
Chapter 2


Basic Machinery


2.1 Background 

The purpose of this chapter is to record a number of results which are useful in finding and 

understanding the solutions to sets of usually noisy simultaneous linear equations and in which 

formally there may be too much or too little information. A lot of the material is elementary; 

good textbooks exist, to which the reader will be referred. Some of what follows is discussed 

here primarily so as to produce a consistent notation for later use. But some topics are given 

what may be an unfamiliar interpretation, and I urge everyone to at least skim the chapter. 

Our basic tools are those of matrix and vector algebra as they relate to the solution of linear 

simultaneous equations, and some elementary statistical ideas–mainly concerning covariance, 

correlation, and dispersion. Least-squares is reviewed, with an emphasis placed upon the arbi-

trariness of the distinction between knowns, unknowns, and noise. The singular-value decom-

position is a central building block, producing the clearest understanding of least-squares and 

related formulations. We introduce minimum variance estimation through the Gauss-Markov 

theorem as an alternative method for obtaining solutions to simultaneous equations, and show 

its relation to and distinction from least-squares. The Chapter ends with a brief discussion of 

recursive least-squares and estimation; this part is essential background for the study of time-

dependent problems in Chapter 4. 

2.2 Matrix and Vector Algebra 

This subject is very large and well-developed and it is not my intention to repeat material better 

found elsewhere9 . Only a brief survey of essential results is provided. 

17 
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A matrix  is  an  P ×Q array of elements of the form 

A = {Dlm }> 1 l P> 1 � m � Q =� � 

Normally a matrix is denoted by a bold-faced capital letter. A vector is a special case of an 

P × 1 matrix, written as a bold-face lower case letter, for example, q. Corresponding capital or 

lower case letters for Greek symbols are also indicated in bold-face. Unless otherwise stipulated, 

vectors are understood to be columnar. The transpose of a matrix interchanges its rows and 

columns. Transposition applied to vectors is sometimes used to save space in printing, for 

example, q = [t1> t2>===> tQ ]
W is  the same as  

6
5


q =


99999999997


t1 

t2 

. . . 

::::::::::8


= 

tQ 

Matrices and Vectors 

a = 
qPQA conventional measure of length of a vector is 

s
aW d2 = kak = The inner, or dot, l l POproduct between two O × 1 vectors a, b is written aW b a · b = dlel and is a scalar. l=1� 

Such an inner product is the “projection” of a onto b (or vice-versa). It is readily shown that 

|aW b| � kak kbk; the magnitude of this projection can be measured as, 

|a W b| = kak kbk | cos !| > 

where the magnitude of cos ! ranges between zero, when the vectors are orthogonal, and one, 

when they are parallel. 

Suppose we have a collection of  Q vectors, el, each of dimension Q . If  it  is  possible  to  

represent perfectly an arbitrary Q—dimensional vector f as the linear sum, 

Q X 
{31001} f = �lel > (2.1) 

l=1 

then el are said to be a “basis.” A necessary and su!cient condition for them to have that 

property is that they should be “independent,” that is, no one of them should be perfectly 

representable by the others: 

Q X 
{31002} em � �lel 6= 0> 1 � m � Q =  (2.2) 

l=1> l6=m 
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A subset of the em are said to span a subspace (all vectors perfectly representable by the subset). 

For example, [1> 1> 0]W > [1> 1> 0]W span the subspace of all vectors [y1> y2> 0]
W = A “spanning set” �

completely describes the subspace too, but might have additional, redundant vectors. Thus the 

vectors [1> 1> 0]W > [1> 1> 0]W > [1> 1@2> 0] span the subspace but are not a basis for it. �
The expansion coe!cients �l in (2.1) are obtained by taking the dot product of (2.1) with 

each of the vectors in turn: 

Q X 
W W el = en f > 1 � n � Q >  (2.3) {31003} �len


l=1


a system of Q equations in Q unknowns. The �l are most readily found if the el are a mutually 

orthonormal set, that is, if 

W el em = �lm > 

but this requirement is not a necessary one. With a basis, the information contained in the set 
Wof projections, el f = f W el, is adequate then to determine the �l and thus all the information 

required to reconstruct f is contained in the dot products.. 

The concept of “nearly-dependent” vectors is helpful and can be understood heuristically. 

Consider figure 3.1, in which the space is two-dimensional. Then the two vectors e1> e2, as  

depicted there, are independent and can be used to expand an arbitrary two-dimensional vector 

f in the plane. The simultaneous equations become, 

W W W �1e1 e1+�2e1 e2 = e1 f (2.4) 

W W W �1e2 e1+�2e2 e2 = e2 f = 

The vectors become nearly parallel as the angle ! in Fig. 3.1 goes to zero; as long as they are not 

identically parallel, they can still be used mathematically to represent f perfectly. An important 

feature is that even if the lengths of e1>e2> f are all order-one, the expansion coe!cients d1>2 can 

have extremely large magnitudes when the angle ! becomes small and f is nearly orthogonal to 

both (measured by angle �)= 

That is to say, we find readily from (2.4), 

¡
1 f 
¢ ¡
e

¢ ¡
2 f 
¢ ¡
e

¢ 
W W W We 2 e2 e

�1 = ¡
1 e1

¢ ¡
e

�¢ ¡ 1 e2 
> (2.5) 

W W W 
¢2 

e 2 e2 e1 e2 ¡
2 f 
¢ ¡
e

¢ ¡� 

1 f 
¢ ¡
e

¢ 
W W W We 1 e1 e

�2 = ¡
1 e1

¢ ¡
e

�¢ ¡ 2 e1 
= (2.6) 

W W W 
¢2 

e 2 e2 � e1 e2 



20 CHAPTER 2 BASIC MACHINERY


Figure 2.1: Schematic of expansion of an arbitrary vector f in two vectors e1> e2 which may 

nearly coincide in direction. {ocip3.1new.ep 

Suppose for simplicity, that f has unit length, and that the el have also been normalized to unit 

length as shown in Figure 3.1. We have then, 

�1 = 
cos (� � !) � cos ! cos � 

1 � cos2 ! 
= 
sin � 
sin ! 

(2.7) 

�2 = cos  � � sin � cot ! (2.8) 

and whose magnitudes can become arbitrarily large as ! $ 0= One can imagine a situation in 

which �1e1 and �2e2 were separately measured and found to be very large. One could then 

erroneously infer that the sum vector, f , was equally large. This property of the expansion in 

non-orthogonal vectors potentially producing large coe!cients becomes important later (Chap-

ter 4) as a way of gaining insight into the behavior of so-called non-normal operators. The 

generalization to higher dimensions is left to the reader’s intuition. One anticipates that as ! 

becomes very small, numerical problems can arise in using these “almost parallel” vectors. 

egramschmidt} Gram-Schmidt Process 

One often  has a set  of  s-independent, but non-orthonormal vectors, hl> and it is convenient to  

find a new set gl, which are orthonormal. The “Gram-Schmidt process” operates by induction. 

Suppose the first n of the hl have been orthonormalized to a new set, gl= To generate vector 

n + 1, let  
n X 

{31030} gn+1 = hn+1 � �m gm = (2.9) 
m 

Because gn+1 must be orthogonal to the preceding gl, l = 1> ===>  n, take the dot products of (2.9) 

with each of these vectors, producing a set of simultaneous equations for determining the un-

known �m . The resulting gn+1 is easily given unit norm by division by its length. 
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Given the first n of Q necessary vectors, an additional Q � n independent vectors, hl are 

needed. There are several possibilities. The necessary extra vectors might be generated by filling 

their elements with random numbers. Or a very simple trial set like hn+1 = [1> 0> 0> ===> 0]W , 

hn+2 = [0> 1> 0> ===0]> = = =might be adequate. If one is unlucky, the set chosen might prove not 

to be independent of the existing gl. But a simple numerical perturbation usually su!ces to 

render them so. In practice, the algorithm is changed to what is usually called the “modified 

Gram-Schmidt process” for purposes of numerical stability. 10 

2.2.1 Matrix Multiplication and Identities 

It has been found convenient and fruitful to usually define multiplication of two matrices A>B, 

written as C = AB, such that 
S X 

Flm = DlsEsm = (2.10) {31004} 
s=1 

For the definition (2.10) to make sense, A must be a P × S matrix and B must be S × 

Q (including the special case of S × 1, a column vector). That is, the two matrices must 

be “conformable.” If two matrices are multiplied, or a matrix and a vector are multiplied, 

conformability is implied–otherwise one can be assured that an error has been made. Note 

that AB 6= BA even where both products exist, except under special circumstance. Define 

A2 = AA> etc. Other definitions of matrix multiplication exist, and we will later define the 

Hadamard product when it is needed.. 

The mathematical operation in (2.10) may appear arbitrary, but a physical interpretation is 

available: Matrix multiplication is the dot product of all of the rows of A with  all of the  columns  

of B. Thus multiplication of a vector by a matrix represents the projections of the rows of the 

matrix onto the vector. 

Define a matrix, E, each of whose columns is the corresponding vector el, and a vector, 

� = {�l}, in the same order. Then the expansion (2.1) can be written compactly as, 

f = E� = (2.11) {31005} 

The transpose of a matrix A is written AW and is defined as {DW }lm = Dml, an interchange 

of the 

AW = 

rows and columns of A. Thus  
¡
AW 
¢W 

= A= A  “symmetric matrix”  is  one for  which  

A. The product AW A represents the array of all the dot products of the columns of 

A with themselves, and similarly, AAW represents the set of all dot products of all the rows 

of A with themselves. It follows that (AB)W = BW AW . Because  we  have  (AAW )W = AAW , 

(AW A)W = AW A, both of these matrices are symmetric. 
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The “trace” of a square P × P matrix A is defined as trace(A) =  
PP Dll. A “diagonal l 

matrix” is square and zero except for the terms along the main diagonal, although we will later 

generalize this definition. The operator diag(q) forms a square diagonal matrix with q along 

the main diagonal. 

The special O × O diagonal matrix IO, with  Lll = 1, is the “identity.” Usually, when the 

dimension of IO is clear from the context, the subscript is omitted. IA = A, AI = I> for any A 

for which the products make sense. If there is a matrix B, such that BE = I, then  B is the “left-

inverse” of E. If  B is the left inverse of E and E is square, a standard result is that it must also be 

a right inverse: EB = I, B is then called “the inverse of E” and is usually written E31. Square  

matrices with inverses are “non-singular.” Analytical expressions exist for some inverses, and 

numerical linear algebra books explain how to find them, when they exist. If E is not square, one 

must distinguish left and right inverses, sometimes written E+ and referred to as “generalized 

inverses.” Some of them will be encountered later. A useful result is that (AB)31 = B31A31> ¡
A31 

¢W ¡ ¢
if the inverses exist. A useful notational shorthand is = AW 31 

A3W .� 

A definition of the “length,” or norm of a vector has already been introduced. But several 

choices are possible; for present purposes, the conventional o2 norm already defined, Ã 
Q 

!1@2 X 
{31006} kf k2 � (f W f )1@2 = i 2 > (2.12)l 

l=1 

is most useful; often the subscript will be omitted. Eq. (2=12) leads in turn to the measure of 

distance between two vectors, a, b as, 

= 
q
(a{31007} ka bk2 � b)W (a � b) > (2.13)� 

the familiar Cartesian distance. Distances can also be measured in such a way that deviations 

of certain elements of c = a � b count for more than others–that is, a metric, or set of weights 

can be introduced with a definition, r X 
{31008} kckZ = flZllfl > (2.14)

l 

depending upon the importance to be attached to magnitudes of di�erent elements, stretching 

and shrinking various coordinates. Finally, in the most general form, distance can be measured 

in a coordinate system both stretched and rotated relative to the original one 

{31009} kckZ = 
s
cW Wc (2.15) 

where W is an arbitrary matrix (but usually, for physical reasons, symmetric and positive 

definite11, implying that  cW Wc �0). 
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2.2.2 Linear Simultaneous Equations 

Consider a set of P -linear equations in Q -unknowns, 

{31010} Ex = y= (2.16) 

Because of the appearance of simultaneous equations in situations in which the |l are observed, 

and where x are parameters we wish to determine, it is often convenient to refer to (2.16) as a 

set of measurements of x which produced the observations or data, y. If  P A Q , the system 

is said to be “formally overdetermined.” If P ? Q , it is “underdetermined,” and if P = Q , it  

is “formally just-determined.” The use of the word “formally” has a purpose we will come to. 

Knowledge of the matrix inverse to E would make it easy to solve a set of O equations in O 

unknowns, by left-multiplying (2.16) by E31: 

E31Ex = Ix = x = E31 y 

The reader is cautioned that although matrix inverses are a very powerful theoretical tool, one 

is usually ill-advised to solve large sets of simultaneous equations by employing E31; better 

numerical methods are available for the purpose12 . 

There are several ways to view the meaning of any set of linear simultaneous equations. If 

the columns of E continue to be denoted el, then (2.16) is, 

{1e1 + {2e2 + · · ·+ {Q eQ = y = (2.17) {31011} 

The ability to so describe an arbitrary y, or to solve the equations, would thus depend upon 

whether the P × 1, vector y can be specified by  a  sum of  Q -column vectors, el. That  is,  

it would depend upon their being a spanning set. In this view, the elements of x are simply 

the corresponding expansion coe!cients. Depending upon the ratio of P to Q , that  is,  the  

number of equations compared to the number of unknown elements, one faces the possibility 

that there are fewer expansion vectors el than elements of y (P A  Q), or that there are 

more expansion vectors available than elements of y (P ? Q). Thus the overdetermined case 

corresponds to having fewer expansion vectors, and the underdetermined case corresponds to 

having more expansion vectors, than the dimension of y. It is possible that in the overdetermined 

case, the too-few expansion vectors are not actually independent, so that there are even fewer 

vectors available than is first apparent. Similarly, in the underdetermined case, there is the 

possibility that although it appears we have more expansion vectors than required, fewer may 

be independent than the number of elements of y> and the consequences of that case need to be 

understood as well. 
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An alternative interpretation of simultaneous linear equations denotes the rows of E as rl , 
W 

1 l� � P= Then Eq.(2.16) is a set of P -inner products, 

rl x = |l>
W 1 l P =� � (2.18) {31012} 

That is, the set of simultaneous equations is also equivalent to being provided with the value of 

P—dot products of the Q—dimensional unknown vector, x, with  P known vectors, rl. Whether  

that is su!cient information to determine x depends upon whether the rl are a spanning set. 

In this view, in the overdetermined case, one has more dot products available than unknown 

elements {l, and in the underdetermined case, there are fewer such values than unknowns. 

A special set of simultaneous equations for square matrices, A> is labelled the “eigen-

value/eigenvector problem,” 

{eigen1} Ae =�e= (2.19) 

In this set of linear simultaneous equations one seeks a special vector, e> such that for some 

as yet unknown scalar eigenvalue, �> there is a solution. An Q ×Q matrix will have up to Q 

solutions (�l> el) > but the nature of these elements and their relations require considerable e�ort 

to deduce. We will look at this problem more later; for the moment, it again su!ces to say that 

{pageeigen} numerical methods for solving Eq. (2.19) are well-known. 

2.2.3 Matrix Norms 

A number of useful definitions of a matrix size, or norm, exist. For present purposes the so-called 

“spectral norm” or “2—norm” defined as 

kAk2 = 
q
maximum eigenvalue of (AW A) (2.20) 

is usually adequate. Without di!culty, it may be seen that this definition is equivalent to 

kAk2 = max  
xW AW Ax 
x xW = max  

kAxk2 

kxk2 
(2.21) 

where the maximum is defined over all vectors x=13 Another useful measure is the “Frobenius 

norm,” r XP XQ 

l=1 m=1 lm
kAkI = D2 = 

q
trace(AW A) = (2.22) 

Neither norm requires A to be square. These norms permit one to derive various useful results. 

Consider one illustration. Suppose Q is square, and kQk ? 1, then  

{31029} �(I + Q)31 = I � Q + Q2 · · ·  > (2.23) 
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which may be verified by multiplying both sides by I + Q, doing term-by-term multiplication 

and measuring the remainders with either norm. 

Nothing has been said about actually finding the numerical values of either the matrix 

inverse or the eigenvectors and eigenvalues. Computational algorithms for obtaining them have 

been developed by experts, and are discussed in many good textbooks.14 Software systems like 

MATLAB, Maple, IDL and Mathematica implement them in easy-to-use form. For purposes of 

this book, we assume the reader has at least a rudimentary knowledge of these techniques and 

access to a good software implementation. 

2.2.4 Identities. Di�erentiation. 

There are some identities and matrix/vector definitions which prove useful. 

A square “positive definite” matrix A, is one for which the scalar “quadratic form,” 

M = x W Ax (2.24) {31013} 

is positive for all possible vectors x. (It  su!ces to consider only symmetric A because for 

a general matrix, xW Ax = xW [(A + AW )@2]x, which follows from the scalar property of the 

quadratic form.) If M � 0 for all x, A is “positive semi-definite,” or “non-negative definite.” 

Linear algebra books show that a necessary and su!cient requirement for positive definiteness 

is that A have only positive eigenvalues (Eq. 2.19) and a semi-definite one must have all non-

negative eigenvalues. 

We end up doing a certain amount of di�erentiation and other operations with respect to 

matrices and vectors. A number of formulas are very helpful, and save a lot of writing. They 

are all demonstrated by doing the derivatives term-by-term. Let q, r be Q × 1 column vectors, 

and A, B, C be matrices. The derivative of a matrix by a scalar is just the matrix of element 

by element deriviatives. Alternatively, if v is any scalar, its derivative by a vector, 

Cv 
Cq 

= 

� 
Cv 
Ct1 
=== 
Cv 
CtQ 

¸W 

(2.25) {31014a} 

is a column vector (the gradient; some authors define it to be a row vector). The derivative of
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one vector by another is defined as a matrix: 
;
A
AAAAAAAAAAAAAA

<
A
AAAAAAAAAAAAAA

Cu1 Cu2 CuP· Ct1 Ct1 Ct1 

Cu1 · ·  CuP 
Ct2 Ct2 

· · · · 

Cu1 · ·  CuP 
CtQ CtQ 

?
 @
A
AAAAAAAAAAAAAA

½ ¾ 
Cr Cul 

B= (2.26) {31015}= = A
AAAAAAAAAAAAAA

�
Cq Ctm 

>= 

If r, q are of the same dimension, the determinant of B = det (B) is the “Jacobian” of r. 15 

The second derivative of a scalar, 
;
A
AAAAAAAAA

<
A
AAAAAAAAA

C2v C2v C2v· ·
Ct2 Ct1t2 Ct1tQ1 

?
 @
A
AAAAAAAAA

½ ¾ 
C2v C Cv · · · · · 

(2.27){31014b} = = 
Cq2 Cql Cqm A
AAAAAAAAA

C2v C2v · · · CtQ Ct1 Ct2 
Q 

>= 

is the “Hessian” of v and is the derivative of the gradient of v= 
WAssuming conformability, the inner product, M = rW q = q r> is a scalar. The di�erential of 

M is, 
W W WgM = gr W q + r gq =gq r + q gr> (2.28) 

and hence the partial derivatives are, ¡ ¢ 
C(qW r) C rW q 

{31016} = = r > (2.29)
Cq Cq ¡ ¢ 

C qW q 
{31017} = 2q = (2.30)

Cq 

It follows immediately that for matrix/vector products, 

C C ¡ ¢
W{31017a} (Bq) =  BW > q B = B= (2.31)

Cq Cq 

The first of these is used repeatedly, and attention is called to the apparently trivial fact that 

di�erentiation of Bq with respect to q produces the transpose of B–the origin, as seen later, 

of so-called adjoint models. For a quadratic form, 

M = q W Aq 
{31018} CM ¡ ¢ (2.32) 

= A +AW q > 
Cq 
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and its Hessian is 2A if A = AW = 

Di�erentiation of a scalar function (e.g., M in Eq. 2.32) or a vector by a matrix, A> is readily 

defined.16 Di�erentiation of a matrix by another matrix function by another matrix results in a 

third, very large, matrix. One special case of the di�erential of a matrix function proves useful 

later on. It can be shown17 that 

gAq = (gA)Aq31 +A (gA)Aq32+=== +Aq31 (gA) > (2.33) {deltaA1} 

where A is square. Thus the derivative with respect to some scalar, n> is µ ¶
gAq (gA)

Aq31 +Aq32 (gA) = A + === +Aq31 gA 
= (2.34) {deltaA2} 

gn gn gn gn 

There are a few, unfortunately unintuitive, matrix inversion identities which are essential 

later. They are derived by considering the square, partitioned matrix, 

AA> 

;
AA? 

AA= BW C 

<
AA@
A B  

(2.35) {31022} 

where AW = A, CW = C, but B can be rectangular of conformable dimensions in (2.35).18 The 

most important of the identities, sometimes called the “matrix inversion lemma” is, in one form, 

{C � BW A31B}31 = {I � C31BW A31B}31C31 

= C31 � C31BW (BC31BW � A)31BC31 
(2.36) {31023} 

where it is assumed that the inverses exist.19 A variant  is,  

ABW (C +BABW )31 = (A31 +BW C31B)31BW C31 = (2.37) {31024} 

Eq. (2.37) is readily confirmed by left-multiplying both sides by (A31 +BW C31B), and  right-

multiplying by (C +BABW ) and showing that the two sides of the resulting equation are equal. 

Another identity, found by “completing the square,” is demonstrated by directly multiplying it 

out, and requires C = CW (A is unrestricted, but the matrices must be conformable as shown): 

ACAW � BAW � ABW = (A � BC31)C(A � BC31)W � BC31BW = (2.38) {31025} 

2.3 Simple Statistics. Regression 

2.3.1 Probability Densities, Moments. 

Some statistical ideas are required, but the discussion is confined to stating some basic notions 

and to developing a notation.20 We require the idea of a probability density for a random 
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variable {. This subject is a very deep one, but our approach will be heuristic.21 Suppose 

that an arbitrarily large number of experiments can be conducted for the determination of the 

values of {, denoted [l, 1 � l � P , and a histogram of the experimental values found. The 

frequency function, or probability density, will be defined as the limit, supposing it exists, of the 

histogram of an arbitrarily large number of experiments, P $4> divided into bins of arbitrarily 

small value ranges, and normalized by P> to produce the fraction of the total appearing in the 

ranges. Let the corresponding limiting frequency function be denoted s{([)g[> interpreted as 

the fraction (probability) of values of { lying in the range, [ � { � [ + g[= As a consequence 

of the definition, s{ ([) � 0 and, 

Z Z " 

s{ ([) g[ = s{ ([) g[ = 1= (2.39) 
all [ 3" 

The infinite integral is a convenient way of representing an integral over “all [”, as s{ simply 

vanishes for impossible values of [= (It should be noted that this so-called frequentist approach 

has fallen out of favor, with Bayesian assumptions being regarded being ultimately more rigorous 

and fruitful. For present introductory purposes, however, empirical frequency functions appear 

to provide an adequate intuitive basis for proceeding.) 

