eq. (2.126) 

The point of this list lies with item 3: algorithms exist to find minima of functions by 

deterministic methods (“go downhill” from an initial guess)33 , or stochastic search methods 

(Monte Carlo) or even, conceivably, through a shrewd guess by the investigator. If an acceptable 

minimum of M is found, by whatever means, it is an acceptable solution (subject to further 

testing, and the possibility that there is more than one such solution). Search methods become 

essential for the nonlinear problems taken up later. 



57 

2.4.3 

2.4 LEAST-SQUARES 

Underdetermined Systems and Lagrange Multipliers 

What does one do when the number, P> of equations is less than the number, Q> of unknowns 

and no more observations are possible? We have seen that the claim that a problem involving 

observations is ever overdetermined is misleading–because each equation or observation always 

has a noise unknown, but to motivate some of what follows, it is helpful to first pursue a 

conventional approach. 

One often attempts when P ?  Q  to reduce the number of unknowns so that the formal 

overdeterminism is restored. Such a parameter reduction procedure may be sensible; but there 

are pitfalls. Let sl (w), 0 � l be a set of polynomials, e.g. Chebyschev or Laguerre, etc. Consider 

data produced from the formula, 

| (w) = 1 + dP sP (w) + q(w) > (2.143) {33030} 

which might be deduced by fitting a parameter set [d0> = = = > dP ] and finding d̃P = If there are 

fewer than P observations, an attempt to fit with fewer parameters, 

T X 
| = dm sm (w) > T  ?  P  (2.144) {33031} 

m=0 

may give a good, even perfect fit; but it would be incorrect. The reduction in model parameters 

in such a case biases the result, perhaps hopelessly so. One is better o� retaining the underde-

termined system and making inferences concerning the possible values of dl rather than using 

the form (2.144), in which any possibility of learning something about dP has been eliminated. 

Example Consider a tracer problem, not unlike those encountered in medicine, hydrology, 

oceanography, etc. A box (Fig. 1.2) is observed to contain a steady tracer concentration F0, and  

is believed fed at the rates M1> M2 from two reservoirs each with tracer concentration of F1> F2 

respectively. One seeks to determine M1> M2. Tracer balance is, 

M1F1 + M2F2 � M0F0> 

where M0 is rate at which fluid is removed. Mass balance then requires 

M1 + M2 = M0= 

Evidently, there are but two equations in three unknowns (and a perfectly good solution would 

be M1 = M2 = M3 = 0);  but as many have noticed, we can nonetheless, determine the relative 

fraction of the fluid coming from each reservoir. Divide both equations through by M0> 

M1 M2 

M0 M0 
F1 + F2 = F0 
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M1 M2 
+ = 1  

M0 M0 

producing two equations in two unknowns„ M1@M0> M2@M0> which has  a unique stable solution  

(noise is being ignored). Many examples can be given of such calculations in the literature– 

determining the flux ratios–apparently definitively. But suppose the investigator is suspicious 

e:reservoir1} that there might be a third reservoir with tracer concentration F3= Then the equations become 

M1 M2 M3
F1 + F2 + F3 = F0

M0 M0 M0 

M1 M2 M3 
+ + = 1> 

M0 M0 M0 

now underdetermined with two equations in three unknowns. If it is obvious that no such third 

reservoir exists, then the reduction to two equations in two unknowns is the right thing to do. But 

if there is even a suspicion of a third (or more) reservoir, one should solve these equations with 

one of the methods we will develop–permitting construction and understanding of all possible 

solutions. 

In general terms, parameter reduction can lead to model errors, that is, bias errors, which 

can produce wholly illusory results.34 A common situation particularly in problems involving 

tracer movements in groundwater, ocean, or atmosphere, fitting a one or two-dimensional model 

to data which represent a fully three-dimensional field. The result may be apparently pleasing, 

but possibly completely erroneous. (See Chapter 4.) 

A general approach to solving underdetermined problems is to render the answer apparently 

unique by minimizing an objective function, subject to satisfaction of the linear constraints. 

To see how this can work, suppose that Ax = b> exactly and formally underdetermined, P ?  

Q , and seek the solution which exactly satisfies the equations and simultaneously renders an 

objective function, M = xW x> as small as possible. Direct minimization of M leads to, 

CM W 

{33033} gM = gx = 2x W gx = 0> (2.145) 
Cx 

but unlike the case in Eq. (2.92), the coe!cients of the individual g{l can no longer be separately 

set to zero (i.e.,  x = 0  is an incorrect solution) because the g{l no longer vary independently, 

but are restricted to values satisfying Ax = b= One approach is to use the known dependencies 

to reduce the problem to a new one in which the di�erentials are independent. For example, 
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suppose that there are general functional relationships 

6565 

9999997


{1 

.
.
.


