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5.4 Reduced State Methods 

The computational load of the Kalman filter and smoothers grows approximately as the cube 

of the state vector dimension. Thus either decoupling the problem into several smaller prob-

lems, or removing elements of the state vector, can have a very large payback in terms of the 

computational load reduction. (If one could solve the problem as two (q@2)3 problems rather 

than as one-q3 problem the di�erence in load is a factor of four.) One method for solving 

large fluid state problems is based upon the assumption that large spatial scales in a fluid flow 

evolve largely independent of small scales, and that it is the largest scales that are of primary 

interest.166 Let D be a matrix operator that has the e�ect of averaging a vector spatially, so 

that x0 (w) = Dx (w) is a spatial average of x (w) > with an equivalent reduced dimension, Q 0. (We  

refer to the “coarse-state” and “fine-state”.) Then if P (w) is  the error covariance of  x (w) > 
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will be of dimension Q 0 × Q 0 rather than Q × Q= Now assume further that D has a left-inverse, 

D+> as described in Chapter 2, that would map the coarse state to the finer one. Suppose 

further that one has a coarse resolution model capable of propagating x0= This model might be 

obtained from the fine-resolution model: 

0 0 0Dx (w + 1)  =  DA (w)D+ x (w)+DBD+ u (w) +D�D+ q (w) 

0 0 0 or, x (w + 1)  =  A0 x (w)+B0 u (w) > 

where u0 (w) =  Du (w) > A0 = DA (w)D+> B0 = DBD+ , etc. Then the Kalman filter (and 

smoother) can be applied to x0 (w) and the filtered data, Dy (w) = One can estimate, 

˜ 0 x (w) = D+ x (w) > 
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and 

w)D+W=P (w) = D+P0 ( (5.11) {reduced1} 

Given P (w) one has K (w) for the fine-state, under the assumption that Eq. (5.11), based wholly 

upon the large-scales, is adequate. One can put any small scales in the fine-state observations 

into the data error of the coarse-state. A further reduction in computational load can be made by 

assuming a steady-state for P0 (w) > P (w), and finding it using the doubling algorithm. In Chapter 

7 we will describe an application of this method. The main issue with its general validity would 

lie with the assumption that errors in the fine state do not strongly influence the error budget 

of the coarse-state. This assumption cannot in general be correct (spatially averaged equations 

of fluid motion are not proper representations of the equations governing the averaged fields), 

and one must carefully assess the behavior of the algorithm as it evolves. 

Determination of D, D+ is important. In principle, the Gauss-Markov mapping procedures, 

as described in Chapter 2, would be appropriate (and would include error estimates should one 

choose to use them). Various strategies for reducing storage and computation are available.167 

Other approaches to state reduction. The Eckart-Young-Mirsky Theorem, described in Chap-

ter 2, shows that sometimes a comparatively small number of singular vectors can represent a 

field with considerable accuracy. Here “small” is measured relative to the number of grid points 

or basis functions used by the underlying model.168 Suppose that the state vector x (w) = V� (w) > 

where V is the matrix of vl, the singular vectors of a large span of model–that is, the matrix � ¸
to which the Eckart-Young-Mirsky theorem is applied is x (0) x (2) . .  x (wQ) –and 

then truncated to some acceptable sub-set, 

x (w) � VN� (w) = 

Taking the canonical, full, model, 

VW NA (w)VN� (w) +VW N�VNq (w)Nx (w + 1) = VW NBVNu (w) +VW 

or, 
0 � (w + 1) = A0 (w)� (w) +B0 u (w) + � q (w) > 

where, A0 (w) =  VW A (w)VN > B0 = VW BVN > etc. is an evolution equation for the new state N N

vector � (w) whose dimension is N ??  Q=  (If A is time-independent, an alternative is to diag-

onalize it in the canonical equation by using its singular vector decomposition.169) Then  each  

mode can be handled independently. As with the coarse-to-fine resolution transformation, one 

is assuming that errors in the suppressed singular vectors (those banished to the nullspace) do 

not significantly a�ect the errors of those retained. One must be vigilant, and test the original 

assumptions against the solution obtained. 