The “average,” or “mean,” or “expected value” is denoted h{i and defined as, Z 
{32001} h{i � 

all [ 
[s{([)g[ = p1= (2.40) 

The mean is the center of mass of the probability density. Knowledge of the true mean value of 

a random variable is commonly all that we are willing to assume known. If forced to “forecast” 

the numerical value of { under such circumstances, often the best we can do is to employ h{i. 

If the deviation from the true mean is denoted {0 so that { = h{i + {0, such a forecast has the 

virtue that we are assured the average forecast error, h{0i, would be zero if many such forecasts 

are made. The bracket operation is very important throughout this book; it has the property 

that if d is a non-random quantity, hd{i = dh{i and hd{ + |i = d h{i + h|i = 

Quantity h{i is the “first-moment” of the probability density. Higher order moments are 

defined as, Z " 

pq = h{
qi = [qs{([)g[> 

-" 

where q are the non-negative integers. A useful theoretical result is that a knowledge of all the 

moments is usually enough to completely define the probability density itself. (There are trou-

blesome situations with, e.g. non-existent moments, as with the so-called Cauchy distribution, ¡ ¡ ¢¢ 
s{ ([) = (2@�) 1@ 1 +[2 [ � 0> whose mean is infinite.) For many important probability 

densities, including the Gaussian, a knowledge of the first two moments q = 1> 2 is su!cient to 
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define all the others, and hence the full probability density. It is common to define the moments 

for q A  1 about the mean, so that one has, Z " 

� = h({ � h{i)qi = ([ � h[i)q s{([)g[= q 
3" 

�2 is the variance and often written �2 = �
2, where  � is the “standard deviation.” 

2.3.2 Sample Estimates. Bias. 

In observational sciences, one normally must estimate the values defining the probability density 

from the data itself. Thus the first moment, the mean, is often computed as the “sample 

average,” 
P X1 

˜ [l= (2.41) {32002} p1 = h{iP � 
P 
l=1 

The notation p1 is used to distinguish the sample estimate from the true value, p1. On  the  ˜

other hand, if the experiment of computing p̃1 from P samples could be repeated many times, 

the mean of the sample estimates would be the true mean. This conclusion is readily seen by 

considering the expected value of the di�erence from the true mean: * + 
P X1 

hh{iP � h{ii = [l � h{i 
P 
l=1 

P X P1 
= h[li � h{i = h{i � h{i = 0= 
P P 
l=1 

Such an estimate, is said to be “unbiased”: its expected value is the quantity one seeks. 

The interpretation is that for finite P , we do not expect that the sample mean will equal the 

true mean, but that if we could produce sample averages from distinct groups of observations, 

the sample averages would themselves have an average which will fluctuate about the true mean, 

with equal probability of being higher or lower. There are many sample estimates, however, some 

of which we encounter, where the expected value of the sample estimate is not equal to the true 

estimate. Such an estimator is said to be “biassed.” A simple example of a biassed estimator is 

the “sample variance,” defined as 

P X 
2 1 

h{iP )
2 v (2.42) {32003} � 

P 
([l � 

l 

For reasons explained a bit later, (P. 40) one finds that 

 ® P 1 22 2 v = 
� 
� 6= � 

P 
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and thus the expected value is not the true variance. (This particular estimate is “asymptotically 

unbiased,” as the bias vanishes as P $4=) 
We are assured that the sample mean is unbiased. But the probability that h{iP = h{i > 

that is that we obtain exactly the true value, is very small. It helps to have a measure of the 

extent to which h{iP is likely to be very far from h{i = To do so, we need the idea of dispersion– 

the expected or average squared value of some quantity about some interesting value, like its 

mean. The most familiar measure of dispersion is the variance, already used above, the expected 

fluctuation of a random variable about its mean: {pagedispersio 

� 2 = h({ � h{i)2i = 

More generally, define the dispersion of any random variable, }> as, 

G2(}) = h}2i= 

Thus, the variance of { is G2({ � h{i). 
We can thus ask for the variance of h{iP about the correct value= A little algebra using the 

bracket notation produces, 

{var1} G2 
³ 
(h{iP � {)2 ́

 
= 
�2 

P 
= (2.43) 

This expression shows the well-known result that as P becomes large, any tendency of the 

sample  mean  to  lie far  from  the true value  will  diminish.  It does not  prove that some particular  

value will not, by accident, be far away, merely that it becomes increasingly unlikely as P grows. 

(In statistics textbooks, the Chebyschev inequality is used to formalize this statement.) 

An estimate which is unbiased and whose expected dispersion about the true value goes to 

zero with P is evidently desirable. In more interesting estimators, a bias is often present. Then 

for a fixed number of samples, P> there would be two distinct sources of deviation (error) from 

the true value: (1) the bias–how far, on average, it is expected to be from the true value, and 

(2) the tendency–from purely random events–for the value to di�er from the true value (the 

random error). In numerous cases, one discovers that tolerating a small bias error can greatly 

reduce the random error–and thus the bias may well be worth accepting for that reason. In 

some cases therefore, a bias is deliberately introduced. 

2.3.3 Functions and Sums of Random Variables 

If the probability density of { is s{({), then the mean of a function of {, j({) is just, Z " 

{32029} hj({)i = j([)s{([)g[ > (2.44) 
3" 
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which follows from the definition of the probability density as the limit of the outcome of a 

number of trials. 

The probability density for j regarded as a new random variable is obtained from 

g{
{32030} sj (J) =  s{([(J)) gJ> (2.45)

gj 

where g{@gj is the ratio of the di�erential intervals occupied by { and j and can be understood 

by reverting to the original definition of probability densities from histograms. 

The Gaussian, or normal, probability density is one that is mathematically handy (but is 

potentially dangerous as a general model of the behavior of natural processes–many geophysical 

and fluid processes are demonstrably non-Gaussian). For a single random variable {, it is defined 

as, � 
1 

s{([) =  s
2��{ 

exp � 
([ � p{)2 

2�2 

¸
{ 

2(sometimes abbreviated as J(p{> �{)). It is readily confirmed that h{i = p{, h({ � h{i)2i = �{. 

One important special case is the transformation of the Gaussian to another Gaussian of 

zero-mean and unit standard deviation, 

} = 
{ � p 

> 
�{ 

which can always be done, and thus, 
� ¸

1 ]2 

s} (]) =  s
2� 
exp � 

2 

A second important special case of a change of variable is j = }2 where } is Gaussian of zero 

mean and unit variance. Then the probability density of j is, 

1 
sj (J) =  

J1@2
s
2� 

exp(�J@2) > (2.46) {32031} 

a special probability density usually denoted as "2 
1 (“chi-square-sub-1”), the result for the square 

of a Gaussian. 

2.3.4 Multivariable Probability Densities. Correlation 

The idea of a frequency function generalizes easily to two or more random variables, {, |. We  

can, in concept, do an arbitrarily large number of experiments in which we count the occurrences 

of di�ering pair values, ([l> \l), of  {, | and make a histogram normalized by the total number 

of samples, taking the limit as the number of samples goes to infinity, and the bin sizes go to 

zero, to produce a joint probability density s{| ([> \ )= s{| ([> \ ) g[g\ is then the fraction 
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of occurrences such that [ � { � [ + g[> \ � | � \ + g\ . A  simple  example  would  be  

the probability density for the simultaneous measurement of the two components of horizontal 

velocity at a point in a fluid. Again, from the definition, s{| ([> \ ) � 0 and, Z " 

s{| ([> \ ) g\ = s{ ([) > (2.47) Z Z 3"
" " 

s{| ([> \ ) g[g\ = 1= (2.48) 
3" 3" 

An important use of joint probability densities is in what is known as “conditional probabil-

ity.” Suppose that the joint probability density for {, | is known and furthermore, | = \ , that  

is, information is available concerning the actual value of |. What then is the probability density 

for { given that a particular value for | is known to have occurred? This new frequency function 

is usually written as s{|| ([|\ ) and read as “the probability of {, given that | has occurred,” 

or, “the probability of { conditioned on |.” It follows immediately from the definition of the 

probability density that 

{32004} s{|| ([|\ ) =  
s{| ( )[> \ 

(2.49) 
s| (\ ) 

(This equation is readily understood by going back to the original experimental concept, and 

understanding the restriction on {, given  that  | is known to lie within a strip paralleling the [ 

axis). 

Using the joint frequency function, define the average product as, Z Z  
{32005} h{|i = [\ s{| ([> \ )g[ g\ = (2.50) 

all [>\ 

Suppose that upon examining the joint frequency function, one finds that s{| ([> \ ) = s{([)s| (\ ), 

that is it factors into two distinct functions. In that case, {, | are said to be “independent.” 

Many important results follow including, 

h{|i = h{i h|i = 

Non-zero mean values are often primarily a nuisance. One can always define modified vari-

ables, e.g. {0 = {� h{i such that the new variables have zero mean. Alternatively, one computes 

statistics centered on the mean. Should the centered product h({ � h{i)(| � h|i)i be non-zero, 

{, | are said to “co-vary” or to be “correlated.” If h({ � h{i)(| � h|i)i = 0> then the two vari-

ables are “uncorrelated.” If {, | are independent, then h({ � h{i)(| � h|i)i = 0. Independence 

thus implies lack of correlation, but the reverse is not necessarily true. (These are theoretical 

relationships, and if h{i > h|i are determined from observation, as described below, one must 

carefully distinguish estimated behavior from that expected theoretically.) 



� 
h{0|0i 
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If the two variables are independent, then (2.49) is, 

{32006} s{|| ([|\ ) = s{([) > (2.51) 

that is, the probability of { given | does not depend upon \> and thus 

s{| ([> \ ) = s{ ([) s| (\ ) > 

–and there is then no predictive power for one variable given knowledge of the other. 

Suppose there are two random variables {, | between which there is anticipated to be some 

linear relationship, 

{ = d| + q> (2.52) {32008} 

where q represents any contributions to { that remain unknown despite knowledge of | and d 

is a constant. Then, 

h{i = dh|i + hqi > (2.53) {32009a} 

and (2.52) can be re-written as, 

{ � h{i = d(| � h|i) + (q � hqi)> 

or 

{0 = d|0 + q >0 where {0 = { � h{i> etc. (2.54) {32009b} 

From this last equation, 

d = 
h{0|0i h{0|0i 
h|02i (h|02ih{02i)

= 
1@2 

h{02i1@2 

h|02i1@2 
= � 

h{02i1@2 

h|02i1@2 
> (2.55) {32010} 

where it was supposed that h|0q0i = 0, thus defining q0. The  quantity  

� 
h|02i1@2h{02i1@2 

(2.56) {32011} 

is the “correlation coe!cient” and is easily shown22 to have the property |�| � 1. If  � should 

vanish, then so does d. If  d vanishes, then knowledge of |0 carries no information about the value 

of {0. If  � = ±1, then it follows from the definitions that q = 0  and knowledge of d permits 

perfect prediction of {0 from knowledge of |0= (Because probabilities are being used, rigorous 

usage would state “perfect prediction almost always,” but this distinction will be ignored.) 

A measure of how well the prediction of {0 from |0 will work can be obtained in terms of the 

variance of {0. We  have,  

 ® 
h{02i = d2h|02i + q 02 = � 2h{02i + hq 02i 
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or, 

(1 � � 2)h{ 
02i = hq 02i= (2.57) {32012} 

That is, (1 � �2)h{ 
02i is the fraction of the variance in {0 that is unpredictable from knowledge of 

|0 and is the “unpredictable power.” Conversely, �2h{02i is the “predictable” power in {0 given 

knowledge of |0= The limits as � $ 0> 1 are readily apparent. 

Thus we interpret the statement that two variables {0 , |0 “are correlated” or “co-vary” to 

mean that knowledge of one permits at least a partial prediction of the other, the expected 

success of the prediction depending upon the size of �. If  � is not zero, the variables cannot 

be independent, and the conditional probability s{|| ([|\ ) 6= s{ ([) = This result represents an 

implementation of the statement that if two variables are not independent, then knowledge of 

one permits some skill in the prediction of the other. If two variables do not co-vary, but are 

known not to be independent, a linear model like (2.52) would not be useful–a non-linear model 

would be required. Such non-linear methods are possible, and are touched on briefly later. The 

idea that correlation or covariance between various physical quantities carries useful predictive 

skill between them is an essential ingredient of many of the methods taken up in this book. D E 
In most cases, quantities like �> { 

0 2 > are determined from the available measurements, e.g. 

of the form, 

{32013} d|l + ql = {l > (2.58) 

and are not known exactly. They are thus sample values, are not equal to the true values, and 

must be interpreted carefully in terms of their inevitable biases and variances. This large subject 

{1} of regression analysis is left to the references.23 

2.3.5 Change of Variables 

Suppose we have 2�random variables {> | with joint probability density s{| ([>\ ) = They are 

known as functions of two new variables { = { (�1> �2) > |  = | �1>�2 and and inverse mapping 
¡ ¢ 

�1 = �1 ({> |) > �2 = �2 ({> |). What is the probability density for these new variables? The 

general rule for changes of variable in probability densities follows from area conservation in 

mapping from the {, | space to the �1, �2 space, that is, 

{32016} s�
1
�
2 
(�1>�2) =  s{| ([(�1>�2)> \ (�1>�2)) 

C([>\ ) 
C(�1>�2) 

(2.59) 

where C([>\ )@C(�1>�2) is the Jacobian of the transformation between the two variable sets. As 

in any such transformation, one must be alert for zeros or infinities in the Jacobian, indicative 

of multiple valuedness in the transformation. Texts on multivariable calculus discuss such issues 

in great detail. 



s{>| ( ) =  
1 

exp 

µ
� 
([ � p{)2 

2�2 � 
(\ � p| )2 

2�2
[> \ 
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Example 

Suppose {1> {2 are independent Gaussian random variables of zero mean and variance �2= 

Then Ã ! 

sx (X) =  
2��2 exp 
1 � 

2�2

¡ ¢ 
[1 
2 + [2 

2 = 

Define new random variables 

u = {2
¡

21 + {2
¢1@2 
> !  = tan31 ({2@{1) > (2.60) {polar1} 

whose mapping in the inverse direction is 

{1 = u cos !> |1 = u sin !> (2.61) {polar2} 

that is the mappings between polar and cartesian coordinates. The Jacobian of the transformation 

is Md = u= Thus 

su>! (U> �) =  
U 2 ¡ ¢ 
2� �2 exp �U2@�2 > 0 u>� 

The probability density for u alone is obtained by integrating 

� � �� ! � (2.62) {polar3} 

Z 

3� 
�su (U) =  

� 

su>!g! = 
�

U 
2 exp U2@ 2� 2 > 

£ ¡ ¢¤ 
(2.63) {rayleigh1} 

known as a Rayleigh distribution. By inspection then, 

1 
s! (�) =  

2� 
> 

which is the uniform distribution, independent of �= (These results are very important in signal 

processing.) 

To generalize to q�dimensions, let there be Q �variables, {l> 1 � l � Q> with known joint 

probablility density s{1==={Q = Let there be Q �new variables, �l> that are known functions of 

the {l, and an inverse mapping between them. Then the joint probability density for the new 

variables is just,  

s�1===�Q 
(�1>===> �Q ) =  s{1==={Q (�1 ([1>===> [Q ) ===> �Q ([1> ====> [Q )) 

C([1> ===>[Q ) 
C(�1> ===> �Q ) 

(2.64) {trans1} 

Suppose that {, | are independent Gaussian variables J(p{> �{), J(p| > �| ). Then their 

joint probability density is just the product of the two individual densities, 

2��{�| { | 

¶ 

= (2.65) {32014} 
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Let two new random variables, �1, �2, be defined as a linear combination of {> |, 

�1 = d11({� p{) +  d12(| � p| ) +  p�1 

�2 = d21({� p{) +  d22(| � p| ) +  p�2 
> (2.66) {32015} 

or in vector form, 

� = A(x � m{) +  m� > 

where x = [{> |]W , m{ = [p{>p| ]
W , m| = [p�1 

>p ]W , and the numerical values satisfy the�2 

corresponding functional relations, 

�1 = d11([ � p{) +  d12(\ � p| ) +  p >�1 

etc. Suppose that the relationship (2.66) is invertible, that is, we can solve for, 

{ = e11(�1 � p�1 
) +  e12(�2 � p�2 

) +  p{ 

| = e21(�1 � p�1 
) +  e22(�2 � p�2 

) +  p| > 

or, 

x = B(� � m� ) +  m{= (2.67) 

Then the Jacobian of the transformation is, 

C([>\ )
{32018} 

C(�1>�2)
= e11e22 � e12e21 = det(B) (2.68) 

(det(B) is the determinant). Eq. (2.66) produces, 

h�1i = p�1 

h�2i = p (2.69)�2 

2 2 2 2h(�1 � h�1i)
2i = d2 

12�| > h(�2 � h�2i)
2i = d2 

22�| >11�{ + d2 
21�{ + d2 

2 2h(�1 � h�1i)(�2 � h�2i)i = d11d21�{ + d12d22�| 6= 0  

In the special case, 

{32020} A =


;
AA?
 cos ! sin !


<
AA@ 

AA>

>
 B =


<
AA@ 

AA> 

sin !� 
> (2.70) 

;
AA? 

AA

cos ! 

A
A=
 =
sin ! cos ! sin ! cos !� 
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the transformation (2.70) is a simple coordinate rotation through angle !, and the Jacobian is 

1. The new second-order moments are, 

2 
{ + sin  2 ! �2{32021a} h(�1 � h�1i)

2i = ��1 
= cos  2 ! �2 

| > (2.71) 

2 
{ + cos  2 ! �2{32021b} h(�2 � h�2i)

2i = ��2 
= sin  2 ! �2 

| > (2.72) 

2{32021c} h(�1 � h�1i)(�2 � h�2i)i � = (� 2 � | � �{) cos  ! sin ! =  (2.73)�1�2 

The new probability density is 

1 
s�1�2 

(�1>�2) =  (2.74) 
22���1 

��2 

q
1 ��� ";

?

<
@ 

> 

# 
)2 2�� (�1 � p�1 

)(�2 � p�2 
) (�2 � p�2 

)2 

2 

(�1 � p�1 
2 

1 
+exp =� 

2
q
1 2�� 

�
� ��

1 
��

2 
��1 �2� 

¡
2 2 

¢1@2 
�{ + �| 

A probability density derived through 

2 2 
{) sin  ! cos !@ is the correlation coe!cient of where �� = (� @��1 
� = � ��2| � �1�2 

the new variables. linear transformation from two a 

independent variables which are Gaussian will be said to be “jointly Gaussian” and (2.74) is a 

canonical form. Because a coordinate rotation is invertible, it is important to note that if we had {pagegauss} 

two random variables �1> �2 which were jointly Gaussian with � 6= 1, then we could find a pure 

rotation (2.70), which produces two other variables {, | which are uncorrelated, and therefore 

independent. Notice that (2.73) shows that two such uncorrelated variables {, | will necessarily 

have di�erent variances, otherwise �1, �2 would have zero correlation, too, by Eq. (2=73) = 

As an important by-product, it is concluded that two jointly Gaussian random variables that 

are uncorrelated, are also independent. This property is one of the reasons Gaussians are so 

nice to work with; but it is not generally true of uncorrelated variables. 

Vector Random Processes 

Simultaneous discussion of two random processes, {, | can regarded as discussion of a vector 

random process [{> |]W , and suggests a generalization to Q dimensions. Let us label Q random 

processes as {l and define them as the elements of a vector x = [{1> {2> = = = > {Q ]
W . Then the 

mean is a vector: hxi = m{, and the covariance is a matrix: 

C{{ = G2(x � hxi) =  h(x � hxi)(x � hxi)W i > (2.75) {32023} 

which is necessarily symmetric and positive semi-definite. The cross-covariance of two vector 

processes x, y is, 

C{| = h(x � hxi)(y � hyi)W i> (2.76) {32024} 
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and C{| = CW 
|{. 

It proves convenient to introduce two further moment matrices in addition to the covariance 

matrices. The “second moment” matrices will be defined as, 

R{{ � G2(x) =  hxx W i> R{| = hxy W i> 

that is, not taken about the means. Note R{| = RW x be an “estimate” of the |{, etc. Let ˜

true value, x. Then the dispersion of x̃ about the true value will be called the “uncertainty” 

(sometimes it is called the “error covariance”) and is 

P G2(˜ x x)(˜x x) =  h(˜ x x)W i = � � � � 

P is similar to C> but di�ers in being taken about the true value, rather than about the mean 

value; the distinction can be very important. 

If there are Q variables, �l, 1 � l � Q , they will be said to have an “Q -dimensional jointly 

normal probability density” if it is of the form, 

h i 
1 exp �� (� � m) 

{32025} s�
1
>===>�Q 

(�1> = = = >�Q ) =  
� 2 (� � m)W C31 

= (2.77)
(2�)Q@2

p
det(C�� ) 

One finds h�i = m, h(� � m)(� m)W i = C�� . Eq. 2.74 is a special case for Q = 2, and  so  the  � 

earlier forms are consistent with this general definition.