::::::8


=


9999997


�1({P +1> = = = > {Q ) 

.
.
.


::::::8


= 

{P �P ({P +1> = = = > {Q ) 

Then the first P elements of {l may be eliminated, and the objective function becomes, 

¤ £ 

6

£ ¤
M = �1({P +1> = = = > {Q )

2 + · · ·+ �P ({P +1> = = = > {Q ) + {22
P +1 + · · ·+ {

2 >Q 

5 

in which the remaining {l, P + 1 � l � Q are independently varying. In the present case, one 

can choose (arbitrarily) the first P unknowns, q =[{l], and define the last Q � P unknowns 

r = [{l] � Q> and rewrite the equations as > Q  � P + 1 l� 

½ ¾ 

A1 A2 

997

q
::8
= b (2.146) 

r 

where A1 is P ×P> A2 is P × (Q � P)= Then solving the first set for q> 

q = b (2.147) � A2r 

q can be eliminated from M leaving and unconstrained minimzation problem in the independent 

variables, r= If A31 does not exist, one can try any other subset of the {l to eliminate until a 1 

suitable group is found. This approach is completely correct, but finding an explicit solution for 

O elements of x in terms of the remaining ones may be di!cult or inconvenient. 

Example Solve 

{1 � {2 + {3 = 1> 

1 +{
2for the solution of minimum norm. The objective function is M = {2 2 +{

2= With one equation, 3 

one variable can be eliminated. Choosing, arbitrarily, {1 = 1 + {2 � {3> M  = (1 + {2 � {3)
2 + 

2 + {
2{2 3= {2> {3 are now independent variables, and the corresponding derivatives of M can be 

independently set to zero. 

Example 

A somewhat more interesting example involves two equations in three unknowns: 

{1 + {2 + {3 = 1> 

{1 � {2 + {3 = 2> 
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and we choose to find a solution minimizing, 

1 + {
2M = {2 2 + {

2 = 3 

Solving for two unknowns {1> {2 from 

{1 + {2 = 1� {3> 

{1 � {2 = 2� {3> 

produces {2 = �1@2> {1 = 3@2� {3 and then, 

M = (3@2� {3)
2 + 1@4 + {2 = 3 

3whose minimum with respect to {3 (the only remaining variable) is , {3 = 4 > and the full solution 

is 
3 1 3 

{1 = > {2 = � 
2
> {3 = = 

4 4 

Lagrange Multipliers and Adjoints 

When it is inconvenient to find such an explicit representation by eliminating some variables 

in favor of others, a standard procedure for finding the constrained minimum is to introduce a 

new vector “Lagrange multiplier,” µ, of  P -unknown elements, to make a new objective function, 

M 0 = M � 2µ W (Ax � b) (2.148) 

W = x x 2µ W (Ax � b)>� 

and ask for its stationary point–treating both µ and x as independently varying unknowns. 

The numerical 2 is introduced solely for notational tidiness. 

The rationale for this procedure is straightforward.35 Consider first, a very simple example, 

of one equation in two unknowns, 

{lagrange1} {1 � {2 = 1> (2.149) 

and we seek the minimum norm solution, 

1 + {
2M = {2 2> (2.150) 

subject to Eq. (2.149). The di�erential, 

gM = 2{1g{1 + 2{2g{2 = 0> (2.151) 

leads to the unacceptable solution {1 = {2 = 0> if we should incorrectly set the coe!cients of 

g{1> g{2 to zero. Consider instead a modified objective function 

M 0 = M � 2� ({1 � {2 � 1) > (2.152) 
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where � is unknown. The di�erential of M 0 is 

{lagrange2} gM 0 = 2{1g{1 + 2{2g{2 � 2� (g{1 � g{2)� 2 ({1 � {2 � 1) g� = 0> (2.153) 

or 

gM 0@2 = g{1 ({1 � �) + g{2 ({2 + �)� g� ({1 � {2 � 1) = 0= (2.154) 

We are free to choose, {1 = � which kills o� the di�erential involving g{1= But then only 

the di�erentials g{2> g�  remain; as they can vary independently, their coe!cients must vanish 

separately, and we have, 

{2 = �� (2.155) 

{1 � {2 = 1= (2.156) 

Note that the second of these recovers the original equation. Substituting {1 = �, we  have  

2� = 1> or � = 1@2> and {1 = 1@2> {2 = �1@2> M  = 0=5> and one can confirm that this is indeed 

the “constrained” minimum. (A “stationary” value of M 0 was found, not an absolute minimum 

value, because M 0 is no longer necessarily positive; it has a saddle point, which we have found.) 