Positive definite symmetric matrices can be factored as,


W@2 1@2 
{32026} C�� = C�� C > (2.78)�� 

1@2
called the “Cholesky decomposition,” where C�� is an upper triangular matrix (all zeros below 

{pagechol} the main diagonal) and non-singular.24 . It follows that the transformation (a rotation and 

stretching), 

{32027} x = C3W@2(� � m) > (2.79)�� 

produces new variables x of zero mean, and diagonal covariance, that is, a probability density 

¡ ¡
1 1 

¢ 
exp � 2 ([1

2 + · · ·+ [2 exp 2 [
2 exp 2 [

2 
1

{32028} s{1>===>{Q ([1> ===[Q ) =  
(2�)Q@2 

Q ) = 
� 1 

¢ 
· · ·  

� Q > (2.80)
(2�)1@2 (2�)1@2 

which factors into Q-independent, normal variates of zero mean and unit variance (C{{ = R{{ = 

I). Such a process is often called Gaussian “white noise,” and has the property h{l{m i = 0> l  = 
25m=

6
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2.3.6 Sums of Random Variables 

It is often helpful to be able to compute the probability density of sums of independent random 

variables. The procedure for doing so is based upon (2.44). Let { be a random variable and 

consider the expected value of the function hl{w: Z " 

{32032} hhl{wi = 
3" 
s{ ([) hl[ wg[ � !{(w) > (2.81) 

which is the Fourier transform of s{([); !{(w) is usually termed the “characteristic function” of 

{. Now consider the sum of two independent random variables {, | with probability densities 

s{, s| , respectively, and define a new random variable } = { + |. What is the probability density 

of }? One starts by first determining the characteristic function, !} (w) for } and then using  the  

Fourier inversion theorem to obtain s{(]). To  obtain  !} , 

!} (w) =  hhl}wi = hhl({+|)wi = hhl{wihhl|wi 

where the last step depends upon the independence assumption. This last equation shows 

!} (w) =  !{(w)!| (w) = (2.82) {32033} 

That is, the characteristic function for a sum of two independent variables is the product of 

the characteristic functions. The “convolution theorem”26 asserts that the Fourier transform 

(forward or inverse) of a product of two functions is the convolution of the Fourier transforms 

of the two functions. That is, Z " 

s} (]) =  
3" 
s{ (u) s| (] � u) gu= (2.83) {conv} 

We will not explore this relation in any detail, leaving the reader to pursue the subject in the 

references.27 But it follows immediately that the multiplication of the characteristic functions of 

a sum of independent Gaussian variables produces a new variable, which is also Gaussian, with 

a mean equal to the sum of the means and a variance which is the sum of the variances (“sums 

of Gaussians are Gaussian”). It also follows immediately from Eq. 2.82) that if a variable � is 

defined as, 

� = {2 
2 + · · ·+ {2 

1 + {2 
� > (2.84) {32034} 

where each {l is Gaussian of zero mean and unit variance, that the probability density for � is, 

��@231 

� 2 

s� (�) =  
2�@2

¡ 
� 
¢ exp(��@2) > (2.85) {32035} 
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known as "2 
y –“chi-square sub- �.” The chi-square probability density is central to the discussion P 

˜2n, measured as  ̃ n = k˜of the expected sizes of vectors, such as ˜ nW ˜ nk2 = l ql if the elements of 

ñ can be assumed to be independent and Gaussian. Eq. (2.46) is the special case � = 1. 

Degrees-of-Freedom 

The number of independent variables described by a probability density is usually called 

the “number of degrees-of-freedom.” Thus the densities in (2.77) and (2.80) have Q -degrees 

of freedom and (2.85) has � of them. If a sample average (2.41) is formed, it is said to have 

Q -degrees of freedom if each of the {m is independent. But what if the {m have a covariance C{{ 

which is non-diagonal? This question of how to interpret averages of correlated variables will be 

explicitly discussed on P. 135. 

Consider the special case of the sample variance Eq. (2.42)–which we claimed was biassed. 

The reason is that even if the sample values, {l> are independent, the presence of the sample 

average in the sample variance means that there are only Q � 1 independent terms in the sum. 

That this is so is most readily seen by examining the two-term case. Two samples produce a 

sample mean, h{i2 = ({1 + {2)@2. The two-term sample variance is, 

1 
h i 

2 v = ({1 � h{i2)
2 + ({2 h{i2)

2 >2 � 

but knowledge of {1 and of the sample average, permits perfect prediction of {2 = 2 h{i2 � {1. 

The second term in the sample variance as written is not independent of the first term, and thus 

there is just one independent piece of information in the two-term sample variance. To show 

 ®


it in general, assume without loss of generality that h{i = 0> so that �2 = {2 = The sample 

variance about the sample mean (which will not vanish) of independent samples is given by Eq. 

{page39} (2.42) and so, 
4343 * + 

P P P
 1 1
 1X 
C{l 

X

{m D
C{l 

X

D
2

® 
{sv = � �

P P
 P 
s=1l=1 m=1 

 
;
? 

<
@
P P P P P

1 1 1 1X X X XX ® 
{2 
l >h{l{m i h{l{si + 

P 2 h{m {si= �
 �
P 

1 

P P= 
;
?


l=1 m=1 s=1 m=1 s=1 

�ms 

<
@ 

>


P 2 2 2� � �X X X XX 
2 �ls += � �lm�
 � 

P 2P =
 P P 
l=1 m s m s 

�2 (P � 1) 
6 2 = = � 

P 

Stationarity 
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Consider a vector random variable, with element {l where the subscript l denotes a position 

in time or space. Then {l, {m are two di�erent random variables–for example, the temperature 

at two di�erent positions in a moving fluid, or the temperature at two di�erent times at the 

same position. If the physics governing these two di�erent random variables are independent 

of the parameter l (i.e., independent of time or space), then {l is said to be “stationary”– 

meaning that all the underlying statistics are independent of l=28 Specifically, h{li = h{m i � h{i, 

G2({l) =  G2({m ) =  G2 ({), etc. Furthermore, {l, {m have a covariance 

F{{(l> m) =  h({l � h{li)({m � h{m i)i > (2.86) {32036} 

that is, independent of l, m, and might as well be written F{{(|l � m|), depending only upon 

the di�erence |l � m|. The distance, |l � m|> is often called the “lag.” F{{(|l � m|) is called the 

“autocovariance” of x or just the covariance, because we now regard {l, {m as intrinsically the 

same process.29 If F{{ does not vanish, then by the discussion above, knowledge of the numerical 

value of {l implies some predictive skill for {m and vice-versa–a result of great importance when 

we examine map-making and objective analysis. For stationary processes, all elements having 

the same |l � m| are identical; it is seen that all diagonals of such a matrix {F{{ (l> m)}, are  

constant, for example, C�� in Eq. (2=77)= Matrices with constant diagonals are thus defined by 

the vector F{{(|l � m|)> and are said to have a “Toeplitz form.” 

2.4 Least-Squares 

Much of what follows in this book can be described using very elegant and powerful mathematical 

tools. On the other hand, by restricting ourselves to discrete models and finite numbers of 

measurements (all that ever goes into a digital computer), almost everything can also be viewed 

as a form of ordinary least-squares, providing a much more intuitive approach than one through 

functional analysis. It is thus useful to go back and review what “everyone knows” about this 

most-familiar of all approximation methods. 

2.4.1 Basic Formulation 
{pagestraightl 

Consider the elementary problem motivated by the “data” shown in figure 2.2. w is supposed 

to be an independent variable, which could be time, or a spatial coordinate or just an index. 

Some physical variable, call it �(w), perhaps temperature at a point in a laboratory tank, has 

been measured at coordinates w = wl, 1 � l � P , as depicted in the figure. 

We have reason to believe that there is a linear relationship between �(w) and w in the form 
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Figure 2.2: “Data” generated through the rule | = 1 + 2w + qw, where  hqwi = 0> hqlqm i = 9�lm 

shown as + connected by the solid line. Dashed line is the simple least-squares fit, 

|̃ = 1=69± 0=83 + (1=98± 0=03) w= Residuals are plotted as open circles, and at least 

visually, show no obvious structure. Note that the fit is correct within its estimated 

standard errors. The sample variance of the estimated noise was used for calculating 

the uncertainty, not the theoretical value. {fig3_2.eps} 

�(w) = d + ew, so that the measurements are, 

|(wl) = �(wl) + q(wl) = d + ewl + q(wl)> (2.87) {33001} 

where q(w) is the inevitable measurement noise. The straight-line relationship might as well be 

referred to as a “model,” as it represents our present conception of the data structure. We want 

to determine d, e. 

The set of observations can be written in the general standard form, 

{33002} Ex + n = y (2.88) 

where, 6565<
AAAAAAAAAAAAAA

;
AAAAAAAAAAAAAA

y =


999999999999997


|(w1) 

|(w2) 

·


·


::::::::::::::8


> n = 

999999999999997


q(w1) 

q(w2) 

·


·


::::::::::::::8


1
 w1 

6
5
1
 w2 
?
 @

A
AAAAAAAAAAAAA

997 
d 
> 
::8
 = (2.89){33003} E = >
 x = · ·A
AAAAAAAAAAAAA

e 
· ·  

>=1 wP 

Equation sets like (2.88) are seen in many practical situations, including the ones described in 

Chapter 1. The matrix E in general represents arbitrarily complicated linear relations between 

|(wP ) q(wP ) 
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the parameters x> and the observations y= In some real cases, it has many thousands of rows 

and columns. Its construction involves specifying what those relations are, and in a very general 

sense, it requires a “model” of the data set. Unfortunately, the term “model” is used in a 

variety of other ways in this context, including statistical assumptions, and often for auxiliary 

relationships among the elements of x which are independent of those contained in E= To separate 

these di�erence usages, we will sometimes append various adjectives to the use (“statistical 

model”, “exact relationships” etc.). 

One sometimes sees (2.88) written as 

Ex � y 

or even 

Ex = y = 

But Eq. (2.88) is preferable, because it explicitly recognizes that n = 0 is exceptional. Some-

times, by happenstance or arrangement, one finds P = Q and that E has an inverse. But the 

obvious solution, x = E31 y, leads to the conclusion, n = 0, which should be unacceptable if 

the y are the result of measurements. We will need to return to this case, but for now, let us 

consider the commonplace problem where P A  Q  . 

Then, one often sees a “best possible” solution–defined as producing the smallest possible 

value of nW n, that is the minimum of 

P X 
2M = q = n W n = (y � Ex)W (y � Ex) = (2.90) {33004} l


l=1


(Whether the smallest noise solution really is the best one is considered later.) In the special 

case of the straight-line model, 
P X 

M = (|l d ewl)
2 = (2.91) {33004a} � � 

l=1 

M is an example of what is called an “objective” or “cost” function.30 

Taking the di�erential of (2.91) with respect to d, e or x (using (2.32)) and setting it to zero 

produces, µ ¶X CM CM W 

gM = g{l = gx 
C{l Cx 

l ¡
= 2 EW y � EW Ex 

¢W 
gx = 0= (2.92) 

This equation is of the form X 
gM = dlg{l = 0= (2.93) 
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It is an elementary result of multivariable calculus that an extreme value (here a minimum) of 

M is found where gM = 0= Because the {l are free to vary independently, gM will vanish only if 

the coe!cients of the g{l are separately zero or, 

{normal1} EW y � EW Ex = 0= (2.94) 

That is, 

{33005} EW Ex = EW y> (2.95) 

called the “normal equations.” Note that Eq. (2.94) asserts that the columns of E are orthogonal 

(that is “normal”) to n = y � Ex= Making the sometimes-valid-assumption that (EW E)31 exists, 

˜{33006} x = (EW E)31EW y = (2.96) 

By looking at the second derivatives of M with respect to x> we could show what is intuitively 

clear–that we have a minimum and not a maximum. The solution is written as x̃ rather than as 

x because the relationship between (2.96) and the “correct” value is obscure. Fig. 2.2, displays 

the fit along with the residuals, 

£ ¤
{33007} ˜ x = I E(EW E)31EW y = (2.97)n = y � E˜ � 

That is, the P equations have been used to estimate Q values, ˜ nl, or  P +Qxl, and  P values ˜

altogether. The combination 

{H1} H = E(EW E)31EW (2.98) 

occurs su!ciently often that it is worth a special symbol. Note the “idempotent” property 

H2 = H= If the solution x̃ is substituted into the original equations, the result is, 

E˜ y> (2.99)x = Hy = ˜

and 

{orthog1} n ˜˜W y = [(I H)y]W 
Hy = 0= (2.100) � 

The residuals are orthogonal (normal) to the inferred noise-free “data” ỹ= 

All of this is easy and familiar and applies to any set of simultaneous linear equations, not 

just the straight-line example. Before proceeding, let us apply some of the statistical machinery 

to understanding (2.96). Notice that no statistics were used in obtaining (2.96), but we can 

nonetheless ask the extent to which this value for x̃ is a�ected by the random elements: the 

noise in y. Let  y0 be the value of y that would be obtained in the hypothetical situation for 

which n = 0. Assume further that hni = 0 and that Rqq = Cqq = hnn
W i is known. Then the 

expected value of x̃ is, 

{33008} hx̃i = (EW E)31EW y0 = (2.101) 
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2Figure 2.3: Here the “data” were generated from a quadratic rule, | = 1  +  w2 + q (w) > q = 900= 

Note that only the first 1 � w � 20 data points are used. An incorrect straight line 

fit was used resulting in |̃ = (�76=3 ± 17=3) + (20=98 ± 1=4) w> which is incorrect, but 

the residuals at least visually, do not appear unacceptable. At this point some might 

be inclined to claim the model has been “verified,” or “validated.” {fig3_4.eps} 

If the matrix inverse exists, then in many situations, including the problem of fitting a straight-

line to data, perfect observations would produce the correct answer, and Eq. (2.96) provides 

an unbiased estimate of the true solution, hx̃i = x. A more transparent demonstration of this 

geunbiassed1} result will be given on P. 105. 

On the other hand, if the data were actually produced from physics governed for example, by 

a quadratic rule, �(w) =  d + fw2, then fitting the linear rule to such observations, even if they are 

perfect, could never produce the right answer and the solution would be biassed. An example 

of such a fit is shown in figures 2.3, 2.4. Such errors are conceptually distinguishable from the 

noise of observation, and are properly labeled “model errors.” 

Assume however, that the correct model is being used, and therefore that hx̃i = x. Then  

the uncertainty of the solution is, 

x x)(˜= h(˜ x x)W i� � 

= (EW E)31EW hnn W i E(EW E)31 (2.102) {33009} 

= (EW E)31 EW Rqq E(E
W E)31 = 

2In the special case, R = �qI, that is, no correlation between the noise in di�erent equations 

(white noise), Eq. (2.102) simplifies to, 

2P = �q(E
W E)31 = (2.103) {33010} 

If we are not confident that hx̃i = x, perhaps because of doubts about the straight-line model, 

x̃ P C= x̃
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Figure 2.4: The same situation as in Fig. 2.3, except the series was extended to 50 points. Now 

the residuals (‘r’) are visually structured, and one would have a powerful suggestion 

that some hypothesis (something about the model or data) is not correct. This 

straightline fit should be rejected as being inconsistent with the assumption that the 

residuals ar unstructured: the model has been “invalidated.” {fig3_5.eps} 

x̃Eqs. (2.102)—(2.103) are still interpretable, but as Fx̃ x h˜ the covariance of  ̃= G2(˜� xi)� x. The  p
{ is usually defined to be ± F˜l x

If applied to the straight-line fit of x. 

“standard error” of ˜

of data for distinguishing di�erent possible estimates of ˜

x̃ and is used to understand the adequacy ll 

x d> ̃fig. 2.2, we obtain an estimate, ˜W = [˜ e] = [1=69 ± 0=83> 1=98 ± 0=03]> which are within one 

standard deviation of the true values, [d> e] = [1> 2]. If the noise in y is Gaussian, it follows that 

i and covariance Cx x̃the probability density of x̃ is also Gaussian, with mean h˜ x̃. Of  course,  if 


n is not Gaussian, then the estimate won’t be either, and one must be wary of the utility of 

the standard errors. A Gaussian, or other, assumption should be regarded as part of the model 

definition. The uncertainty of the residuals as, D E 
n h˜ n h˜{cnn1} Cqq = (˜� ni) (˜ ni)W = (I � H) Rqq (I H)W (2.104) � � 

2 2 = �q (I H)2 = �q (I � H) >� 

where zero-mean white noise was assumed, and H was defined in Eq. (2.98). Notice that the 

true noise, n> was assumed to be white, but that the estimated noise, ñ> has a non-diagonal 

covariance and so in a formal sense does not have the expected covariance. We return to this 

point below. 

The fit of a straight-line to observations demonstrates many of the issues involved in making 

inferences from real, noisy data that appear in more complex situations. In figure 2.5, the correct 

model used to generate the data was the same as in Fig. 2.2, but the noise level is very high. 

The parameters [˜ e] are numerically inexact, but consistent within one standard error with the d> ̃
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Figure 2.5: The same situation as in Fig. 2.2, | = 1  +  2w> except q2 = 900 to give very noisy 

data. Now the best fitting straight line is | = (6=62 ± 6=50) + (1=85 ± 0=22) w which 

includes the correct answer within one standard error. Note that the intercept value 

{fig3_3.eps} is indistinguishable from zero. 

correct values, which is all one can hope for. 

In figure 2.3, a quadratic model | = 1  +  w2 + q (w) was used to generate the numbers, with 
 ® 
q2 = 900= Using only the first 20 points, and fitting an incorrect model produces a reasonable 

straight-line fit to the data as shown. Modeling a quadratic field with a linear model produces a 

systematic or “model” error, which is not easy to detect here. One sometimes hears it said that 

“least-squares failed” in situations such as this one. But this conclusion shows a fundamental 

misunderstanding: least-squares did exactly what it was asked to do–to produce the best-fitting 

straight-line to the data. Here, one might conclude that “the straight-line fit is consistent with 

the data.” Such a conclusion is completely di�erent from asserting that one has proven a straight-

line fit correctly “explains” the data or, in modeler’s jargon, that the model has been “verified” 

or “validated.” If the outcome of the fit were su!ciently important, one might try more powerful 

tests on the q̃l than a mere visual comparison. Such tests might lead to rejection of the straight-

line hypothesis; but even if the tests are passed, the model has never been verified: it has only 

been shown to be consistent with the available data. 

If the situation remains unsatisfactory (perhaps one suspects the model is inadequate, but 

there are not enough data to produce su!ciently powerful tests), it can be very frustrating. But 

sometimes the only remedy is to obtain more data. So in Fig. 2.4, the number of observations 

was extended to 50 points. Now, even visually, the q̃l are obviously structured, and one would 

almost surely reject any hypothesis that a straight-line was an adequate representation of the 

data. The model has been invalidated. If one fits a quadratic rule, | = d + ew + fw2, a perfectly 
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Figure 2.6: Same as Fig. 2.4, except a more complete model, | = d + ew + fw2 was used, and 

which gives acceptable residuals. {fig3_6.eps} 

acceptable solution is found; see Fig. 2.6. 

One must always confirm, after the fact, that M , which is a direct function of the residuals, 

behaves as expected when the solution is substituted. In particular, its expected value, 

P X  ®
2{expJ1} hM i = ql = P � Q> (2.105) 

l 

 ® 
assuming that the ql have been scaled so that each has an expected value q2 = 1= Thatl 

there are only P � Q independent terms in (2.105) follows from the Q supposed-independent 

constraints linking the variables. For any particular solution, ˜ n> M  will be a random variable, x> ̃

whose expectation is (2.105). Assuming the ql are at least approximately Gaussian, M itself is 

the sum of P � Q independent "2 
1 variables, and is therefore distributed in "2 = One can and P 3Q 

should make histograms of the individual q2 to check them against the expected "2 
1 probability l 

density. This type of argument leads to the large literature on hypothesis testing. 

As an illustration of the random behavior of residuals, 30 equations, Ex + n = y in 15 

unknowns were constructed, such that EW E was non-singular. Fifty di�erent values of y were 

then constructed by generating 50 separate n using a pseudo-random number generator. An 

ensemble of 50 di�erent solutions were calculated using (2.96), producing 50×30 = 1500 separate 

values of ˜2 1ql . These are plotted in Fig. 2.7 and compared to "2= The corresponding value, P30 ˜2M̃ (s) = ql , was found for each set of equations, and also plotted. A corresponding frequency 1 

˜
15> with reasonably good results. The empirical function for M (s) is compared in Fig. 2.7 to "2 

mean value of all M̃l is 14.3. Any particular solution may, completely correctly, produce individual 
 ® 

residuals q2 di�ering considerably from the mean of "2 = 1> and similarly, their sums, the ˜l 1 
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Figure 2.7: "2 
1 probability density (left panel), and the empirical frequency function of all residu-

2als, ˜l from 50 separate experiments for simple least-squares solution of Ex + n = y=q

There is at least rough agreement between the theoretical and calculated frequency 

functions. Middle panel displays the 50 values of Ml computed from the same ex-

periments in the left panel. Right panel displays the empirical frequency function 

for the Ml as compared to the theoretical value of "2 
15> (dashed line). Tests exist, 

not discussed here, of the hypothesis that the calculated Ml are consistent with the 

theoretical distribution. {fig3_8.eps} 

 ® 
M (s) may di�er greatly from "2 = 15= But one can readily calculate the probability of finding 15 

a much larger or smaller  value,  and employ it to help evaluate the  possibility that one  has used  

an incorrect model. 

Visual tests for randomness of residuals have obvious limitations, and elaborate statistical 

tests in addition to the comparison with "2 exist to help determine objectively whether one 

should accept or reject the hypothesis that no significant structure remains in a sequence of 

numbers. Books on regression analysis31 should be consulted for general methodologies. As an 

indication of what can be done, figure 2.8 shows the “sample autocorrelation,” 

1 PP 3|� | 
ql ̃l=1!̃qq(� ) =  P ˜ ql+� 

> (2.106) {autocorr1} 
1 PP 2qP l=1 ˜l 

for the residuals of the fits shown in figs. 2=4> 2.6 is displayed. For white noise, D E 
!̃ (� ) = �0� > (2.107) {whitecovar} 

and deviations of the estimated !̃ (w) from Eq. (2.107) can be used in simple tests. The adequate 

fit (Fig. 2.6) produces an autocorrelation of the residuals indistinguishable from a delta function 

at the origin, while the inadequate fit, shows a great deal of structure which would lead to the 
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Figure 2.8: Autocorrelations of the estimated residuals in Figs. 2.4 (dashed line), and 2.6 (solid). 

The latter is indistinguishable, by statistical test, from a delta function at the origin, 

and so with this test, the residuals are not distinguishable from white noise. {fig3_7.eps} 

conclusion that the residuals are too di�erent from white noise to be acceptable. (Not all cases 

are this obvious.). 

As already pointed out, the residuals of the least-squares fit cannot be expected to be pre-

cisely white noise. Because there are P -relationships among the parameters of the problem 

(P -equations), and the number of x̃ elements determined is Q> there are P � Q-degrees of 

freedom in the determination of ñ and structures are  imposed upon them.  The failure, for  this  

reason, of ñ strictly to be white noise, is generally only an issue in practice when P �Q becomes 

small compared to P=32 

2.4.2 Weighted and Tapered Least-Squares 

The least-squares solution (2.96)—(2.97) was derived by minimizing the objective function (2.90), 

in  which each residual element  is  given equal  weight. An important feature of least-squares is 

that we can give whatever emphasis we please to minimizing individual equation residuals, for 

example, by introducing an objective function, 

X 
2{33011} M = Z 31 ql > (2.108) ll 

l 

where Zll are any numbers desired. The choice Zll = 1> as used above, might be reasonable, 

but it is clearly an arbitrary one which without further justification does not produce a solution 

with any special claim to significance. In the least-squares context, we are free to make any 

other reasonable choice, including demanding that some residuals should be much smaller than 

others–perhaps just to see if it is possible. 

A general formalism is obtained by defining a diagonal weight matrix, Z = diag(Zll). Divide 
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each equation by 
s
Zll, 

{33012} Z 3W@2 
X 
Hlm {m +Z 3W@2 

ql =Z 3W@2|l> (2.109) ll ll ll 
l 

or 
0 0E0 x + n = y 

(2.110) {33013} 
E0 =W3W@2 y 0 =W3W@2E> n 0 =W3W@2 n> y 

where we used the fact that the square root of a diagonal matrix is the diagonal matrix of 

element-by-element square roots. Such a matrix is its own transpose. The operation in (2.109) 

or (2.110) is usually called “row-scaling” because it operates on the rows of E (as well as on n, 

y). 

For the new equations (2.110), the objective function, 

0 W (y 0M = n 0W n = (y 0 E0 x) E0 x) (2.111) � � 

W W = n W31 n = (y � Ex) W31(y � Ex)> 

weights the residuals as desired. If, for some reason, W is non-diagonal, but symmetric and 

positive-definite, then it has a Cholesky decomposition, (see P. 38) and, 

W =WW@2W1@2 > 

and (2.110) remains valid more generally.


The values ˜ n, minimizing (2.111) are,
x, ˜

˜ 0 x = (E0W E0)31E0W y = (EW W31E)31EW W31 y> 
(2.112) {33015} £ ¤

n =WW@2 0˜ n = I E(EW W31E)31EW W31 y>� 

C{{ = (E
W W31E)31EW W31RqqW

31E(EW W31E)31 = (2.113) {33016} 

Uniform diagonal weights are clearly a special case. The rationale for choosing di�ering diagonal 

weights, or a non-diagonal W> is probably not very obvious to the reader. Often one chooses 

W = Rqq = {hqlqm i}, that is, the weight matrix is chosen to be the expected second moment 

matrix of the residuals. Then 
 ®

0 0W n n = I> 
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and Eq. (2.113) simplifies to 

C{{ = (E
W R31E)31 = (2.114) {33017}qq 

In this special case, the weighting (2.110) has a ready interpretation: The equations (and hence 

the residuals) are rotated and stretched so that in the new coordinate system of ql
0 , the  covari-

ances are all diagonal and the variances are all unity. Under these circumstances, an objective 

function X 
M = q 02 

l 
l 

as used in the original form of least-squares (Eq. (2.90)) is a reasonable choice. 

Consider the system 

{1 + {2 + q1 = 1  

{1 � {2 + q2 = 2  

{1 � 2{2 + q3 = 4= 


 ® 
q2 = �2> the least-squares solution is x̃ =[2=0> 0=5]W 
lThen if hqli = 0> = Now suppose that


<
AAAAAA

;
AAAAAA 1 0=99 0=98

?
 @

A
AAAAA

hqlqm i = =
0=99 1 0=99 

0=98 0=99 4 

A
AAAAA >= 

Then from Eq. (2.112), x̃ = [1=51> 0=48]W = Calculation of the two di�erent solution uncertainties�
is left to the reader. 

But we emphasize that this choice of W is a very special one and has confused many users 

of inverse methods. To emphasize again: Least-squares is an approximation procedure in which 

W is a set of weights wholly at the disposal of the investigator; setting W = Rqq is a special 

case whose significance is best understood after we examine a di�erent, statistical, estimation 

procedure. 

Whether the equations are scaled or not, the previous limitations of the simple least-squares 

solutions remain. In particular, we still have the problem that the solution may produce elements 

in ˜ ˜x, n, whose relative values are not in accord with expected or reasonable behavior and 

the solution uncertainty or variances could be unusably large, as the solution is determined, 

mechanically, and automatically, from combinations such as (EW W31E)31 . Operators like these 

are neither controllable nor very easy to understand; if any of the the matrices is singular, they 

will not even exist. 
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x, n, C{{ could be It was long ago recognized that some control over the magnitudes of ˜ ˜

obtained in the simple least-squares context by modifying the objective function (2.108) to have 

an additional term: 

M 0 = n W W31 n + � 2 x W x (2.115) 

= (y �Ex)W W31(y �Ex) + � 2 x W x> (2.116) 

in which �2 is a positive constant. 

If the minimum of (2.115) is sought by setting the derivatives with respect to x to zero, we 

obtain, 

¡ ¢31 
˜ 2x= EW W31E+� I EW W31 y (2.117) 

n=y �E˜˜ x (2.118) 

C{{ = (2.119) ¡ ¢31 ¡ ¢312 2EW W31E+� I EW W31RqqW
31E EW W31E+� I = 

xk2 $ 0, ˜By letting �2 $ 0, the solution 2.112, 2.113 is recovered, and if �2 , k˜ n $ y;$ 4
�2 is called a “trade-o� parameter,” because it trades the magnitude of ˜ n. By  

x. The expected value of ˜

x against that of ˜

varying the size of �2 we gain some influence over the norm of the residuals relative to that of 

˜ x is now, £ ¤
h˜ 2xi = EW W31E + � I

31 
EW W31 y0 = (2.120) {33020} 

If the true solution is believed to be (2.101), then this new solution is biassed. But the variance 

of x̃ has been reduced, (2.119), by introduction of �2 A 0–that is, the acceptance of a bias 

reduces the variance, possibly very greatly. Eqs. (2.117-2.118) are sometimes known as the 

“tapered least-squares” solution, a label whose implication becomes clear later. Cqq, which  is  

not displayed, is readily found by direct computation as in Eq. (2.104). 

The most basic, and commonly seen form of this solution assumes W = Rqq = I> and then, 

˜ 2x = EW E+� I 
31 
EW y (2.121) ¡

¡
¢
¢

¡ ¢312C{{ = EW E+� 2I 
31 
EW E EW E+� I > (2.122) 
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a special case. 

A physical motivation for the modified objective function (2.115) is obtained by noticing 

that a preference for a bounded kxk is easily produced by adding an equation set, x + n1 = 0> 

so that the combined set is, 

{combined1} Ex + n = y (2.123) 

{combined2} x + n1 = 0 (2.124) 

or 

E1x + n2 = y2 ;
AA?
E 

{33021} E1 =


< 
AA@ 

AA>

>
 W W n2 = [ W �2 W ] > y2 = [yW 0W ] > (2.125)n n1AA=
�
2I 

and in which  �2 expresses a preference for fitting the first or second sets more closely. Then M in 

Eq. (2.115) becomes the natural objective function to use. A preference that x � x0 is readily 

imposed instead, with an obvious change in (2.115) or (2.124). 

Note the important points, to be shown later, that the matrix inverses in Eqs. (2.117-2.118) 

will always exist, as long as �2 A 0, and that the expressions remain valid even if P ? Q . 

Tapered least-squares produces some control over the sum of squares of the relative norms of x̃, 

˜ {n, but still does not produce control over the individual elements ˜l. 

To gain some of that control, we can further generalize the objective function by introducing 

another non-singular Q × Q weight matrix, S (which is usually symmetric) and, 

WM = n W W31 n + x S31 x (2.126) 

W= (y � Ex)W W31(y � Ex) + x S31 x > (2.127) 

for which Eq. (2.115) is a special case. Setting the derivatives with respect to x to zero results 

in, 

¡ ¢31 
x̃= EW W31E + S31 EW W31 y> (2.128) 

n=y � E˜˜ x> (2.129) 

C{{ = (2.130) ¡ ¢31 ¡ ¢31 
EW W31E + S31 EW W31RqqW

31E EW W31E + S31 > 
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and Eqs. (2.117-2.119) are a special case, with S31 = �2I= C{{ simplifies if Rqq = W= 

Suppose S> W are positive definite and symmetric and thus have Cholesky decompositions. 

Then we can employ both matrices directly on the equations, Ex + n = y> 

W3W@2ES3W@2SW@2 x + W3W@2 n=W3W@2 y (2.131) 

0 0 0E0 x +n =y (2.132) 

E0 =W3W@2 0 = S3W@2 0 = W3W@2ESW@2> x x> n 0 = W3W@2 n> y y (2.133) 

The use of S in this way is “column scaling” because it weights the columns of E. With  Eqs.  

(2.132) the obvious objective function is, 

0 0W 0M = n 0W n + x x > (2.134) {33027} 

which is identical to Eq. (2.126) in the original variables, and the solution must be that in Eqs. 

(2.128-2.130). 

Like W, one is completely free to choose S as one pleases. A common example is to write, 

where F is Q ×Q , 

S = FW F 
<
AAAAAAAAAA

;
AAAAAAAAAA

1 1 0  · · ·  0�

?0 1  
2 

� @
AAAAAAAAAA

0 

. . . . . . . . . . . . . . . 

1 (2.135)· · ·  {33025} 
F = � >A
AAAAAAAAA >=0 · · ·  · · ·  0 1  

2 P 
l({l � {l+1)2 , which can be regarded as a “smoothest”whose e�ect is to minimize a term �

solution, and using �2 to trade smoothness against the size of kñk2, �F is obtained from the 

Cholesky decomposition of S. 

By invoking the matrix inversion lemma, an alternative form for Eqs. (2=128 � 2=130) is 

found, 

¡ ¢31 
x̃ = SEW ESEW +W y> (2.136) 

n = y � E˜˜ x> (2.137) ¡ ¢ ¡ ¢31 
C{{ = SEW ESEW +W 

31 
Rqq ESE

W +W ES= (2.138) 
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A choice of which form to use is sometimes made on the basis of the dimensions of the matrices 

being inverted. Note again that W = Rqq is a special case. 

So far, all of this is conventional. But we have made a special point of displaying explicitly not 

x, but those of the residuals, ˜only the elements ˜ n. Notice that although we have considered only 

the formally over-determined system, P A Q , we  always determine not only the Q�elements 
of ˜ ˜x, but also the P -elements of n, for a total of P + Q values–extracted from the P -

ql forces changes in ˜equations. It is apparent that any change in any element ˜ x. In  this  view,  

to which we adhere, systems of equations involving observations always contain more unknowns 

than equations. Another way to make the point is to re-write Eqs. (2.88) without distinction 

between x>n as, 

E1�= y> (2.139) 

E1 = {E> IP } > � 
W =[x>n]W = (2.140) 

A combined weight matrix,
 ;
AA?
S 0 


<
AA@ 

AA>

> (2.141)S1 =
AA=
0 W 


would be used, and any distinction between the x>n solution elements is suppressed. Eqs. (2=139) 

are a formally underdetermined system, derived from the formally over-determined observed one. 

This identity leads us to the problem of formal underdetermination in the next Section. 

In general with least-squares problems, the solution we seek can be regarded as any of the 

following equivalents: 

x> ˜1. The  ̃ n satisfying 

Ex+ n = y= (2.142) 

2. x> ˜˜ n satisfying the normal equations arising from M (Eq. 2.126). 

3. x> ˜˜ n producing the minimum of M in Eq. (2.126) 

The point of this list lies with item 3: algorithms exist to find minima of functions by 

deterministic methods (“go downhill” from an initial guess)33 , or stochastic search methods 

(Monte Carlo) or even, conceivably, through a shrewd guess by the investigator. If an acceptable 

minimum of M is found, by whatever means, it is an acceptable solution (subject to further 

testing, and the possibility that there is more than one such solution). Search methods become 

essential for the nonlinear problems taken up later. 
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Underdetermined Systems and Lagrange Multipliers 

What does one do when the number, P> of equations is less than the number, Q> of unknowns 

and no more observations are possible? We have seen that the claim that a problem involving 

observations is ever overdetermined is misleading–because each equation or observation always 

has a noise unknown, but to motivate some of what follows, it is helpful to first pursue a 

conventional approach. 

One often attempts when P ?  Q  to reduce the number of unknowns so that the formal 

overdeterminism is restored. Such a parameter reduction procedure may be sensible; but there 

are pitfalls. Let sl (w), 0 � l be a set of polynomials, e.g. Chebyschev or Laguerre, etc. Consider 

data produced from the formula, 

| (w) = 1 + dP sP (w) + q(w) > (2.143) {33030} 

which might be deduced by fitting a parameter set [d0> = = = > dP ] and finding d̃P = If there are 

fewer than P observations, an attempt to fit with fewer parameters, 

T X 
| = dm sm (w) > T  ?  P  (2.144) {33031} 

m=0 

may give a good, even perfect fit; but it would be incorrect. The reduction in model parameters 

in such a case biases the result, perhaps hopelessly so. One is better o� retaining the underde-

termined system and making inferences concerning the possible values of dl rather than using 

the form (2.144), in which any possibility of learning something about dP has been eliminated. 

Example Consider a tracer problem, not unlike those encountered in medicine, hydrology, 

oceanography, etc. A box (Fig. 1.2) is observed to contain a steady tracer concentration F0, and  

is believed fed at the rates M1> M2 from two reservoirs each with tracer concentration of F1> F2 

respectively. One seeks to determine M1> M2. Tracer balance is, 

M1F1 + M2F2 � M0F0> 

where M0 is rate at which fluid is removed. Mass balance then requires 

M1 + M2 = M0= 

Evidently, there are but two equations in three unknowns (and a perfectly good solution would 

be M1 = M2 = M3 = 0);  but as many have noticed, we can nonetheless, determine the relative 

fraction of the fluid coming from each reservoir. Divide both equations through by M0> 

M1 M2 

M0 M0 
F1 + F2 = F0 
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M1 M2 
+ = 1  

M0 M0 

producing two equations in two unknowns„ M1@M0> M2@M0> which has  a unique stable solution  

(noise is being ignored). Many examples can be given of such calculations in the literature– 

determining the flux ratios–apparently definitively. But suppose the investigator is suspicious 

e:reservoir1} that there might be a third reservoir with tracer concentration F3= Then the equations become 

M1 M2 M3
F1 + F2 + F3 = F0

M0 M0 M0 

M1 M2 M3 
+ + = 1> 

M0 M0 M0 

now underdetermined with two equations in three unknowns. If it is obvious that no such third 

reservoir exists, then the reduction to two equations in two unknowns is the right thing to do. But 

if there is even a suspicion of a third (or more) reservoir, one should solve these equations with 

one of the methods we will develop–permitting construction and understanding of all possible 

solutions. 

In general terms, parameter reduction can lead to model errors, that is, bias errors, which 

can produce wholly illusory results.34 A common situation particularly in problems involving 

tracer movements in groundwater, ocean, or atmosphere, fitting a one or two-dimensional model 

to data which represent a fully three-dimensional field. The result may be apparently pleasing, 

but possibly completely erroneous. (See Chapter 4.) 

A general approach to solving underdetermined problems is to render the answer apparently 

unique by minimizing an objective function, subject to satisfaction of the linear constraints. 

To see how this can work, suppose that Ax = b> exactly and formally underdetermined, P ?  

Q , and seek the solution which exactly satisfies the equations and simultaneously renders an 

objective function, M = xW x> as small as possible. Direct minimization of M leads to, 

CM W 

{33033} gM = gx = 2x W gx = 0> (2.145) 
Cx 

but unlike the case in Eq. (2.92), the coe!cients of the individual g{l can no longer be separately 

set to zero (i.e.,  x = 0  is an incorrect solution) because the g{l no longer vary independently, 

but are restricted to values satisfying Ax = b= One approach is to use the known dependencies 

to reduce the problem to a new one in which the di�erentials are independent. For example, 
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suppose that there are general functional relationships 

6565 

9999997


{1 

.
.
.


::::::8


=


9999997


�1({P +1> = = = > {Q ) 

.
.
.


::::::8


= 

{P �P ({P +1> = = = > {Q ) 

Then the first P elements of {l may be eliminated, and the objective function becomes, 

¤ £ 

6

£ ¤
M = �1({P +1> = = = > {Q )

2 + · · ·+ �P ({P +1> = = = > {Q ) + {22
P +1 + · · ·+ {

2 >Q 

5 

in which the remaining {l, P + 1 � l � Q are independently varying. In the present case, one 

can choose (arbitrarily) the first P unknowns, q =[{l], and define the last Q � P unknowns 

r = [{l] � Q> and rewrite the equations as > Q  � P + 1 l� 

½ ¾ 

A1 A2 

997

q
::8
= b (2.146) 

r 

where A1 is P ×P> A2 is P × (Q � P)= Then solving the first set for q> 

q = b (2.147) � A2r 

q can be eliminated from M leaving and unconstrained minimzation problem in the independent 

variables, r= If A31 does not exist, one can try any other subset of the {l to eliminate until a 1 

suitable group is found. This approach is completely correct, but finding an explicit solution for 

O elements of x in terms of the remaining ones may be di!cult or inconvenient. 

Example Solve 

{1 � {2 + {3 = 1> 

1 +{
2for the solution of minimum norm. The objective function is M = {2 2 +{

2= With one equation, 3 

one variable can be eliminated. Choosing, arbitrarily, {1 = 1 + {2 � {3> M  = (1 + {2 � {3)
2 + 

2 + {
2{2 3= {2> {3 are now independent variables, and the corresponding derivatives of M can be 

independently set to zero. 

Example 

A somewhat more interesting example involves two equations in three unknowns: 

{1 + {2 + {3 = 1> 

{1 � {2 + {3 = 2> 
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and we choose to find a solution minimizing, 

1 + {
2M = {2 2 + {

2 = 3 

Solving for two unknowns {1> {2 from 

{1 + {2 = 1� {3> 

{1 � {2 = 2� {3> 

produces {2 = �1@2> {1 = 3@2� {3 and then, 

M = (3@2� {3)
2 + 1@4 + {2 = 3 

3whose minimum with respect to {3 (the only remaining variable) is , {3 = 4 > and the full solution 

is 
3 1 3 

{1 = > {2 = � 
2
> {3 = = 

4 4 

Lagrange Multipliers and Adjoints 

When it is inconvenient to find such an explicit representation by eliminating some variables 

in favor of others, a standard procedure for finding the constrained minimum is to introduce a 

new vector “Lagrange multiplier,” µ, of  P -unknown elements, to make a new objective function, 

M 0 = M � 2µ W (Ax � b) (2.148) 

W = x x 2µ W (Ax � b)>� 

and ask for its stationary point–treating both µ and x as independently varying unknowns. 

The numerical 2 is introduced solely for notational tidiness. 

The rationale for this procedure is straightforward.35 Consider first, a very simple example, 

of one equation in two unknowns, 

{lagrange1} {1 � {2 = 1> (2.149) 

and we seek the minimum norm solution, 

1 + {
2M = {2 2> (2.150) 

subject to Eq. (2.149). The di�erential, 

gM = 2{1g{1 + 2{2g{2 = 0> (2.151) 

leads to the unacceptable solution {1 = {2 = 0> if we should incorrectly set the coe!cients of 

g{1> g{2 to zero. Consider instead a modified objective function 

M 0 = M � 2� ({1 � {2 � 1) > (2.152) 
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where � is unknown. The di�erential of M 0 is 

{lagrange2} gM 0 = 2{1g{1 + 2{2g{2 � 2� (g{1 � g{2)� 2 ({1 � {2 � 1) g� = 0> (2.153) 

or 

gM 0@2 = g{1 ({1 � �) + g{2 ({2 + �)� g� ({1 � {2 � 1) = 0= (2.154) 

We are free to choose, {1 = � which kills o� the di�erential involving g{1= But then only 

the di�erentials g{2> g�  remain; as they can vary independently, their coe!cients must vanish 

separately, and we have, 

{2 = �� (2.155) 

{1 � {2 = 1= (2.156) 

Note that the second of these recovers the original equation. Substituting {1 = �, we  have  

2� = 1> or � = 1@2> and {1 = 1@2> {2 = �1@2> M  = 0=5> and one can confirm that this is indeed 

the “constrained” minimum. (A “stationary” value of M 0 was found, not an absolute minimum 

value, because M 0 is no longer necessarily positive; it has a saddle point, which we have found.) 

Before writing out the general case, note the following question: Suppose the constraint 

equation was changed to, 

{1 � {2 = �= (2.157) {lineqs2} 

How much would M change as � is varied? With variable �> (2.153) becomes, 

gM 0 = 2g{1 ({1 � �) + 2g{2 ({2 + �)� 2g� ({1 � {2 � �) + 2�g�= (2.158) 

But the first three terms on the right vanish, and hence, 

CM 0 CM 
C� 

= 2� = 
C� 
> (2.159) {sensiv1} 

because M = M 0 at the stationary point (from (2.157). Thus 2 � is the sensitivity of the objective 

function M to perturbations in the right-hand side of the constraint equation. If � is changed 

from 1, to 1.2, it can be confirmed that the approximate change in the value of M is 0.2 as one 

deduces immediately from Eq. (2.159). 

We now develop this method generally. Reverting to Eq. (2.148), 
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gM 0 = gM � 2µ W Agx�2 (Ax � b)W gµ 

=

µ 
CM 
C{1 
� 2µ W a1

¶ 

g{1 +

µ 
CM 
C{2 
� 2µ W a2

¶ 

g{2 + · · ·+

µ 
CM 
C{Q 

� 2µ W aQ 

¶ 

g{Q (2.160) 

�2 (Ax � b)W gµ 

=
¡
2{1 � 2µ W a1 

¢ 
g{1 +

¡
2{2 � 2µ W a2 

¢ 
g{2 + === +

¡
2{Q � 2µ W aQ 

¢ 
g{Q 

�2 (Ax � b)W gµ = 0  

(2.161) {lagrange3} 

Here the al are the corresponding columns of A= The coe!cients of the first P �di�erentials 
g{l can be set to zero by assigning, {l = µ W al, leaving  Q � P di�erentials g{l whose coe!cients 

must separately vanish (hence they all vanish, but for two separate reasons), plus the coe!cient 

of the P � g�l which must also vanish separately. This recipe produces, from Eq. (2.161), 

{33036a} 1 
2 
CM 0 

Cx 
= x � AW 

µ = 0  (2.162) 

{33036b} 1 
2 
CM 0 

Cµ 
= Ax � b = 0 > (2.163) 

where the first equation set is the result of the vanishing of the coe!cients of g{l and the second, 

which is the original set of equations, arises from the vanishing of the coe!cients of the g�l = The 

convenience of being able to treat all the {l as independently varying is o�set by the increase in 

problem dimensions by the introduction of the P �unknown �l. The first set is Q �equations 
for µ in terms of x> and the second set is P �equations in x in terms of y= Taken together, these 

are P +Q equations in P +Q unknowns, and hence just-determined no matter what the ratio 

of P to Q= 

Eq. (2.162) is, 

{33037} AW 
µ = x (2.164) 

and substituting for x into (2.163), 

AAW 
µ = b > 

{33038} µ̃ = (AAW )31b > (2.165) 

assuming the inverse exists, and 

{33039a} x̃ = AW (AAW )31b (2.166) 

{33039b} ñ = 0 (2.167) 

{33039c} C{{ = 0= (2.168) 

(C{{ = 0 because formally  we estimate  ̃n = 0). 
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Eqs.(2.166-2.168) are the classical solution of minimum norm of x, satisfying the constraints 

exactly while minimizing the solution length. That a minimum is achieved can be verified by 

evaluating the second derivatives of M 0 at the solution point. The minimum occurs at a saddle 

point in x, µ space36 and where the term proportional to µ necessarily vanishes. The operator 

AW (AAW )31 is sometimes called a “Moore-Penrose inverse.” 