Before writing out the general case, note the following question: Suppose the constraint 

equation was changed to, 

{1 � {2 = �= (2.157) {lineqs2} 

How much would M change as � is varied? With variable �> (2.153) becomes, 

gM 0 = 2g{1 ({1 � �) + 2g{2 ({2 + �)� 2g� ({1 � {2 � �) + 2�g�= (2.158) 

But the first three terms on the right vanish, and hence, 

CM 0 CM 
C� 

= 2� = 
C� 
> (2.159) {sensiv1} 

because M = M 0 at the stationary point (from (2.157). Thus 2 � is the sensitivity of the objective 

function M to perturbations in the right-hand side of the constraint equation. If � is changed 

from 1, to 1.2, it can be confirmed that the approximate change in the value of M is 0.2 as one 

deduces immediately from Eq. (2.159). 

We now develop this method generally. Reverting to Eq. (2.148), 
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gM 0 = gM � 2µ W Agx�2 (Ax � b)W gµ 

=

µ 
CM 
C{1 
� 2µ W a1

¶ 

g{1 +

µ 
CM 
C{2 
� 2µ W a2

¶ 

g{2 + · · ·+

µ 
CM 
C{Q 

� 2µ W aQ 

¶ 

g{Q (2.160) 

�2 (Ax � b)W gµ 

=
¡
2{1 � 2µ W a1 

¢ 
g{1 +

¡
2{2 � 2µ W a2 

¢ 
g{2 + === +

¡
2{Q � 2µ W aQ 

¢ 
g{Q 

�2 (Ax � b)W gµ = 0  

(2.161) {lagrange3} 

Here the al are the corresponding columns of A= The coe!cients of the first P �di�erentials 
g{l can be set to zero by assigning, {l = µ W al, leaving  Q � P di�erentials g{l whose coe!cients 

must separately vanish (hence they all vanish, but for two separate reasons), plus the coe!cient 

of the P � g�l which must also vanish separately. This recipe produces, from Eq. (2.161), 

{33036a} 1 
2 
CM 0 

Cx 
= x � AW 

µ = 0  (2.162) 

{33036b} 1 
2 
CM 0 

Cµ 
= Ax � b = 0 > (2.163) 

where the first equation set is the result of the vanishing of the coe!cients of g{l and the second, 

which is the original set of equations, arises from the vanishing of the coe!cients of the g�l = The 

convenience of being able to treat all the {l as independently varying is o�set by the increase in 

problem dimensions by the introduction of the P �unknown �l. The first set is Q �equations 
for µ in terms of x> and the second set is P �equations in x in terms of y= Taken together, these 

are P +Q equations in P +Q unknowns, and hence just-determined no matter what the ratio 

of P to Q= 

Eq. (2.162) is, 

{33037} AW 
µ = x (2.164) 

and substituting for x into (2.163), 

AAW 
µ = b > 

{33038} µ̃ = (AAW )31b > (2.165) 

assuming the inverse exists, and 

{33039a} x̃ = AW (AAW )31b (2.166) 

{33039b} ñ = 0 (2.167) 

{33039c} C{{ = 0= (2.168) 

(C{{ = 0 because formally  we estimate  ̃n = 0). 
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Eqs.(2.166-2.168) are the classical solution of minimum norm of x, satisfying the constraints 

exactly while minimizing the solution length. That a minimum is achieved can be verified by 

evaluating the second derivatives of M 0 at the solution point. The minimum occurs at a saddle 

point in x, µ space36 and where the term proportional to µ necessarily vanishes. The operator 

AW (AAW )31 is sometimes called a “Moore-Penrose inverse.” 

Eqs. (2.164) for µ in terms of x involves the coe!cient matrix AW . An intimate connection 

exists between matrix transposes and adjoints of di�erential equations (see the Appendix to 

this Chapter), and thus µ is sometimes called the “adjoint solution,” with AW defining the 

“adjoint model”37 in Eq.(2.164), and x acting as a forcing term. The original Eqs. Ax = b> 

were assumed formally underdetermined, and thus the adjoint model equations in (2.164) are 

necessarily formally overdetermined. 

Example 

Now do the last example using matrix vector notation defining, 

;
AA?