Eqs. (2.164) for µ in terms of x involves the coe!cient matrix AW . An intimate connection 

exists between matrix transposes and adjoints of di�erential equations (see the Appendix to 

this Chapter), and thus µ is sometimes called the “adjoint solution,” with AW defining the 

“adjoint model”37 in Eq.(2.164), and x acting as a forcing term. The original Eqs. Ax = b> 

were assumed formally underdetermined, and thus the adjoint model equations in (2.164) are 

necessarily formally overdetermined. 

Example 

Now do the last example using matrix vector notation defining, 

;
AA?


< 
AA@ 

AA>

> b =


6
5


1 1 1 
 997

1
::8
A =
AA=
1 1 1 
 2�


M = x W x 2µ W (Ax � b)� 

g ¡ ¢
W 

gx 
x x � 2µ W (Ax � b) = 2x 2AW 

µ = 0� 

Ax= b 

¡ ¢31 
x = AW AAW b 

x = [3@4> 1@2> 3@4]W �

Example 

Write out M 0 : 

M 0 = {2 2 + {
2 

1 + {
2

3 � 2�1 ({1 + {2 + {3 � 1)� 2�2 ({1 � {2 + {3 � 2) 

gM 0 = (2{1 � 2�1 � 2�2) g{1 + (2{2 � 2�1 + 2�2) g{2 + (2{3 � 2�1 � 2�2) g{3 

+(�2{1 � 2{2 + 2� 2{3) g�1 + (�2{1 + 2{2 � 2{3 + 4) g�2 

= 0  
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Set {1 = �1 + �2>{2 = �1 � �2 so that the first two terms vanish, and set the coe!cients of the 

di�erentials of the remaining, independent terms to zero, 

gM 0 

g{1 
= 2{1 � 2�1 � 2�2 = 0> 

gM 0 

g{2 
= 2{2 � 2�1 + 2�2 = 0> 

gM 0 

g{3 
= 2{3 � 2�1 � 2�2 = 0> 

gM 0 
= �2{1 � 2{2 + 2� 2{3 = 0> 

g�1


gM 0

= �2{1 + 2{2 � 2{3 + 4 = 0= 

g�2 

Then, 

gM 0 = (2{3 � 2�1 � 2�2) g{3 + (�2{1 � 2{2 + 2� 2{3) g�1 + (�2{1 + 2{2 � 2{3 + 4) g�2 = 0> 

or 

{1 = �1 + �2> 

{2 = �1 � �2 

= 0{3 � �1 � �2 

�{1 � {2 + 1� {3 = 0  

�{1 + {2 � {3 + 2  =  0  

That is, 

x = AW 
µ 

Ax = b 

6565or,
 ;
AA?


< 
AA@ 

AA>


I AW 997

x
::8
=


997

0
::8


�


AA=
A 0 µ b 

But in this particular case, the first set can be solved for x = AW 
µ, 

�

1@8 5@8


¸W 

>

¢31 

AAW = 
¡

b =µ 
6
5

�
1 

8 ::8


¸W 

= AW x =

5 
8 

3@4 1@2 3@4�
997 
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Suppose instead we wanted to minimize, 

2M = ({1 � {2)
2 + ({2 � {3) = x W FW Fx 

where ;
AA?


< 
AA@ 

AA>


1 1 0�
F = AA=
0 1 1�

<
AAAAAA

;
AAAAAA

;
AA? 

< 
AA@ 

AA>


;
AA?


< 
AA@ 

AA>


W 1 1 0�
?
 @

A
AAAAA

1 1 0� 1 1 0�
FW F = = =1 2 1� �A
A A
A=


AAAAAA
= 0 1 1� 0 1 1�

>= 0 1 1�

Such an objective function might be used to find a “smooth” solution. One confirms,


65<
AAAAAA

;
AAAAAA 9999997


1 1 0  {1 

{2 

::::::8

1 � 2{1{2 + 2{

2 = {2 2 � 2{2{3 + {
2 
3 

�

�
 ?
 @

A
AAAAA

{1 {2 {3 

¸ 

1 2 1�A
AAAAA

�


>= 0 1 1  {3�
2= ({1 � {2)

2 + ({2 � {3) = 

The stationary point of, 

M 0 = x W FW Fx 2µ W (Ax � b) >� 

leads to 

FW Fx = AW 
µ 

Ax = b 

But, ¡ ¢
x 6= FW F 

31 
AW 
µ 

because there is no inverse (guaranteed). But the coupled set 

6565;
AA?


< 
AA@ 

AA>


FW F AW 997

x
::8
=


997

0
::8


�


AA=
 A 0 µ b 

does have a solution. 
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The physical interpretation of µ can be obtained as above by considering the way in which 

M would vary with infinitesimal changes in b= As in the special case done above, M = M 0 at the 

stationary point. Hence, 

WgM 0 = gM � 2µ Agx�2 (Ax b)W gµ + 2µ W gb = 0> (2.169) � 

or, since the first three terms on the right vanish at the stationary point, 

CM 0 CM 
= = 2µ= (2.170) 

Cb Cb 

Thus, as inferred above, the Lagrange multipliers are the sensitivity of M> at the stationary point, 

to perturbations in the parameters y= This conclusion leads, in Chapter 4, to the scrutiny of 

the Lagrange multipliers as a means of understanding the sensitivity of models and the flow of 

information within them. 

Now revert to Ex + n = y, that is, equations containing noise. If these are first column 

scaled using S3W@2, Eqs. (2.166)—(2.168) are in the primed variables, and the solution in the 

original variables is, 

˜{33041a} x = SEW (ESEW )31 y (2.171) 

˜{33041b} n = 0 (2.172) 

{33041c} C{{ = 0> (2.173) 

and the result depends directly upon S. If a row scaling with W3W@2 is used, it is readily shown 

agerowscale1} that W disappears from the solution and has no e�ect on it (see page 111, below). 

Eqs. (2.171)—(2.173) are a solution, but there is the same fatal defect as in Eq. (2.172)– 

˜ xk is again uncontrolled, n = 0 is usually unacceptable when y are observations. Furthermore, k˜

and ESEW may not have an inverse. 

n must be regarded as fully an element of the solution, as much as x. Equations representing 

observations can always be written as in (2.139), and can be solved exactly. Therefore, we now 

use a modified objective function, allowing for general S> W> 

{33042} M = x W S31 x + n W W31 n � 2µ W (Ex + n � y) > (2.174) 

with both x, n appearing in the objective function. Setting the derivatives of (2.174) with 

respect to x, n, µ to zero, and solving the resulting normal equations produces, 
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¡ ¢
x̃ = SEW ESEW +W 

31 
y (2.175) 

n = y � E˜˜ x (2.176) ¡ ¢ ¡ ¢31 
C{{ = SEW ESEW +I 

31 
Rqq ESE

W +I ES (2.177) 

µ= W31 n (2.178) ˜ ˜

which are identical to Eqs. (2.136-2.138) or to the alternate from Eq.(2=128 � 2=130) derived 

from an objective function without Lagrange multipliers. 

Eqs. (2.136-2.138) and (2.175-2.177) result from two very di�erent appearing objective func-

tions–one in which the equations are imposed in the mean-square, and one in which they are 

imposed exactly, using Lagrange multipliers. Constraints in the mean-square will be termed 

“soft”, and those imposed exactly are “hard.”38 The distinction is, however, largely illusory: 

although (2.88) are being imposed exactly, it is only the presence of the error term, n, which  

permits the equations to be written as equalities and thus as hard constraints. The hard and 

soft constraints here produce an identical solution. In some (rare) circumstances, which we will 

discuss briefly below, one may wish to impose exact constraints upon the elements of {̃l. The  

solution (2.166)—(2.168) was derived from the noise-free hard constraint, Ax = b, but we ended 

by rejecting it as generally inapplicable. 

Once again, n is only by convention discussed separately from x, and is fully a part of the 

solution. The combined form (2.139), which literally treats x, n as the solution, are imposed 

through a hard constraint on the objective function, 

M = � W � � 2µ W (E1� � y) > (2.179) {33045} 

where � = [S3W@2 
x> W3W@2 n]W > which is Eq. (2.174). (There are numerical advantages, however, 

in working with objects in two spaces of dimensions P and Q , rather than a single space of 

dimension P + Q .) 

2.4.4 Interpretation of Discrete Adjoints 

When the operators are matrices, as they are in discrete formulations, then the adjoint is just 

the transposed matrix. Sometimes the adjoint has a simple physical interpretation. Suppose, 

e.g., that scalar | was calculated from a sum, ½ ¾ 

| = Ax> A = 1 1  = 1 1  = (2.180) {sumoper1} 
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Then the adjoint operator applied to | is evidently, ½ ¾W 

r = AW | = 1 1 1 = 1 | = x (2.181) 

Thus the adjoint operator “sprays” the average back out onto the originating vector, and might 

be thought of as an inverse operator. 

A more interesting case is a first-di�erence forward operator, 
<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

1 1�

1 1�

1 1�?
 @
A
AAAAAAAAAAAAAAAAA

A = >
 (2.182)A
AAAAAAAAAAAAAAAAA

= =  =  

1 1�

1�=
 >


that is, 

|l = {l+1 � {l> (2.183) 

(with the exception of the last element, |Q = �{Q )= 

Then its adjoint is,
 <
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

1�

1 1�

1 1�?
 @
A
AAAAAAAAAAAAAAAAA

AW = (2.184)A
AAAAAAAAAAAAAAAAA

= =  

1 1�

1 1�

AW 

=
 >


that is a first-di�erence backward operator with z = y> producing }l = |l31 � |l with again, 

the exception of the end point, now }1= 

In general, the transpose matrix, or adjoint operator is not simply interpretable as an in-

verse operation as in the summation/spray-out case might have suggested.39 A more general 

understanding of the relationship between adjoints and inverses will be obtained in the next 

Section. 
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2.5 The Singular Vector Expansion 

Least-squares is a very powerful, very useful method for finding solutions of linear simultaneous 

equations of any dimensionality and one might wonder why it is necessary to discuss any other 

form of solution. But even in the simplest form of least-squares, the solution is dependent upon 

the inverses of EW E, or  EEW . In practice, their existence cannot be guaranteed, and we need 

to understand what that means, the extent to which solutions can be found when the inverses 

do not exist and the e�ect of introducing weight matrices W, S. This problem is intimately 

related to the issue of controlling solution and residual norms. Second, the relationship between 

the equations and the solutions is somewhat impenetrable, in the sense that structures in the 

solutions are not easily relatable to particular elements of the data |l. For many purposes, 

particularly physical insight, understanding the structure of the solution is essential. We will 

return to examine the least-squares solutions using some extra machinery. 

2.5.1 Simple Vector Expansions 

Consider again the elementary problem (2.1) of representing an O—dimensional vector f as a sum 

of a complete set of O—orthonormal vectors gl, 1 � l � O, gW 
l gm = �lm . Without error, 

O X 
f = dm gm > dm = g W 

m f = (2.185) {34001} 
m=1 

But if for some reason, only the first N coe!cients dm are known, we can only approximate f by 

its first N terms: 

N X 
f̃ = em gm 

m=1 (2.186) {34002} 

= f + �f1> 

and there is an error, �f1. From the orthogonality of the gl, it follows that �f1 will have minimum 

o2 norm only if it is orthogonal to the N vectors retained in the approximation, and then only 

if em = dm as given by (2.185). The only way the error could be reduced further is by increasing 

N. 

Define an O× N matrix, GN whose columns are the first N of the gm . Then  b = a = GW 
N f 

is the vector of coe!cients dm = gW 
m f , 1 � m � N, and the finite representation (2.186) is (one 

should write it out), 

f̃ =GN a =GN (G
W 
N f ) = (GN G

W 
N )f > a = {dl}> (2.187) {34003} 
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where the third equality follows from the associative properties of matrix multiplication. This 

expression shows that a representation of a vector in an incomplete orthonormal set produces 

a resulting approximation which is a simple linear combination of the elements of the correct 

values (i.e., a weighted average, or “filtered” version of them). Column l of GNGW produces N 

the weighted linear combination of the true elements of f which will appear as ĩl= 

Because the columns of GN are orthonormal, GW GN = IN , that  is,  the  N × N identity N


matrix; but GNGW 6 O
= IO unless N = O= (That GOGW = IO for N = O follows from the theorem N 

for square matrices that shows a left inverse is also a right inverse.) If N ?  O, GN is “semi-

orthogonal.” If N = O, it is “orthogonal”; in this case, G31 = GW 
O. If it is only semi-orthogonal, O 

GW is a left inverse, but not a right inverse. Any orthogonal matrix has the property that its N 

transpose is identical to its inverse. 

GNG
W is known as a “resolution matrix,” with a simple interpretation. Suppose the true N 

value of f were fm0 = [  0 0 0 = =  =  0 1 0 = 0 == 0 ]W , that is, a Kronecker delta �mm0 > with unity in element 

m0 and zero otherwise. Then the incomplete expansion (2.186) or (2.187) would not reproduce 

the delta function but, 

{34004} f̃m0 = GNG
W 
Nfm0 > (2.188) 

which is column m0 of GNGW 
N . Each column (or row) of the resolution matrix tells one what 

the corresponding form of the approximating vector would be, if its true form were a Kronecker 

delta. 

To form a Kronecker delta requires a complete set of vectors. An analogous elementary result 

of Fourier analysis shows that a Dirac delta function demands contributions from all frequencies 

to represent a narrow, very high pulse. Removal of some of the requisite vectors (sinusoids) 

produces peak broadening and sidelobes. Here, depending upon the precise structure of the gl, 

the broadening and sidelobes can be complicated. If one is lucky, the e�ect could be a simple 

broadening (schematically shown in figure 2.9) without distant sidelobes), leading to the tidy 

interpretation of the result as a local average of the true values, called “compact resolution.”40 

A resolution matrix has the property, 

{34005} trace(GNG
W 
N) =  N >  (2.189) 

which follows from noting that, ¡ ¢ 
trace GNG

W = trace(GW 
N NGN) = trace(IN) =  N= 

2.5.2 Square-Symmetric Problem. Eigenvalues/Eigenvectors 

Orthogonal vector expansions are particularly simple to use and interpret, but might seem 

irrelevant to dealing with simultaneous equations where neither the row nor column vectors of 
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Figure 2.9: Example of a row, m0> of a 10×10 resolution matrix, perhaps the fourth one, showing 

widely distributed averaging in forming fm0 (upper panel). Lower panel shows so-

called compact resolution, in which the solution e.g., is a readily interpreted local 

{fig3_9.eps} average of the true solution. Such situations are not common. 

the coe!cient matrix are so simply related. What we will show, however, is that we can always 

find sets of orthonormal vectors to greatly simplify the job of solving simultaneous equations. To 

do so, we digress to recall the basic elements of the “eigenvector/eigenvalue problem” mentioned 

in passing on P. 24. 

Consider a square, P × P matrix E and the simultaneous equations, 

Egl = �lgl> 1 l P >  (2.190) {34006} � � 

that is, the problem of finding a set of vectors gl whose dot products with the rows of E are 

proportional to themselves. Such vectors are “eigenvectors,” and the constants of proportion-

ality are the “eigenvalues.” Under special circumstances, the eigenvectors form an orthonormal 

spanning set: Textbooks show that if E is  square  and symmetric,  such a result is guaranteed. It  

is easy to see that if two �m > �n are distinct, then the corresponding eigenvectors are orthogonal: 

Egm = �m gm > (2.191) 

Egn = �n gn (2.192) 

WLeft multiply the first of these by gn > and the second by gW and subtract: m 

W W gn Egm � gm
W Egn = (�m � �n) gn gm = (2.193) 
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WBut because E = EW > the left-hand side vanishes, and hence gn gm by the assumption �m =6 �n. A  

similar construction proves that the �l are all real, and an elaboration shows that for coincident 

�l, the corresponding eigenvectors can always be made orthogonal. 

Example


To contrast with the above result, consider the non-symmetric, square matrix,


<
AAAAAA

;
AAAAAA 1 2 3 

?
 @

A
AAAAA

=
0 1 4 


0 0 1 


A
AAAAA=
 >


Solution to the eigenvector/eigenvalue problem produces �l = 1> and ul = [1> 0> 0]W > 1 l 3.� � 

The eigenvectors are not orthogonal, and are certainly not a spanning set. On the other hand, 

the eigenvector/eigenvalues of, 
<
AAAAAA

;
AAAAAA 1 1 2� �

1 2  1� �

1=5 2  2=5�

@
A
AAAAA>


6565 

? 

AAAAAA= 

65 

are,


9999997


�


�
 =


9999997


::::::8


> u3 =


9999997


0=72�

0=90


::::::8


0=29 + 0=47l


0=17 + 0=25l


::::::8


> u2 

0=29 0=47l� � 

>u1 = 0=17 0=25l� � 

0=19 + 0=61l 0=19 0=61l 0=14�


�m = [�1=07 + 1=74l> 1=07 � 1=74 l> 2=64]
�

(rounded) are not orthogonal, but are a spanning set. The complex eigenvalues/eigenvectors 

appear in complex conjugate pairs and in some contexts are called “principal oscillation patterns” 

(POPs). 

Suppose for the moment that we have the square, symmetric, special case, and recall how 

eigenvectors can be used to solve (2.16). By convention, the pairs (�l> gl) are  ordered in the  

sense of decreasing �l. If  some  �l are repeated, an arbitrary order choice is made. 

With an orthonormal, spanning set, both the known y and the unknown x can be written 
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as, 

P X 
{34007a} x = �lgl> �l = g W 

l x > (2.194) 
l=1 

P X 
{34007b} y = �lgl> �l = g W 

l y = (2.195) 
l=1 

By convention, y is known, and therefore �l can be regarded as given. If the �l could be found, 

x would be known. 

Substitute (2.194) into (2.16), 

P P X X 
E 
l=1 

�lgl = 
l=1 

¡
g W 
l y 
¢ 
gl> 

or, using the eigenvector property, 

(2.196) 

P P X X 

l=1 

�l�lgl = 
l 

¡
g W 
l y 
¢ 
gl= (2.197) {34008} 

But the expansion vectors are orthonormal and so 

�l�l = g W 
l y> (2.198) {34009a} 

�l = 
gW 
l y 
> (2.199) {34009b} 

�l 

x = 
P X gW 

l y 
gl = (2.200) {34009c} 

l=1 
�l 

Apart from an obvious di!culty if an eigenvalue vanishes, the problem is now completely solved. 

Define a diagonal matrix, �, with elements, �l, in descending numerical value, and the matrix 

G, whose columns are the corresponding gl in the same order, the solution to (2.16) can be 

written, from (2.194), (2.198)—(2.200) as 

� = �31GW y> (2.201) {34010a} 

x = G�31GW y (2.202) {34010b} 

where �31 = diag(1@�l). 

Vanishing eigenvalues, l = l0, cause trouble and must be considered. Let the corresponding 

eigenvectors be gl0 . Then any part of the solution which is proportional to such an eigenvector 

is “annihilated” by E, that  is,  gl0 is orthogonal to all the rows of E. Such a result means that 

there is no possibility that anything in y could provide any information about the coe!cient �l0 . 

If y corresponds to a set of observations (data), then E represents the connection (“mapping”) 
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between system unknowns and observations. The existence of zero eigenvalues shows that the 

act of observation of x removes certain structures in the solution which are then indeterminate. 

Vectors gl0 (and there may be many of them) are said to lie in the “nullspace” of E. Eigenvectors 

corresponding to non-zero eigenvalues lie in its “range.” The simplest example is given by the 

“observations,” 

{1 + {2 = 3 > 

{1 + {2 = 3 = 

Any structure in x such that {1 = �{2 is destroyed by this observation, and by inspection, the 

nullspace vector must be g2 = [1>�1]W @
s
2= (The purpose of showing the observation twice is to 

produce an E which is square.) 

Suppose there are N ? P  non-zero �l. Then  for  l A N, Eq. (2.198) is 

{34011} 0�l = gl
W y> N + 1 l P >  (2.203) � � 

and two cases must be distinguished. 

Case (1): 

{34012} gl
W y = 0 > N + 1 l P =  (2.204) � � 

We could then put �l = 0, N + 1 l P , and the solution can be written � � 

N X Wgl y˜{34013} x = gl> (2.205) 
�ll=1 

and Ex̃ = y, exactly. We have put a tilde over x because a solution of the form, 

N P X W Xgl y˜{34014} x = gl + �lgl > (2.206) 
�ll=1 l=N+1 

with the remaining �l taking on arbitrary values also satisfies the equations exactly. That is, 

the true value  of  x could contain structures proportional to the nullspace vectors of E, but the 

equations (2.16) neither require their presence, nor provide information necessary to determine 

their amplitudes. We thus have a situation with a “solution nullspace.” Define the matrix GN 

to be P × N, carrying only the first N of the gl, that is the range vectors, �N to be N × N 

with only the first N, non-zero eigenvalues, and the columns of QJ are the P � N nullspace 

vectors (it is P × (P � N)), then the solutions (2.205) and (2.206) are, 

˜ = GN �
31GW x N N y > (2.207) 

˜ = GN �
31GW x N y +QJ�J> (2.208) N 
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where �J is the vector of unknown nullspace coe!cients, respectively. Eq. (2.204) is often 

known as a “solvability condition.” The solution in (2.207), with no nullspace contribution will 

be called the “particular” solution. 

If G is written as a partitioned matrix, 

G = {GN QJ} > 

it follows from the column orthonormality that 

GGW = I =GN G
W 

JN +QJQ
W (2.209) {34016a} 

or 

J � NQJQ
W = I GN G

W = (2.210) {34016b} 

Vectors QJ span the nullspace of G= 

Case (2): 

gl y 6W = 0 > l A N + 1 > (2.211) {34017} 

for one or more of the nullspace vectors. In this case, Eq. (2.198) is the contradiction, 

0�l 6= 0> 

and Eq. (2.197) is actually, 

N P X X 
�l�lgl = (gl 

W y)gl> N ? P >  (2.212) {34018} 
l=1 l=1 

that is, with di�ering upper limits on the sums. Owing to the orthonormality of the gl, there  

is no choice of �l, 1 � l � N on the left which can match the last P � N terms on the right. 

Evidently there is no solution in the conventional sense unless (2.204) is satisfied, hence the 

name “solvability condition..” What is the best we might do? Define “best” to mean that the 

solution x̃ should be chosen such that, 

Ex̃ = ỹ> 

n = y � y, which we call the “residual,” should be as small as possible (in where the di�erence, ˜ ˜

the o2 norm). If this choice is made, then the orthogonality of the gl shows immediately that 

� �the best choice is still (2.199), 1 l N. No choice of nullspace vector coe!cients, nor any 

other value of the coe!cients of the range vectors, can reduce the norm of ñ. The best solution 

is then also (2.205) or (2.207). 