< 
AA@ 

AA>

> b =


6
5


1 1 1 
 997

1
::8
A =
AA=
1 1 1 
 2�


M = x W x 2µ W (Ax � b)� 

g ¡ ¢
W 

gx 
x x � 2µ W (Ax � b) = 2x 2AW 

µ = 0� 

Ax= b 

¡ ¢31 
x = AW AAW b 

x = [3@4> 1@2> 3@4]W �

Example 

Write out M 0 : 

M 0 = {2 2 + {
2 

1 + {
2

3 � 2�1 ({1 + {2 + {3 � 1)� 2�2 ({1 � {2 + {3 � 2) 

gM 0 = (2{1 � 2�1 � 2�2) g{1 + (2{2 � 2�1 + 2�2) g{2 + (2{3 � 2�1 � 2�2) g{3 

+(�2{1 � 2{2 + 2� 2{3) g�1 + (�2{1 + 2{2 � 2{3 + 4) g�2 

= 0  
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Set {1 = �1 + �2>{2 = �1 � �2 so that the first two terms vanish, and set the coe!cients of the 

di�erentials of the remaining, independent terms to zero, 

gM 0 

g{1 
= 2{1 � 2�1 � 2�2 = 0> 

gM 0 

g{2 
= 2{2 � 2�1 + 2�2 = 0> 

gM 0 

g{3 
= 2{3 � 2�1 � 2�2 = 0> 

gM 0 
= �2{1 � 2{2 + 2� 2{3 = 0> 

g�1


gM 0

= �2{1 + 2{2 � 2{3 + 4 = 0= 

g�2 

Then, 

gM 0 = (2{3 � 2�1 � 2�2) g{3 + (�2{1 � 2{2 + 2� 2{3) g�1 + (�2{1 + 2{2 � 2{3 + 4) g�2 = 0> 

or 

{1 = �1 + �2> 

{2 = �1 � �2 

= 0{3 � �1 � �2 

�{1 � {2 + 1� {3 = 0  

�{1 + {2 � {3 + 2  =  0  

That is, 

x = AW 
µ 

Ax = b 

6565or,
 ;
AA?


< 
AA@ 

AA>


I AW 997

x
::8
=


997

0
::8


�


AA=
A 0 µ b 

But in this particular case, the first set can be solved for x = AW 
µ, 

�

1@8 5@8


¸W 

>

¢31 

AAW = 
¡

b =µ 
6
5

�
1 

8 ::8


¸W 

= AW x =

5 
8 

3@4 1@2 3@4�
997 
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Suppose instead we wanted to minimize, 

2M = ({1 � {2)
2 + ({2 � {3) = x W FW Fx 

where ;
AA?


< 
AA@ 

AA>


1 1 0�
F = AA=
0 1 1�

<
AAAAAA

;
AAAAAA

;
AA? 

< 
AA@ 

AA>


;
AA?


< 
AA@ 

AA>


W 1 1 0�
?
 @

A
AAAAA

1 1 0� 1 1 0�
FW F = = =1 2 1� �A
A A
A=


AAAAAA
= 0 1 1� 0 1 1�

>= 0 1 1�

Such an objective function might be used to find a “smooth” solution. One confirms,


65<
AAAAAA

;
AAAAAA 9999997


1 1 0  {1 

{2 

::::::8

1 � 2{1{2 + 2{

2 = {2 2 � 2{2{3 + {
2 
3 

�

�
 ?
 @

A
AAAAA

{1 {2 {3 

¸ 

1 2 1�A
AAAAA

�


>= 0 1 1  {3�
2= ({1 � {2)

2 + ({2 � {3) = 

The stationary point of, 

M 0 = x W FW Fx 2µ W (Ax � b) >� 

leads to 

FW Fx = AW 
µ 

Ax = b 

But, ¡ ¢
x 6= FW F 

31 
AW 
µ 

because there is no inverse (guaranteed). But the coupled set 

6565;
AA?


< 
AA@ 

AA>


FW F AW 997

x
::8
=


997

0
::8


�


AA=
 A 0 µ b 

does have a solution. 
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The physical interpretation of µ can be obtained as above by considering the way in which 

M would vary with infinitesimal changes in b= As in the special case done above, M = M 0 at the 

stationary point. Hence, 

WgM 0 = gM � 2µ Agx�2 (Ax b)W gµ + 2µ W gb = 0> (2.169) � 

or, since the first three terms on the right vanish at the stationary point, 

CM 0 CM 
= = 2µ= (2.170) 

Cb Cb 

Thus, as inferred above, the Lagrange multipliers are the sensitivity of M> at the stationary point, 

to perturbations in the parameters y= This conclusion leads, in Chapter 4, to the scrutiny of 

the Lagrange multipliers as a means of understanding the sensitivity of models and the flow of 

information within them. 

Now revert to Ex + n = y, that is, equations containing noise. If these are first column 

scaled using S3W@2, Eqs. (2.166)—(2.168) are in the primed variables, and the solution in the 

original variables is, 

˜{33041a} x = SEW (ESEW )31 y (2.171) 

˜{33041b} n = 0 (2.172) 

{33041c} C{{ = 0> (2.173) 

and the result depends directly upon S. If a row scaling with W3W@2 is used, it is readily shown 

agerowscale1} that W disappears from the solution and has no e�ect on it (see page 111, below). 

Eqs. (2.171)—(2.173) are a solution, but there is the same fatal defect as in Eq. (2.172)– 

˜ xk is again uncontrolled, n = 0 is usually unacceptable when y are observations. Furthermore, k˜

and ESEW may not have an inverse. 

n must be regarded as fully an element of the solution, as much as x. Equations representing 

observations can always be written as in (2.139), and can be solved exactly. Therefore, we now 

use a modified objective function, allowing for general S> W> 

{33042} M = x W S31 x + n W W31 n � 2µ W (Ex + n � y) > (2.174) 

with both x, n appearing in the objective function. Setting the derivatives of (2.174) with 

respect to x, n, µ to zero, and solving the resulting normal equations produces, 
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¡ ¢
x̃ = SEW ESEW +W 

31 
y (2.175) 

n = y � E˜˜ x (2.176) ¡ ¢ ¡ ¢31 
C{{ = SEW ESEW +I 

31 
Rqq ESE

W +I ES (2.177) 

µ= W31 n (2.178) ˜ ˜

which are identical to Eqs. (2.136-2.138) or to the alternate from Eq.(2=128 � 2=130) derived 

from an objective function without Lagrange multipliers. 

Eqs. (2.136-2.138) and (2.175-2.177) result from two very di�erent appearing objective func-

tions–one in which the equations are imposed in the mean-square, and one in which they are 

imposed exactly, using Lagrange multipliers. Constraints in the mean-square will be termed 

“soft”, and those imposed exactly are “hard.”38 The distinction is, however, largely illusory: 

although (2.88) are being imposed exactly, it is only the presence of the error term, n, which  

permits the equations to be written as equalities and thus as hard constraints. The hard and 

soft constraints here produce an identical solution. In some (rare) circumstances, which we will 

discuss briefly below, one may wish to impose exact constraints upon the elements of {̃l. The  

solution (2.166)—(2.168) was derived from the noise-free hard constraint, Ax = b, but we ended 

by rejecting it as generally inapplicable. 

Once again, n is only by convention discussed separately from x, and is fully a part of the 

solution. The combined form (2.139), which literally treats x, n as the solution, are imposed 

through a hard constraint on the objective function, 

M = � W � � 2µ W (E1� � y) > (2.179) {33045} 

where � = [S3W@2 
x> W3W@2 n]W > which is Eq. (2.174). (There are numerical advantages, however, 

in working with objects in two spaces of dimensions P and Q , rather than a single space of 

dimension P + Q .) 

2.4.4 Interpretation of Discrete Adjoints 

When the operators are matrices, as they are in discrete formulations, then the adjoint is just 

the transposed matrix. Sometimes the adjoint has a simple physical interpretation. Suppose, 

e.g., that scalar | was calculated from a sum, ½ ¾ 

| = Ax> A = 1 1  = 1 1  = (2.180) {sumoper1} 
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Then the adjoint operator applied to | is evidently, ½ ¾W 

r = AW | = 1 1 1 = 1 | = x (2.181) 

Thus the adjoint operator “sprays” the average back out onto the originating vector, and might 

be thought of as an inverse operator. 

A more interesting case is a first-di�erence forward operator, 
<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

1 1�

1 1�

1 1�?
 @
A
AAAAAAAAAAAAAAAAA

A = >
 (2.182)A
AAAAAAAAAAAAAAAAA

= =  =  

1 1�

1�=
 >


that is, 

|l = {l+1 � {l> (2.183) 

(with the exception of the last element, |Q = �{Q )= 

Then its adjoint is,
 <
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

1�

1 1�

1 1�?
 @
A
AAAAAAAAAAAAAAAAA

AW = (2.184)A
AAAAAAAAAAAAAAAAA

= =  

1 1�

1 1�

AW 

=
 >


that is a first-di�erence backward operator with z = y> producing }l = |l31 � |l with again, 

the exception of the end point, now }1= 

In general, the transpose matrix, or adjoint operator is not simply interpretable as an in-

verse operation as in the summation/spray-out case might have suggested.39 A more general 

understanding of the relationship between adjoints and inverses will be obtained in the next 

Section. 