In this situation, we are no longer solving the equations (2.16), but rather are dealing with 

a set that could be written, 

Ex � y> (2.213) {34019} 
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where the demand is for a solution that is the “best possible,” in the sense just defined. Such 

statements of approximation are awkward, and it is more useful to always rewrite (2.213) as, 

Ex + n = y> (2.214) {34020} 

where n is the residual. If x̃ is given by (2.206) then, 

P X 
˜{34021} n = (gl

W y)gl> (2.215) 
l=N+1 

nW ˜ y is orthogonal to the residuals. by (2.212). Notice that ˜ y = 0 : ˜


Example Let


{1 + {2 = 1> 

{1 + {2 = 3= 

Then using �1 = 2> g1 = [1> 1]
W @
s
2> �2 = 0> g 2 = [1>�1]W @

s
2> one has x̃ = [1@2> 1@2]W 2 g1> 

y = [2> 2]W 2 g1> ˜˜ n = [�1> 1]W 2 g2= 

This outcome, where P -equations in P -unknowns were found in practice not to be able 

to determine some solution structures, is labeled “formally just-determined.” The expression 

“formally” alludes to the fact that the appearance of a just-determined system did not mean 

that the characterization was true in practice. One or more vanishing eigenvalues mean that 

neither the rows nor columns of E are spanning sets. 

Some decision has to be made about the coe!cients of the nullspace vectors in (2.208). The 

form could be used as it stands, regarding it at as the “general solution.” The analogy with the 

solution of di�erential equations should be apparent–typically, there is a particular solution 

and a homogeneous solution–here the nullspace vectors. When solving a di�erential equation, 

determination of the magnitude of the homogeneous solution requires additional information, 

often provided by boundary or initial conditions; here additional information is also necessary, 

but missing. 

Despite the presence of indeterminate elements in the solution, a great deal is known about 

them: They are proportional to the nullspace vectors. Depending upon the specific situation, 

we might conceivably be in a position to obtain more observations, and would seriously con-

sider observational strategies directed at observing these missing structures. The reader is also 

reminded of the discussion of the Neumann problem in Chapter 1. 

Another approach is to define a “simplest” solution, appealing to what is usually known as 

“Ockham’s Razor,” or the “principle of parsimony,” that in choosing between multiple expla-

nations of a given phenomenon, the simplest one is usually the best. What is “simplest” can 
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be debated, but here there is a compelling choice: The solution (2.207), that is without any 

nullspace contributions, is less structured than any other solution. (It is often, but not always 

true that the nullspace vectors are more “wiggly” than those in the range. The nullspace of 

the Neumann problem is a counter example. In any case, including any vector not required by 

the data is arguably producing more structure than is required.) Setting all the unknown �l to 

zero is thus one plausible choice. It follows from the orthogonality of the gl that this particular 

solution is also the one of minimum solution norm. Later, other choices for the nullspace vectors 

will be made. 

If the nullspace vector contributions are set to zero, the true solution has been expanded 

in an incomplete set of orthonormal vectors. Thus, GN G
W 
N is the resolution matrix, and the 

relationship between the true solution and the minimal one is just 

x̃ =GN G
W 
N x = x � QJ�J> ỹ =GN G

W 
N y> ñ = QJQ

W 
Jy = (2.216) {34022} 

{pagesqsymm} 

These results are so important, we recapitulate them: (2.206) or (2.208) is the general 

solution. There are three vectors involved, one of them, y, known, and two of them, x, n, 

unknown. Because of the assumption that E has a complete orthonormal set of eigenvectors, all 

three of these vectors can be expanded, exactly, as, 

P P P X X X 
x = �lgl> n = �lgl> y = (y W gl)gl = (2.217) {34023} 

l=1 l=1 l=1 

Substituting into ((2.214)), and using the eigenvector property produces, 

P P P X X X 
�lEgl + �lgl = (y W gl)gl 

l=1 l=1 l=1 

or, 
N P P X X X 
�l�lgl + �lgl = (y W gl)gl = 

l=1 l=1 l=1 

From the orthogonality property, 

�l�l + �l = y W gl> 1 � l � N >  (2.218) {34025a} 

�l = y W gl> N + 1 � l � P =  (2.219) {34025b} 

In dealing with the first relationship, a choice is required. If we set, 

�l = g W 
l n = 0 > 1 � l � N >  (2.220) {34025c} 



78 CHAPTER 2 BASIC MACHINERY 

the residual norm is made as small as possible, by completely eliminating the range vectors from 

the residual. This choice is motivated by the attempt to satisfy the equations as well as possible, 

but is seen to have elements of arbitrariness. A decision about other possibilities depends upon 

knowing more about the system and will be the focus of attention later. 

The relative contributions of any structure in y, determined by the projection, gl
W y will 

depend upon the ratio gl
W y@�l. Comparatively weak values of gl

W y may well be amplified by 
Wsmall, but non-zero, elements of �l= One must keep track of both gl y> and gl

W y@�l= 

Before leaving this special case, note one more useful property of the eigenvector/eigenvalues. 

For the moment, let G have all its columns, containing both the range and nullspace vectors, with 

the nullspace vectors being last in arbitrary order. It is thus an P ×P matrix. Correspondingly, 

let � contain all the eigenvalues on its diagonal, including the zero ones; it too, is P × P . Then  

the eigenvector definition (2.190) produces, 

{34026} EG = G� = (2.221) 

Multiply both sides of (2.221) by GW : 

{34027} GW EG = GW G� = �= (2.222) 

G is said to “diagonalize” E. Now multiply both sides of (2.222) on the left by G and on the  

right by GW : 

{34028} GGW EGGW = G�GW = (2.223) 

Using the orthogonality of G, 

{34029} E = G�GW > (2.224) 

a useful representation of E, consistent with its symmetry, known as the “singular value decom-

position” or SVD. 

Recall that � has zeros on the diagonal corresponding to the zero eigenvalues, and the 

corresponding rows and columns are entirely zero. Writing out (2.224), these zero rows and 

columns multiply all the nullspace vector columns of G by zero, and it is found that the nullspace 

columns of G can be eliminated, � reduced to its N × N form, and the decomposition (2.224) 

is still exact–in the form, 

{34030} E = GN �N G
W 
N > (2.225) 

also known as the SVD. It is readily confirmed that the representation (decomposition) in either 

Eq. (2.224, or 2.225) is identical to 

{svd5} E =�1g1g W + �2g2g W + === + �N gN g W = (2.226) 1 2 N 



2.5 THE SINGULAR VECTOR EXPANSION 79 

That is, a square symmetric matrix can be exactly represented by a sum of products orthonormal 

vectors glgW multiplied by a scalar, �l= l 

Example.


Consider the matrix from the last example,

;
AA?


< 
AA@ 

AA>

=


1 1  
E = AA=
1 1  

We have 6565 
�
 �997 

997

1 1::8


::8


¸ ¸
2 1 0
 1 

E = +
 =1 1 
 1 1s
2 

s
2 
s
2 

s
2

�
1 1�

The simultaneous equations (2.214) are, 

GN �N G
W 
N x + n = y = (2.227) {34031} 

Left multiply both sides by �31GW (existence of the inverse is guaranteed by the removal ofN N 

the zero eigenvalues) and, 

N x +�31GWGW N n = �31GW (2.228) {34032}N N N y = 

But GW N n is the projection of theN x are the projection of x onto the range vectors of E, and  GW 

noise. We have agreed to set the latter to zero, and obtain, 

N x = �31GWGW 
N N y > 

the dot products of the range of E with the solution. Hence, it must be true, since the range 

vectors are orthonormal, that 

x GN G
W (2.229) {34033a}N N y >˜ � N x � GN �

31GW 

˜ x =GN G
W y = E˜ N y > (2.230) {34033b} 

which is identical to the particular solution (2.205). The residuals are 

˜ ˜ y � E˜ N )y = QJQ
W n = y � y = x = (IP GN G

W
Jy> (2.231) {34034}� 

with ˜ y = 0.  Notice that matrix  H of Eq. (2.98) is just GN G
WnW ˜ N > and hence (I � H) is the 

projector of y onto the nullspace vectors. 
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The expected value of the solution (2.205) or (2.229) is, 

hx̃ � xi =GN �
31 
N G

W 
N hyi � 

Q X 

l=1 

�lgl = �QJ�J> (2.232) {34036} 

and so the solution is biassed unless �J = 0. 

The uncertainty is, 

P = G2(x̃ � x) = hGN �
31 
N G

W 
N (y0 + n � y0)(y0 + n � y0)

W GN �
31 
N G

W 
N i 

+ hQJ�J� W 
JQ

W 
Ji 

=GN �
31 
N G

W 
N hnn W iGN �

31 
N G

W 
N +QJh�J� W 

JiQ
W 
J 

=GN �
31 
N G

W 
N RqqGN �

31 
N G

W 
N +QJR��Q

W 
J 

= C{{ +QJR��Q
W 
J > 

(2.233) {34037a} 

defining the second moments, R��, of  the  coe!cients of the nullspace vectors. Under the special 

circumstances that the residuals, n, are white noise, with R = �2 
qI, (2.233) reduces to, 

P = � 2 
qGN �

32 
N G

W 
N +QJR��Q

W 
J = (2.234){34037b} 

Either case shows that the uncertainty of the minimal solution is made up of two distinct parts. 

The first part, the solution covariance, C{{, arises owing to the noise present in the observations, 

and generates uncertainty in the coe!cients of the range vectors; the second contribution arises 

from the “missing” nullspace vector contribution. Either term can dominate. The magnitude of 

the noise term depends largely upon the ratio of the noise variance, �2 
q, to the smallest non-zero 

eigenvalue, � 2 
N . 

Example 

Suppose 

65<
AA@ 

AA> 

Ex= y> 

{1 

6
5
;
AA?
 997


997

11 1 ::8

::8
> (2.235)= y = AA=
1 1  {2 3 

which is inconsistent and  has no solution in the  conventional  sense. E is a square symmetric 

matrix. Solving, 

Egl = �lgl> (2.236) 

6565or
 ;
AA?


<
AA@ 

AA>


997

jl1 ::8


997

0
::8


1 � 1� 
(2.237){eig1} = = AA=
 1 1 �� jl2 0 
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This equation requires
 656565 

997

1 �� ::8
+ jl2 

997

1
 ::8
=


997

0
::8
jl1 

1 1 � 0� 

or, 656565 

997

1 � ::8
+


jl2 

jl1 

997

1
 ::8
=


997

0
::8


� 
> 

1 1 � 0� 

which is 

jl2 

jl1 
= �(1 � �) 

jl2 1 
= = 

jl1 
� 
1 � � 

Both equations are satisfied only if � = 2> 0= This method, which can be generalized, in e�ect 

derives the usual statement that for Eq. (2.237) to have a solution, the determinant, ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1 � 1 ¯ ¯ � ¯ > =  ¯ ¯ ¯ ¯ ¯ 1 1 � ¯� 

must vanish. The first solution is labelled �1 = 2, and substituting back in produces g1 = 

[1> 1]W1I 1> 1]W1I

565 

2
, when given unit length. Also g2 [� > �2 = 0= Hence, =


6 

::8 

W 6
5

�997 

1
::8

1 

2 s
2


997

1
 997


1
::8
 1 1 


¸ 

=E = 
1
s
2


(2.238)
= 

1 1 1 

The equations have no solution in the conventional sense. There is, however, a sensible “best” 

solution: 

Wg1 yx̃ = g1 + �2g2> (2.239) 
�1 6565 

997

1
::8
+ �2 

1
s
2


997

1� ::8


µ ¶
4 1 

2
s
2 

(2.240)
= s
2 

1 1 
6565 

1
::8
+ �2 
1 �1
::8
 (2.241)
= = s
2 

1 1


997 
997 
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6565Notice that


997

2
::8
+ 0 6= 

997

1
::8
= (2.242)Ex̃ = 

2 3 

The solution has compromised the inconsistency. No choice of �2 can reduce the residual norm. 

The equations would more sensibly have been written 

Ex + n = y> 

and the di�erence, n = y �Ex̃ is proportional to j2= A system like (2.235) would most likely 

arise from measurements (if both equations are divided by 2, they represent two measurements 

of the average of ({1> {2)> and n would be best regarded as the noise of observation. 

Example 

Suppose the same problem as in the last example is solved using Lagrange multipliers, that 

is, minimizing, 
2 WM = n W n+� x x � 2µ W (y �Ex � n) = 

Then, the normal equations are 

1 CM 
= � 2 x +EW 

µ = 0 
2 Cx 
1 CM 

= n + µ = 0 
2 Cn 
1 CM 
Cµ 

= y �Ex n = 0> 
2 

�

which produces, 

¡ ¢
˜ 2x = EW EEW +� I 

31 
y 

1 1  

6
5
;
AA?


;
AA?


;
AA? 

AA=


< 
AA@ 

AA>


< 
AA@ 

AA>


;
AA?


< 
AA@ 

AA>


< 
AA@ 

AA>


31 

997

2 2  1 0 
 1 ::8


2+ �= = A
A=

A
A AA= =
1 1  2 2  0 1  3 

2The limit �2 $4 is readily evaluated. Letting � $ 0 involves inverting a singular matrix. To 

understand what is going on, let us use, 

6565 W 

997

1
::8
2


1
s
2


997

1
::8
E =
 WG�GW = g1�1g + 01 =


1
s
2


+ 0  (2.243) 

1 1 

Hence, 

EEW =G� 2GW 
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Note that the full G> � are being used. Note also that I =GGW = Thus, 

¡ ¢ ¡ ¡ ¢ ¢ ¡ ¢
2	 2 GW 2EEW +� I = G� 2GW +G � =G � 2 + � I GW = 

By inspection, the inverse of this last matrix is necessarily, 

© ¢ª¡ ¢ ¡

6 

¡ ¢31 ¡ ¢
2 31 

GWEEW +I@�2 =G � 2 + � I = 

¡ ¢
But �2 + �2I 31 

is the inverse of a diagonal matrix, 

2 2 2 � + � I 
31 
= diag  1@ �l + � 

2

Then 

¡ © ¡ ¢ª ¢ 
˜ 2	 2 x = EW EEW +� I y =G�GW G diag 1@ �l + � 

2 GW y
¡

© ¡
¢31 

¢ª
2 = G diag �l@ �l + � 

2 GW y 
W565 6
5


N 997

997


997

1
::8


2 1

2 + �
2 

s
2


1
::8

1
::8
+ 0 


1X �l W = 
�l + �

2 
gl y =gl 2 s

2
l=1 1 1 3 

6
5


997

1
::8


4 
= 
2 + �2 

1 

And the solution always exists as long as �2 A 0= It is a tapered-down form of the solution with 

�2 = 0  if all �l 6= 0= 
65656565 

n =

997

1
::8
 E


997

1
::8
=


997

1
::8
�


997

2
::8


4 4 �
2 + �2 2 + �2 

3	 1 3 2 

so that �2 $4> the solution x̃ is minimized, becoming 0 and the residual is equal to y= 

2.5.3	 Arbitrary Systems 

The Singular Vector Expansion and Singular Value Decomposition 

It may be objected that this entire development is of little use, because most problems, includ-

ing those outlined in Chapter 1, produced E matrices which could not be guaranteed to have 

complete orthonormal sets of eigenvectors. Indeed, the problems considered produce matrices 

which are usually non-square, and for which the eigenvector problem is not even defined. 
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For arbitrary square matrices, the question of when a complete orthonormal set of eigen-

vectors exists  is not  di!cult to answer, but becomes somewhat elaborate.41 When a square 

matrix of dimension Q is not symmetric, one must consider cases in which there are Q dis-

tinct eigenvalues and where some are repeated, and the general approach requires the so-called 

Jordan form. But we will next find a way to avoid these intricacies, and yet deal with sets of 

simultaneous equations of arbitrary dimensions, not just square ones. Although the mathemat-

ics are necessarily somewhat more complicated than is employed in solving the just-determined 

simultaneous linear equations using a complete orthonormal eigenvector set, this latter problem 

provides full analogues to all of the issues in the more general case, and the reader will probably 

find it helpful to refer back to this situation for insight. 

Consider the possibility, suggested by the eigenvector method, of expanding the solution x in 

a set of orthonormal vectors. Eq. (2.88) involves one vector, x, of  dimension  Q , and two vectors, 

y, n, of  dimension  P . We would like to use spanning orthonormal vectors, but cannot expect, 

with two di�erent vector dimensions involved, to use just one set: x can be expanded exactly 

in Q , Q -dimensional orthonormal vectors; and similarly, y and n can be exactly represented 

in P , P -dimensional orthonormal vectors. There are an infinite number of ways to select two 

such sets. But using the structure of E> a particularly useful pair can be identified. 

The simple development of the solutions in the square, symmetric case resulted from the 

theorem concerning the complete nature of the eigenvectors of such a matrix. So construct a 

new matrix, 

;
AA?
0 EW 

{34038} B =


< 
AA@ 

AA>

> (2.244)AA=
E 0 


which by definition is square (dimension P + Q by P + Q ) and symmetric. Thus, B satisfies 

the theorem just alluded to, and the eigenvalue problem, 

{34039} Bql = �lql (2.245) 

will give rise to P + Q orthonormal eigenvectors ql (an orthonormal spanning set) whether or 
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not the �l are distinct or non-zero. Writing out (2.245), 
6565 

< 
AA@ 

AA>


9999999999999999997


t1l 

·


tQl  

tQ +1>l 

·


::::::::::::::::::8


= �l 

9999999999999999997


t1l 

·


tQl  

tQ +1>l 

·


::::::::::::::::::8


>


;
AA?
0 EW 

1 l P + Q (2.246){34040} AA=

� � 

E 0  

tQ +P>l tQ +P>l 

where tsl is the pwk element of ql. Taking note of the zero matrices, (2.246) may be rewritten, 
6565 

9999997


tQ +1>l 

·


::::::8


= �l 

9999997


t1l 

·


::::::8


> (2.247) {34041a}EW 

tQ +P>l tQl  
6565 

E


9999997


t1l 

·


::::::8


= �l 

9999997


tQ +1>l 

·


::::::8


1 l P + Q (2.248) {34041b}> � � 

tQl  tQ +P>l 

Define, 6565 
6
5
9999997


tQ +1>l 

·


::::::8


> vl =


9999997


t1l 

·


::::::8


997

::8


vl 
> (2.249) {34042}> or>
= =ul ql 

ul 
tQ +P>l tQl  

that is, defining the first Q elements of ql to be called vl and the last P to be called ul. 

Then (2.247)—(2.248) are 

Evl = �lul (2.250) 

EW ul = �lvl = (2.251) 

If (2.250) is left multiplied by EW , and using (2.251), one has, 

EW Evl = � 2 
l vl> 1 � l � Q (2.252) {34044a} 
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Similarly, left multiplying (2.251) by E and using (2.250) produces, 

2EEW ul = �l ul 1 l P= (2.253) {34044b}� � 

These last two equations show that the ul, vl each separately satisfy two independent eigenvec-

tor/eigenvalue problems of the square symmetric matrices EEW , EW E and they can be separately 

given unit norm. The �l come in pairs as ±�l and the convention is made that only the positive 

ones are retained, as the corresponding ul> vl also di�er at most by a minus sign, and hence are 

not independent of the ones retained.42 If one of P , Q is much smaller than the other, only 

the smaller eigenvalue/eigenvector problem needs to be solved for either of ul, vl; the other set 

is immediately calculated from (2.250) or (2.251). Evidently, in the limiting cases, of either a 

single equation or a single unknown, the eigenvalue/eigenvector problem is completely trivial, 

involving a pure scalar, no matter how large is the other dimension. 

In going from (2.247, 2.248) to (2.252, 2.253), the range of the index l has dropped from 

P + Q to P or Q= The missing “extra” equations correspond to negative �l and carry no 

independent information. By definition, �l 0= � 

Example. 

Consider the non-square, non-symmetric matrix, 

E = 

Form the larger matrix B> and solve the eigenvector/eigenvalue problem which produces


0=31623 0=63246 1=1796 × 10316 0=63246 0=31623� � �

0=63246 0=31623 2=0817 × 10316 0=31623 0=63246� � �

Q = 0=35857 �0=22361 0=80178 �0=22361 0=35857 

�0=11952 �0=67082 �0=26726 �0=67082 �0=11952 

0=59761 0=00000 �0=53452 0=00000 0=59761 

<
AAAAAAAAAA

;
AAAAAAAAAA @

A
AAAAAAAAA

0 0 1  1 2�

1 1 0 0 0?


A
AAAAAAAAA >


1 1  0 0 0�

1 2 0 0 0=


<
AAAAAAAAAAAAAA

;
AAAAAAAAAAAAAA @

AAAAAAAAAAAAAA

? 

AAAAAAAAAAAAAA >= 
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where Q is the matrix whose columns are ql and S is the diagonal matrix whose values are the 

corresponding eigenvalues. Note that one of the eigenvalues vanishes identically, and that the 

others occur in positive and negative pairs. The corresponding ql di�er only by sign changes in 

parts of the vectors, but they are all linearly independent. Defining a V matrix from the first 

two rows of Q>


and again, only two of the vectors are linearly independent (the zero-vector is not physically 

realizeable). Similarly, the last three rows of Q define a U matrix, 

U =


in which only three columns are linearly independent. Retaining only the last two columns of V 

and the last three of U> and column normalizing each to unity, produces the singular vectors. 

The ul, vl are called “singular vectors,” and the �l are the “singular values.” By conven-

tion, the �l are ordered in decreasing numerical value. . Equations (2.250)—(2.251) provide a 

relationship between each ul and each vl. But because in general, P 6= Q , there  will  be  more  

of one set than another. The only way equations (2.250)—(2.251) can be consistent is if �l = 0, 

l A  min(P>Q) (where min(P>Q) is read as “the minimum of P and Q”). Suppose P ?  Q . 

Then (2.253) is solved for ul, 1 � l � P , and (2.250) is used to find the corresponding vl. There  

are Q � P vl not generated this way, but which can be found using the Gram-Schmidt method 

described on page 20. 

Let there be N non-zero �l; then  

Evl 6= 0  > 1 l N =  (2.254) {34045a}� � 

< 
AA@ 

AA>


<
AAAAAA

;
AAAAAA @

A
AAAAA>


0=35857 0=22361 0=80178 0=22361 0=35857� �
?


0=11952 0=67082 0=26726 0=67082 0=11952� � � � �

0=59761 0=00000 0=53452 0=00000 0=59761�

A
AAAAA=


<
AAAAAAAAAAAAAA

;
AAAAAAAAAAAAAA @

A
AAAAAAAAAAAAA>


0=31623 0=63246 0 0=63246 0=31623� �

0=63246 0=31623 0 0=31623 0=63246� �

0 0 0 0 0 

0 0 0 1=4142 0 

0 0 0 0 2=6458 

2=6458 0 0 0 0�

0 1=4142 0 0 0�
?


A
AAAAAAAAAAAAA=


S =


;
AA?


AA=

V =
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These vl are known as the “range vectors of E” or the “solution range vectors.” For the remaining 

N vectors vl,Q � 

{34045b} Evl = 0 > N + 1 � l � Q >  (2.255) 

known as the “nullspace vectors of E” or the “nullspace of the solution.” If N ? P , there  will  

be N of the ul such that, 

{34046a} EW ul 6= 0 > 1 l N >  (2.256) � � 

which are the “range vectors of EW ” and  P N of the ul such that � 

{34046b} EW ul = 0 > N + 1 l P >  (2.257) � � 

the “nullspace vectors of EW ” or the “data, or observation, nullspace vectors.” The “nullspace” 

of E is spanned by its nullspace vectors, the “range” of E is spanned by the range vectors, etc., 

in the sense, for example, that an arbitrary vector lying in the range is perfectly described by 

a sum of the range vectors. We now have two complete orthonormal sets in the two di�erent 

spaces. Note that (2.255, 2.257) imply that, 

WEvl = 0> ul E = 0> N + 1 � l � Q> (2.258) 

expressing hard relationships among the columns and rows of E= 

Because the ul, vl are complete in their corresponding spaces, x, y, n can be expanded 

without error: 
Q P P X X X 

{34047} x = �lvl > y = �lul > n = �lul > (2.259) 
l=1 m=1 l=1 

Wwhere y has been measured, so that we know � = um y. To  find  x> we need �l, and  to  find  n,m 

we need the �l. Substitute (2.259) into the equations (2.88), and using (2.250)—(2.251), 

Q P N P X X X X 
�lEvl + �lul = �l�lul + �lul (2.260) 

l=1 l=1 l=1 l=1 

P X 
W = (ul y)ul = 

l=1 

Notice the di�ering upper limits on the summations. Because of the orthonormality of the 

singular vectors, (2.260) can be solved as, 

W{34049a} �l�l + �l = ul y > l = 1 to P >  (2.261) 

W{34049b} �l = (ul y � �l)@�l > �l 6= 0 > 1 l N =  (2.262) � � 
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In these equations, if �l 6= 0, nothing prevents setting �l = 0, that is,  

{34049c} u W 
l n = 0 > 1 � l � N> (2.263) 

should we wish, and which will have the e�ect of making the noise norm as small as possible 

(there is arbitrariness in this choice, and later we will choose �l di�erently). Then (2.262) 

produces, 

�l = 
uW 
l y 
�l 
> 1 � l � N =  (2.264) {34050} 

But, because �l = 0, l A N, the only solution to (2.261) for these values of l is �l = u
W 
l y, and  

�l is indeterminate. These �l are non-zero, except in the event (unlikely with real data) that, 

u W 
l y = 0 > N + 1 � l � Q =  (2.265) {34051} 

This last equation is a solvability condition– in direct analogy to (2.204). 

The solution obtained in this manner now has the following form: 

N Q X W Xul yx̃ = vl + �lvl (2.266) {34052a} 
�ll=1 l=N+1


N
X 
y = E˜ W˜ x = (ul y)ul (2.267) {34052b} 

l=1 

P X 
˜ W n = (ul y)ul = (2.268) {34052c} 

l=N+1 

The coe!cients of the last Q � N of the vl in Eq. (2.266), the solution nullspace vectors, 

are arbitrary, representing structures in the solution about which the equations provide no 

information. A nullspace is always present unless N = Q . The solution residuals are directly 

proportional to the nullspace vectors of EW and will vanish only if N = P , or the solvability 

conditions are met. 

Just as in the simpler square symmetric case, no choice of the coe!cients of the solution 

nullspace vectors can have any e�ect on the size of the residuals. If we choose once again to 

exercise Ockham’s razor, and regard the simplest solution as best, then setting the nullspace 

coe!cients to zero, 
N X Wul yx̃ = vl> (2.269) {34053} 
�l

l=1 
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along with (2.268), this is the “particular-SVD solution.” It minimizes the residuals, and simul-

taneously produces the corresponding x̃ with the smallest norm. If hni = 0> the bias of (2.269) 

is evidently, 
Q X 

hx̃ � xi = � �lvl = (2.270) {34054} 
l=N+1 

The solution uncertainty is 

N N Q Q XX W X X 
W{34055a} P = vl 

ul Rqqum vl + vlh�l�m ivm
W = (2.271) 

�l�m
l=1 m=1 l=N+1 m=N+1 

2If the noise is white with variance �q or, if a row-scaling matrix W3W@2 has been applied to 

make it so, then (2.271) becomes, 

N Q X 2 X 
2{34055b} P = 

�q vlv W + h�l ivlvl
W > (2.272) 2 l 

�ll=1 l=N+1 

2where it was also assumed that h�l�m i = h�l i�lm in the nullspace. The influence of very small 

singular values on the uncertainty is very clear: In the solution (2.266) or (2.269) there are 
Werror terms ul y@�l which are greatly magnified by small or nearly vanishing singular values, 

2introducing large terms proportional to �q@�
2 into (2.272). l 

x are clearly a competition between the magnitudes of ul y andThe structures dominating ˜ W 

W�l, given by the ratio, ul y@�l= Large �l can suppress comparatively large projections onto ul, 

and similarly, small, but non-zero �l may greatly amplify comparatively modest projections. In 
W Wpractice,43 one is well-advised to study the behavior of both ul y> ul y@�l as a function of l to 

understand the nature of the solution. 

The decision to omit contributions to the residuals by the range vectors of EW > as we did 

in Eqs. (2.263), (2.268) needs to be examined. Should some other choice be made, the x̃ norm 

would decrease, but the residual norm would increase. Determining the desirability of such 

a trade-o� requires understanding of the noise structure–in particular, (2.263) imposes rigid 

structures, and hence covariances, on the residuals. 

2.5.4 The Singular Value Decomposition 

The singular vectors and values have been used to provide a convenient pair of orthonormal 

spanning sets to solve an arbitrary set of simultaneous equations. The vectors and values have 

another use, however, in providing a decomposition of E. 
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Define � as the P × Q matrix whose diagonal elements are the �l, in order of descending 

values in the same order, U as the P × P matrix whose columns are the ul, V as the Q × Q 

matrix whose columns are the vl. As an example, suppose P = 3, Q = 4; then  
<
AAAAAA

;
AAAAAA�l 0 0 0  
?

0 �2 0 0  

@
AAAAAA

� =
 =
A
AAAAA= 

;
AAAAAAAAAA

0 0 �3 0> 

<
A
AAAAAAAAA

Alternatively, if P = 4, Q = 3 


�1 0 0  

0 �2 0?
 @
A
AAAAAAAAA

>
A
AAAAAAAAA

0 0 �3 

0 0  0=
 >


therefore extending the definition of a diagonal matrix to non-square ones. 

Precisely as with matrix G considered above, column orthonormality of U, V implies that 

these matrices are orthogonal, 

UUW = IP > UW U = IP > (2.273) {svd3} 

VVW = IQ > VW V = IQ = (2.274) {svd4} 

(It follows that U31 = UW , etc.) As with G above, should one or more columns of U, V be 

deleted, the matrices will become semi-orthogonal. 

The relations (2.250) to (2.253) can be written compactly as: 

WEV = U� > EW U = V� > (2.275) 

WEW EV = V� W � > EEW U = U�� = (2.276) 

Left multiply the first of (2.275) by UW and right multiply it by VW , and invoking Eq. (2.274), 

UW EV = � = (2.277) {34058} 

So U, V diagonalize E (with “diagonal” having the extended meaning for a rectangular matrix 

as defined above.) 
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Right multiplying the first of (2.275) by VW , 

E = U�VW = (2.278) {34059} 

This last equation represents a product, called the “singular value decomposition” (SVD), of an 

arbitrary matrix, of two orthogonal matrices, U, V, and a usually non-square diagonal matrix, 

�. 

There is one further step to take. Notice that for a rectangular �, as in the examples above, 

one or more rows or columns must be all zero, depending upon the shape of the matrix. In 

addition, if any of the �l = 0, l ?  min(P> Q), the corresponding rows or columns of � will be 

all zeros. Let N be the number of non-vanishing singular values (the “rank” of E). By inspection 

(multiplying it out), one finds that the last Q � N columns of V and the last P � N columns 

of U are multiplied by zeros only. If these columns are dropped entirely from U, V so that U 

becomes P × N and V becomes Q × N, and reducing � to a N × N square matrix, then the 

representation (2.278) remains exact, in the form, 

{34060} E = UN �N V
W 
N = �1u1v W 

1 +�2u2v W 
2 +===+�N uN v W 

N > (2.279) 

with the subscript indicating the number of columns, where UN , VN are then only semi-

orthogonal, and �N is now square. Eq. (2.279) should be compared to (2.225).44 

The SVD solution can be obtained by direct matrix manipulation, rather than vector by 

vector. Consider once again finding the solution to the simultaneous equations ((2.88)), but 

first write E in its reduced SVD, 

{34061} UN �N V
W 
N x + n = y = (2.280) 

Left multiplying by UW 
N and invoking the semi-orthogonality of UN produces 

{34062} �N V
W 
N x + UW 

N n = UW 
N y = (2.281) 

The inverse of  �N (square with all non-zero diagonal elements) is easily computed and, 

{34063} VW 
N x + �31 

N U
W 
N n = �31 

N U
W 
N y = (2.282) 

But VW 
N x is the dot product of the first N of the vl with the unknown x. Eq. (2.282) thus 

represents statements about the relationship between dot products of the unknown vector, x, 

with a set of orthonormal vectors, and therefore must represent the expansion coe!cients of the 

solution in those vectors. If we set, 

{34064} UW 
N n = 0  > (2.283) 
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then, 

VW 
N x = �31 

N U
W 
N y > (2.284) {34065} 

and hence, 

x̃ = VN �
31 
N U

W 
N y > (2.285) {34066} 

identical to the solution (2.269), which the reader is urged to confirm by writing it out explicitly. 

As with the square symmetric case, the contribution of any structure in y proportional to ul 

depends upon the ratio of the projection, uW 
l y to �l. Substituting solution (2.285) into (2.280), 

UN �N V
W 
N VN �

31 
N U

W 
N y + n = UN U

W 
N y + n = y 

or 

ñ = (I � UN U
W 
N )y = (2.286) {34067} 

Let the full U and V matrices be rewritten as 

U = {UN Qx} > V = {VN Qy } (2.287) {9697} 

where Qx, Qy are the matrices whose columns are the corresponding nullspace vectors. Then, 

Ex̃ + ñ = y> Ex̃ = ỹ (2.288) {34069a} 

ỹ = UN U
W 
N y> ñ = QxQ

W 
x y = 

Q X 

m=N+1 

¡
u W 
m y 
¢ 
um (2.289) {34069b} 

which is identical to (2.267). Note, 

QxQ
W 
x = (I � UN U

W 
N )> Qy Q

W 
y = (I � VN V

W 
N ) (2.290) {Q1} 

and which are idempotent. (VN V
W 
N is matrix H of Eq. (2.98)). The two vector sets Qx> Qy 

span the data and solution nullspaces respectively. The general solution is, 

x̃ = VN �
31 
N UN y +Qy �> (2.291) {34070} 

where � is now restricted to being the vector of coe!cients of the nullspace vectors. 

The solution uncertainty (2.271) is, 

P = VN �
31 
N U

W 
N hnn W i UN �

31 
N V

W 
N 

+Qy h�� W i QW 
J = C{{ +Qy h�� W i QW 

y 

(2.292) {34072} 

or, 

P = � 2 
qVN �

32 
N V

W 
N +Qy h�� W i QW 

y (2.293) 
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for white noise. 

Least-squares solution of simultaneous solutions by SVD has several important advantages. 

Among other features, we can write down within one algebraic formulation the solution to sys-

tems of equations which can be under-, over-, or just-determined. Unlike the eigenvalue/eigenvector 

solution for an arbitrary square system, the singular values (eigenvalues) are always non-negative 

< 
AA@ 

AA> 

and real, and the singular vectors (eigenvectors) can always be made a complete orthonormal set. 

Furthermore, the relations (2.250) or (2.275) provide a specific, quantitative statement of the 

connection between a set of orthonormal structures in the data, and the corresponding presence 

of orthonormal structures in the solution. These relations provide a very powerful diagnostic 

method for understanding precisely why the solution takes on the form it does. 

2.5.5 Some Simple Examples. Algebraic Equations. 

Example 

The simplest underdetermined system is 1 × 2= Suppose {1 � 2{2 = 3> so that 
;
AA?
 447 =894
½ ¾ = �

> U =E = 1 2� {1} > V =
 1 = 2=23>> � 
AA=
 =894 =447� � 

where the second colum of Y is the nullspace of H= The general solution is {̃ = [0=6> 1=2]W +�
�2y2= Because N = 1  is the only possible choice, this solution satisfies the equation exactly, and 

a data nullspace is not possible. 

Example 

The most elementary overdetermined problem is 2 × 1. Suppose  

{1 = 1  

{1 = 3  = 

The appearance of two such equations is possible if there is noise in the observations, and they 

are properly written as, 

{1 + q1 = 1  

{1 + q2 = 3  = 

E = {1> 1}W , EW E represents the eigenvalue problem of the smaller dimension, again 1 ×1 and, 
<
AA@ 

AA>

> V = {1} > �1 = 

s
2 

707 =707�
U = 

;
AA? 

AA= 

=

=707 =707
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where the second column of U lies in the data nullspace, there being no solution nullspace. The 

general solution is x = {1 = 2, which if substituted back into the original equations produces, 
6
5


2 

2 

and hence there are residuals ˜ ˜n = y � y = [1>�1]W , and which are necessarily proportional to 

u2 and thus orthogonal to ỹ= No other solution can produce a smaller o2 norm residual than 

this one. The SVD produced a solution which compromised the contradiction between the two 

original equations. 

997 

Example 

The possibility of N ? P , N ? Q  simultaneously is also easily seen. Consider the system: 

::8
Ex̃ = = ỹ > 

65<
AAAAAA

;
AAAAAA 9999997 

1 

�

1 2 1 
 ::::::8


�

?
 @

A
AAAAA

>x =
3 2 1  1A
AAAAA >=4 0 2  2 

which appears superficially just-determined. But the singular values are �1 = 5=67, �2 = 2=80, 

�3 = 0. The vanishing of the third singular value means that the row and column vectors are 

not linearly independent sets (not spanning sets)–indeed the third row vector is just the sum of 

the first two (but the third element of y is not the sum of the first two–making the equations 

inconsistent). Thus there are both solution and data nullspaces, which the reader might wish to 

find. With a vanishing singular value, E can be written exactly using only two columns of U, 
WV and the linear dependence of the equations is given explicitly as u3 E = 0. 

Example 

Consider now the underdetermined system, 

{1 + {2 � 2{3 = 1  

{1 + {2 � 2{3 = 2 > 

which has no conventional solution at all, being a contradiction, and is thus simultaneously 

underdetermined and incompatible. If one of the coe!cients is modified by a very small quantity, 

|�| A 0, to  produce,  

{1 + {2 � (2 + �){3 = 1 > 
(2.294) {ex1} 

{1 + {2 � 2{3 = 2 > 
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not only is there a solution, there is an infinite number of them, which the reader should confirm 

by computing the particular SVD solution and the nullspace. Thus the slightest perturbation in 

the coe!cients has made the system jump from one having no solution to one having an infinite 

number, an obviously disconcerting situation. The label for such a system is “ill-conditioned.” 

How would we know the system is ill-conditioned? There are several indicators. First, the ratio 

of the two singular values is determined by �. If  we  set  � = 10310, the two singular values are 

�1 = 3=46, �2 = 4=1 × 10311, an immediate warning that the two equations are nearly linearly 

dependent. (In a mathematical problem, the non-vanishing of the second singular value is enough 

to assure a solution. It is the inevitable slight errors in | that suggest su!ciently small singular 

values should be treated as though they were actually zero.) 

Example 

A similar problem exists with the system, 

{1 + {2 � 2{3 = 1  

{1 + {2 � 2{3 = 1 > 

which has an infinite number of solutions. But the change to 

{1 + {2 � 2{3 = 1 > 

{1 + {2 � 2{3 = 1 + � 

for arbitrarily small � produces a system with no solutions in the conventional mathematical 

sense, although the SVD will handle the system in a sensible way, which the reader should 

confirm. 

Problems like these are simple examples of the practical issues that arise once one recognizes 

that unlike textbook problems, observational ones always contain inaccuracies; any discussion 

of how to handle data in the presence of mathematical relations must account for these inaccu-

racies as intrinsic–not as something to be regarded as an afterthought. But the SVD itself is 

su!ciently powerful that it always contains the information to warn of ill-conditioning, and by 

determination of N to cope with it–producing useful solutions. 

Example 

The Tomographic Problem from Chapter 1. A square box, is made up of 3×3 unit dimension 
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{tomog3.tif} Figure 2.10: Tomographic problem with 9-unknowns and only 6-integral constraints. 

sub-boxes (Fig. 2.10). All rays are in the u{ or u| directions. So the equations are, 

6565<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

9999999999999999997


::::::::::::::::::8


=


9999999999999999997


0


1


0


0


1


1 0 0 1 0 0 1 0 0 


0 1 0 0 1 0 0 1 0 


{
 ::::::::::::::::::8


>


1 

{
2 

?
 @
A
AAAAAAAAAAAAAAAAA

0 0 1 0 0 1 0 0 1 
 =


=


=


A
AAAAAAAAAAAAAAAAA

1 1 1 0 0 0 0 0 0 


0 0 0 1 1 1 0 0 0 


>= 0 0 0 0 0 0 1 1 1  {9 0 

that is, Ex = y. There are six integrals (rays) across the nine boxes in which one seeks the 

corresponding value of {l. y was calculated by assuming that the “true” value is {5 = 1> {l = 0> 
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l 6= 5. The SVD produces, 
<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

>

@
AAAAAAAAAAAAAAAAAA

�0=408 0 0 0=816 0 0=408 

�0=408 0=703 �0=0543 �0=408 �0=0549 0=408 

�0=408 �0=703 0=0543 �0=408 0=0549 0=408? 

AAAAAAAAAAAAAAAAAA

U =


> 

�0=408 �0=0566 0=0858 0 �0=81 �0=408 

�0=408 �0=0313 �0=744 0 0=335 �0=408 

�0=408 0=0879 0=658 0 0=475 �0=408 = 

<
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAA

@
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA> 

�0=333 �0=0327 0=0495 0=471 �0=468 �0=38 �0=224 0=353 0=353 

�0=333 0=373 0=0182 �0=236 �0=499 0=432 0=302 �0=275 0=302 

�0=333 �0=438 0=0808 �0=236 �0=436 �0=0515 �0=0781 �0=0781 �0=655 

�0=333 �0=0181 �0=43 0=471 0=193 0=519 �0=361 �0=15 �0=15 

AAAAAAAAAAAAA? 
�0=333 0=388 �0=461 �0=236 0=162 �0=59 �0=0791 �0=29 �0=0791 

�0=333 �0=424 �0=398 �0=236 0=225 0=0704 0=44 0=44 0=229 

�0=333 0=0507 0=38 0=471 0=274 �0=139 0=585 �0=204 �0=204 

�0=333 0=457 0=349 �0=236 0=243 0=158 �0=223 0=566 �0=223 

�0=333 �0=355 0=411 �0=236 0=306 �0=0189 �0=362 �0=362 0=427 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= 

The zeros appearing in U> and in the last element of diag (�) are actually very small numbers ¡ ¢ 
(O 10316 or less). Rank N = 5  despite there being six equations–a consequence of redundancy 

in the integrals. Notice that there are four repeated �l, and  the lack of expected simple symme-

tries in the corresponding vl is a consequence of a random assignment in the eigenvectors. 

u1 just averages the right hand-side values, and the corresponding solution is completely 

uniform, proportional to v1. The average of y is usually the most robust piece of information. 

The “right” answer is x = [0> 0> 0> 0> 1> 0> 0> 0> 0]W = The rank 5 answer by SVD  is  ̃x =[-0.1111, 

0.2222, -0.1111, 0.2222, 0.5556, 0.2222, -0.1111, 0.2222, -0.1111] W which exactly satisfies the 

2=45 1=73 1=73 1=73 1=73 0 

¸¶ 

>


�
µ
� = diag  

V = 
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x x = 0=556 ? xW x= When mapped into two dimensions, ˜same equations. ˜W ˜ x at rank 5 is, 

5
 6
u{< 

=11 =22 =11� � 

=22 =56 =22 

=11 =22 =11� � 

9999997


::::::8


u| % > (2.295) 

and is the minimum norm solution. The mapped v6, which belongs in the null space is, 

65 

9999997 

=38 =43 =05� � 

=52 =59 =07� 

=14 =16 =02� � 

::::::8


and along with any remaining null space vectors produces a zero sum along any of the ray paths. 

u6 is in the data nullspace. uW E = 0  shows that, 6 

d (|1 + |2 + |3) � d (|4 + |5 + |6) = 0> 

if there is to be a solution without a residual, or alternatively, that no solution would permit 

this sum to be non-zero. This requirement is physically sensible, as it says that the vertical and 

horizontal rays cover the same territory and must therefore produce the same sum travel times. 

It shows why the rank is 5, and not 6. 

There is no noise in the problem as stated. The correct solution and the SVD solution di�er 

by the null space vectors. One can easily confirm that x is column 5 of V5VW˜ 5 . Least-squares 

allows one to minimize (or maximize) anything one pleases. Suppose for some reason, we want 

the solution that minimizes the di�erences between the value in box 5 and its neighbors, perhaps 
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as a way of finding a "smooth" solution. Let 
<
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1 0 0 0 1 0 0 0 0�

0 1 0 0 1 0 0 0 0�

0 0 1 0 1 0 0 0 0�

0 0 0 1 1 0 0 0 0�
?
 @

A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

W = (2.296)0 0 0 0 1 1 0 0 0�

0 0 0 0 1 0 1 0  0�

0 0 0 0 1 0 0 1 0�

0 0 0 0 1 0 0 0 1�

0 0 0 0 1 0 0 0 0 

A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA=
 >


The last row is included to render W a full-rank  matrix.  Then 

65 

Wx =


999999999999997


{5 � {1 

{5 � {2 

= 

{5 � {9 

{5 

::::::::::::::8


(2.297) 

and we can minimize 

M = x W WW Wx (2.298) 

subject to Ex = y by finding the stationary value of 

M 0 = M 2µ W (y � Ex) (2.299)� 

The normal equations are then 

WW Wx = EW 
µ (2.300) 

Ex = y (2.301) 

and ¡ ¢
x̃ = WW W 

31 
EW 
µ 
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and then, ¡ ¢31 
E WW W EW 

µ = y 

¡ ¢
The rank of  E WW W 

31 
EW is N = 5  ? P  = 6> and so we need a generalized  inverse,  

³ ¡ X vl y
µ̃ = E WW W 

¢31 
EW ́

+ 
y = 

5 

vl

W 

�l m=1 

¡ ¢
The null space of E WW W 

31 
EW is readily confirmed to be the vector, 

�
 ¸W 

(2.302) 0=408 0=408 0=408 0=408 0=408 0=408 > � � �

¡ ¢
which produces the solvability condition. Here, because E WW W 

31 
EW is symmetric, the SVD 

reduces to the symmetric decomposition. 

Finally, the mapped x̃ is 65 

9999997 

=20 =41 =20� � 

=41 =18 =41 

=20 =41 =21� � 

::::::8


and one cannot further decrease the sum-squared di�erences of the solution elements. One 

can confirm that this solution satisfies the equations. Evidently, it produces a minimum, not 

a maximum  (it su!ces to show that the eigenvalues of WW W are all non-negative). The 

addition of any of the nullspace vectors of E to x̃ will  necessarily increase the  value of  M and 

hence there is no bounded maximum. In real tomographic problems, the arc lengths making up 

matrix E are three dimensional curves and depend upon the background index of refraction in 

the medium, which is usually itself determined from observations.45 There are thus errors in E 

itself, rendering the problem one of non-linear estimation. Approaches to solving such problems 

are described in Chapter 3. 

Example 

Consider, the flow into a four-sided box with missing integration constant as described in 

Chapter 1. Total mass conservation and conservation of dye, Fl= Let the relative areas of 

each interface be 1, 2, 3, 1 units respectively. Let the corresponding velocities on each side 

be 1> 1@2>�2@3,0 respectively, with the minus sign indicating a flow out. That mass is conserved 

is confirmed by, {page:fourside µ ¶ µ
1 2 

1 (1)  +  2  + 3  
� ¶ 

+ 1  (0)  =  0= 
2 3 
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Now suppose that the total velocity is not in fact known, but an integration constant is missing 

on each interface, so that µ ¶ µ ¶
1 1 

1 + e1 + 2  (1  +  e2) + 3  + e3 + 1  (2  +  e4) = 0
2 3 

where the el = [1@2> 1@2> �1> �2], but are here treated as unknown. Then the above equation�
becomes 

e1 + 2e2 + 3e3 + e4 = 5=5�

or one equation in 4 unknowns. Evidently, one linear combination of the unknown el can be 

determined. We would like more information. Suppose that a tracer of concentration, Fl = 

[2> 1> 3@2> 0] is measured at each side, and is believed conserved. The governing equation is µ ¶ µ ¶
1 1 3 

1 + e1 2 + 2  (1  +  e2) 1  +  3  + 1  (2  +  e4) 0  =  0+ e3
2 3 2 

or 

2e1 + 2e2 + 4=5e3 + 0e4 = 4=5�

giving a system of 2 equations in four unknowns 

1  2 3 1 


2 2 4=5 0 


e4 

The SVD  of  the coe!cient matrix, E> is : 

6=50 0 0 0 

0 1=02 0 0 

0=582 0=813� �

0=813 0=582


E = 

and the remainder of the solution is left to the reader. 

2.5.6 Simple Examples. Di�erential and Partial Di�erential Equations 

Example 

<
AAAAAAAAAA

;
AAAAAAAAAA @

A
AAAAAAAAA

0=009 0=832 0=429 0=340


=801 0=179 0=454 0=347� �

6
5


6
5


=

::8


5=5�997
= 

4=5�

::::::::::8


e1 

e2 

e3 

99999999997 

< 
AA@ 

AA> 

;
AA? 

AA= 

>


0=116 0=479 0=243 0=835� � �

0=581 0=215 0=742 0=259�

? 

< 
AA@ 

AA>A
AAAAAAAAA=


;
AA? 

< 
AA@ 

AA>AA= 

;
AA? 

AA= 
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As an example of the use of this machinery with di�erential equations, consider, 

g2{ (u) 2{exponen10} 
gu2 � n { (u) = 0> (2.303) 

subject to initial and/or boundary condition. Using the simple one-sided, uniform discretization, ³ ´ 
discexponen1} { ((p+ 1)�u)� 2 + n 2 (�u)2 { (p�u) + { ((p� 1)�u) = 0> (2.304) 

at all interior points. Take the specific case, with two-end conditions, { (�u) = 10> { (51�u) =  

1>�u = 0=1> the numerical solution is depicted in Fig. 2.11 from the direct (conventional) 

solution to Ax = y= The first two rows of A were used to impose the boundary conditions on 

{ (�u) > { (51�u) = The singular values of A are also plotted in Fig. 2.11. The range is over 

about two orders of magnitude, and there is no reason to suspect numerical di!culties. The first 

and last singular vectors u1> v1> u51> v51, are plotted too. One infers (by plotting additional 

such vectors), that the large singular values correspond to singular vectors showing a great deal of 

small-scale structure, and the smallest singular values correspond to the least structured (largest 

spatial scales) in both the solution and in the specific corresponding weighted averages of the 

equations. This result may be counterintuitive. But note that in this problem, all elements of | 

vanish except the first two, which are being used to set the boundary conditions. We know from 

the analytical solution that the true solution is large-scale; most of the information contained 

in the di�erential equation (2.303) or its numerical counterpart, (2.304) is an assertion that 

all small scales are absent; this information is the most robust and corresponds to the largest 

singular values. The remaining information, on the exact nature of the largest scales, is contained 

in only two of the 51 equations–given by the boundary conditions, is extremely important, but 

less robust than that concerning the absence of small scales. (Less “robust” is being used in the 

sense that small changes in the boundary conditions will lead to relatively large changes in the 

largescale structures in the solution because of the division by relatively small �l=)= 

Example 

Consider now the classical Neumann problem described in Chapter 1. The problem is to 

be solved on a 10 × 10 grid as in Eq. (1.17), Ax = b. The singular values of A are plotted 

in figure 2.12; the largest one is �1 = 7=8, and the smallest non-zero one is �99 = 0=08. As  

expected, �100 = 0. The singular vector y100 corresponding to the zero singular value is a 

constant; x100>also shown in Fig. 2.12 is not a constant, it has considerable structure–which 

provides the solvability condition for the Neumann problem, xW . The physical origin of 100| = 0

the solvability condition is readily understood: Neumann boundary conditions prescribe boundary 

flux rates, and the sum of the interior source strengths plus the boundary flux rates must sum to 
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Figure 2.11: Upper left is x̃ Eq. (2.303) by brute force from the simultaneous equations. Upper 

right panel displays the corresponding singular values; all are finite (there is no 

nullspace). Lower left panel displays u1 (solid curve), and u51(dashed). Lower right 

panel shows the corresponding v1> v51. The most robust information corresponds 

to the absence of small scales in the solution. {exponensvd.ep 
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zero, otherwise no steady state is possible. If the boundary conditions are homogeneous, then no 

flow takes place through the boundary, and the interior sources must sum to zero. In particular, 

the value of x100 on the interior grid points is a constant. The Neumann problem is thus a 

forward one requiring coping with both a solution nullspace and a solvability condition. 

2.5.7 Relation of Least-Squares to the SVD 

What is the relationship of the SVD solution to the least-squares solutions? To some extent, 

the answer is already obvious from the orthonormality of the two sets of singular vectors: they 

are the least-squares solution, where it exists. When does the simple least-squares solution will 

exist? Consider first the formally overdetermined problem, P A Q . The solution (2.96) exists 

if and only if the matrix inverse exists. Substituting the SVD for E, one finds 

(EW E)31 = (VQ � W 
Q U

W 
Q UQ �Q V

W 
Q )
31 = (VQ � 2 

Q V
W 
Q )
31> (2.305) {34074} 

where the semi-orthogonality of UQ has been used. Suppose that N = Q , its maximum possible 

value; then �2 
Q is Q × Q with all non-zero diagonal elements � 2 

l . The inverse in (2.305) may 

be found by inspection, using VW 
Q VQ = IQ , 

(EW E)31 = VQ �
32 
Q V

W 
Q = (2.306) {34075} 

Then the solution (2.96) becomes 

x̃ = (VQ �
32 
Q V

W 
Q )VQ �Q U

W 
Q y = VQ �

31 
Q U

W 
Q y > (2.307) {34076} 

which is identical to the SVD solution (2.285). If N ? Q , �2 
Q has at least one zero on the 

diagonal, no matrix inverse exists and the conventional least-squares solution is not defined. 

The condition for its existence is thus N = Q , the so-called “full rank overdetermined” case. 

The condition N ? Q  is called “rank deficient.” The dependence of the least-squares solu-

tion magnitude upon the possible presence of very small, but non-vanishing, singular values is 

obvious. 

1. That the full-rank overdetermined case is unbiased, as previously asserted (45), can now 

be seen from 

hx̃ � xi = 
Q X 

l=1 

(uW 
l hyi) 
�l 

vl � x = 
Q X 

l=1 

uW 
l y0 

�l 
vl � x = 0 > 

with y = y0 + n> if hni = 0, assuming that the correct E (model) is being used. {pagemeanbias2 
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Figure 2.12: Color. (Upper left) Singular values of the coe!cient matrix A of the numerical Neu-

mann problem on a 10×10 grid. All �l are non-zero except the last one. (Upper 

right) u100> the nullspace vector of EW defining the solvability or consistency condi-

tion for a solution through uW Plotted as mapped onto the two-dimensional 100y =0= 

spatial grid (u{> u| ) with �{ = �| = 1= The interpretation is that the sum of the 

influx through the boundaries and from interior sources must vanish. Note that 

corner derivatives di�er from other boundary derivatives by 1/
s
2= Corresponding 

v100 is a constant, indeterminate with the information available, and not shown.. 

(lower left) A source b (a numerical delta function) is present, not satisfying the 
Wsolvability condition u100b =0> because all boundary fluxes were set to vanishing. 

(Lower right) Particular SVD solution, x̃> at rank N = 99= One confirms that 

Ax̃ � b is proportional to u100 as the source is otherwise inconsistent with no flux 

boundary conditions. With b a Kronecker delta function at one grid point, this 

solution is a numerical Green function for the Neumann problem and insulating 

boundary conditions. {neumann1.eps} 
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Now consider another problem, the conventional purely underdetermined least-squares one, 

whose solution is (2=166). When does that exist? Substituting the SVD, 

W x = VP �P U
W

P VP �P U
W˜ P (UP �P V

W
P )
31 y 

(2.308) {34078a} 
2 = VP �P U

W
P )
31 y = P (UP �P U

W 

Again, the matrix inverse exists if and only if �2 has all non-zero diagonal elements, which P 

occurs only when N = P . Under that specific condition, the inverse is obtained by inspection 

and, 

˜ P (UP �
32UW 

P )y = VP �
31UW (2.309) {34078b} x = VP �P U

W
P P P y 

ñ = 0  > (2.310) {34078c} 

which is once again the particular-SVD solution (2.285)–with the nullspace coe!cients set 

to zero. This situation is usually referred to as the “full-rank underdetermined case.” Again, 

the possible influence of small singular values is apparent and an arbitrary sum of nullspace 

vectors can be added to (2.309). The bias of (2.308) is given by the nullspace elements, and its 

uncertainty arises only from the nullspace contribution, because with ñ = 0, thenoise variance 

vanishes, and the particular-SVD solution covariance C{{ would be zero. 

The particular-SVD solution thus coincides with the two simplest forms of least-squares 

solution, and generalizes both of them to the case where the matrix inverses do not exist. All 

of the structure imposed by the SVD, in particular the restriction on the residuals in (2.263), 

is present in the least-squares solution. If the system is not of full rank, then the simple least-

squares solutions do not exist. The SVD generalizes these results by determining what it can: 

the elements of the solution lying in the range of E> and an explicit structure for the resulting 

nullspace vectors. 

The SVD provides a lot of flexibility. For example, it permits one to modify the simplest 

underdetermined solution (2=166) to remove its greatest shortcoming, the necessity that ñ = 0. 

One simply truncates the solution (2.269) at N = N 0 ? P , thus assigning all vectors vl, 

N 0 + 1  l N, to an “e�ective nullspace” (or substitutes N 0 for N everywhere). The residual � � 

is then, 
P X 

˜ W n = (ul y)ul > (2.311) {34079} 
l=N0+1 

with an uncertainty for x̃ given by (2.292), but with the upper limit being N 0 rather than N. 

Such truncation has the e�ect of reducing the solution covariance contribution to the uncertainty, 

but increasing the contribution owing to the nullspace (and increasing the bias). In the presence 
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of singular values small compared to �q, the resulting overall reduction in uncertainty may be 

very great–at the expense of a possibly very small bias. 

The solution now consists of three parts, 

N0 N Q X W X Xul yx̃ = vl + �l vl + �lvl > (2.312) {34080} 
�ll=1 l=N0 +1 l=N+1 

where the middle sum contains the terms appearing with singular values too small to be 

employed–for the given noise–and the third sum is the strict nullspace. Usually, one lumps 

the two nullspace sums together. The first sum, by itself, represents the particular-SVD solution 

in the presence of noise. Resolution and covariance matrices are modified by the substitution of 

N 0 for N= 

This consideration is extremely important–it says that despite the mathematical condition 

�l 6= 0, some structures in the solution cannot be estimated with su!cient reliability to be 

useful. The “e�ective rank” is then not the same as the mathematical rank. 

It was already noticed that the simplest form of least-squares does not provide a method to 

control the ratios of the solution and noise norms. Evidently, truncation of the SVD o�ers a 

simple way to do so–by reducing N 0 . It follows that the solution norm necessarily is reduced, 

and that the residuals must grow, along with the size of the solution nullspace. The issue of 

how to choose N 0, that is, “rank determination,” in practice is an interesting one to which we 

will return (P. 117). 

2.5.8 Pseudo-Inverses 

Consider an arbitrary P × Q matrix E = UN �N V
W and,N 

Ex + n = y 

Then if E is full-rank underdetermined, the minimum norm solution is, ¡ ¢
x = EW EEW 31 

y = VN �
31UW 

N y> N  =P>˜ N 

and if it is full-rank overdetermined, the minimum noise solution is, ¡ ¢
˜

31 
EW N y> N  = Q=x = EW E y = VN �

31UW 
N 

31 
The first of these, the Moore-Penrose, or pseudo-inverse, E+ = EW EEW is sometimes also 1 

¡ ¢
¡ ¢
EW E 

31 
EWknown as a “right-inverse,” as EE+ = IP = The second pseudo-inverse, E+ = is a 1 2 

“left-inverse” as E+E = IQ = They can both be represented as VN �
31UW 

N , but with di�ering2 N 

values of N= If N ?  P>  Q  neither of the pseudo-inverses exists, but VN �
31UW 

N y still provides N 

the particular SVD solution. When N = P = Q> one has a demonstration that the left and 

right inverses are identical; they are then written as E31= 
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2.5.9 Row and Column Scaling 

The e�ects on the least-squares solutions of the row and column scaling can now be understood. 

We discuss them in the context of noise covariances, but as always in least-squares, the weight 

matrices need no statistical interpretation, and can be chosen by the investigator to suit her 

convenience or taste. 

Suppose we have two  equations  

6
5

6565;

AA?


< 
AA@ 

AA>


{1 

{2 

9999997 

::::::8


+

997 

997 
q1 |1 

q2 |2 

1 1 1 
 ::8

::8
>
=
AA=
1 1=01 1 

{3 

and there is no information about the noise covariance and so no row scaling is reasonable: 

W = I. The SVD of E is 

<
AAAAAA

;
AAAAAA

;
AA? 

<
AA@ 

AA>


0=5764 0=4096 0=7071�
?
 @

A
AAAAA

0=7059 0=7083�
U = AAAAAA= 

> V = 0=5793 

0=5764 

>0=8151 0=0000A
A=
0=7083 0=7059

>
0=4096 0=7071� �

�1 = 2=4536> �2 = =0058 = 

The SVD solutions, choosing ranks N 0 = 1> 2 in succession, are very nearly (the numbers having 

been rounded), 

�

�


Wµ ¶
|1 + |2 

2=45 

¸
(2.313)x̃ >0=58 0=58 0=58� 

�
W Wµ 
|1 + |2 

2=45


¶ µ 
|1 � |2 

0=0058


¶
¸
0=41 0=82 0=41�

¸
x̃ +0=58 0=58 0=58� 

respectively, so that the first term simply averages the two measurements, |l, and  the  di�erence 

between them contributes–with great uncertainty–in the second term of the rank 2 solution 

owing to the very small singular value. The uncertainty is 

(EEW )31 = 

;
AA?
1=51 × 104 1=50 × 104 �

<
AA@ 

AA>

=
AA=
 1=50 × 104 1=51 × 104 �
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Now suppose that the covariance matrix of the noise is known to be 
;
AA?
 1 0=999999


< 
AA@ 

AA>

Rqq = 

0=999999 
AA= 1 

(an extreme case, chosen for illustrative purposes). Then, put W = Rqq, 

1=0000 1=0000 

;
AA? 

AA

<
AA@ 

AA>


;
AA?


<
AA@ 

AA>


1=0000 0 
W1@2 = > W3W@2 = = AA= = 

65 

0 0=0014 707=1063 707=1070�

The new system to be solved is 

65 

1=0000 1=0000 1=0000 

;
AA? 

AA

9999997 

<
AA@ 

AA> 

{1 

{2 

::::::8


=

997


|1 ::8
= 

0=0007 7=0718 0=0007 
{3 

The SVD is 

= 707=1(�|1 + |2) 

<
AAAAAA

;
AAAAAA0=0205 0=7068 0=7071


@? 
U =


;
AA? 

AA= 

0=1456 

0=9893 

<
AA@
0=9893 
> V = 0=9996 0=0290 0=0000�AA>


A
AAAAA
A
AAAAA0=1456�
>=0=0205 0=7068 0=7071�

�1 = 7=1450 > �2 = 1=3996 = 

The second singular value is now much larger relative to the first one, and the two solutions are, 
�

�


¸W|2 � |1 

7=1 
(2.314)
x̃ 0 1  0� 

�
¸W 

0=71 0 0=71 

¸W|2 � |1 

7=1 
|1 � 103 (|2 � |1)

x̃ +0 1  0 
� 
1=4 

and the rank 1 solution is given by the di�erence of the observations, in contrast to the unscaled 

solution. The result is quite sensible–the noise in the two equations is so nearly perfectly 

correlated, that it can be removed by subtraction; the di�erence |2 � |1 is a nearly noise-

free piece of information and accurately defines the appropriate structure in x̃= In e�ect, the 

information provided in the row scaling with R permits the SVD to nearly eliminate the noise 

at rank 1 by an e�ective subtraction, whereas without that information, the noise is reduced in 

the solution (2.313) at rank 1 only by averaging. 



2.5 THE SINGULAR VECTOR EXPANSION 111 

At full rank, that is, N = 2, it can be confirmed that the solutions (2.313) and (2.314) are 

identical, as they must be. But the error covariances are quite di�erent: 
;
AA?


(E0E0W )31 = 
0=5001 0=707�

< 
AA@ 

AA>

=
AA=
 0=707 0=5001�

because the imposed covariance permits a large degree of noise suppression. 

It was previously asserted (P. 66) that in a full-rank formally underdetermined system, row 

scaling is irrelevant to ˜ n, as may be seen as follows,x, ˜

˜	 0 x = E0W (E0E0W )31 y 

(W3W@2 W31@2)31W3W@2 = EW W31@2 EEW	 y 
(2.316) 

= EW W31@2W1@2 WW@2W3W@2(EEW )31 y 

= EW (EEW )31 y > 

but which is true only in the full rank situation. {pagerowscale2 

There is a subtlety in row-weighting. Suppose we have two equations of form, 

10{1 + 5{2 + {3 = 1  > 
(2.317) {34086} 

100{1 + 50{2 + 10{3 = 2  > 

after row scaling to make the	 expected noise variance in each the same. A rank 1 solution 

x = [=0165> =0083> =0017]W , which produces residuals ˜ =to these equations by SVD is ˜ y � y 

0=79> 0=079]W –much smaller  in  the second  equation than in the  first  one.[�
Consider that the second equation is 10 times the first one–in e�ect saying that a measure-

ment of 10 times the values of 10{1 + 5{2 + {3 has the same noise in it as a measurement of 

one times this same linear combination. The second equation represents a much more accurate 

determination of this linear combination and the equation should be given much more weight in 

determining the unknowns–and both the SVD and ordinary least-squares does precisely that. 

To the extent that one finds this result undesirable (one should be careful about why it is so ³P ´1@2 
found), there is an easy remedy–divide the equations by their row norms H2 . But  m lm 

there will be a contradiction with any assertion that the noise in all equations was the same to 

begin with. Such row-scaling is best regarded as non-statistical in nature. 

An example of this situation is readily apparent in the box balances discussed in Chapter 1. 

Equations such as (1.32) could have row norms much larger than those (1.31) for the corre-

sponding mass balance, simply because the tracer is measured by convention in its own units. 
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If the tracer is e.g., oceanic salt, values are, by convention, measured on the Practical Salinity 

Scale, and are near 35 (but are dimensionless). Because there is nothing fundamental about 

the choice of units, it seems unreasonable to infer that the requirement of tracer balance has 

an expected error 35 times smaller than for mass. One usually proceeds in the obvious way by 

dividing the tracer equations by their row norms as the first step. (This approach need have no 

underlying statistical validity, but is often done simply on the assumption that salt equations are 

unlikely to be 35 times more accurate than the mass ones.) The second step is to ask whether 

anything further can be said about the relative errors of mass and salt balance, which would 

introduce a second, purely statistical row weight. 

Column Scaling 

In the least-squares problem, we formally introduced a “column scaling” matrix S. Column  

scaling operates on the SVD solution exactly as it does in the least-squares solution, to which 

it reduces in the two special cases already described. That is, we should apply the SVD to sets 

of equations only where any knowledge of the solution element size has been removed first. If 

the SVD has been computed for such a column-scaled (and row-scaled) system, the solution is 

for the scaled unknown x 0, and  the physical solution is,  

x = SW@2 ̃ 0{34088} ˜ x = (2.318) 

But there are occasions, with underdetermined systems, where a non-statistical scaling may also 

be called for, the analogue to the situation considered above where a row-scaling was introduced 

on the basis of possible non-statistical considerations. 

Example 

Suppose we have one equation in two unknowns, 

{34089} 10{1 + 1{2 = 3  = (2.319) 

˜The particular-SVD solution produces x = [0=2970> 0=0297]W in which the magnitude of {1 is 

much larger than that of {2 and the result is readily understood. As we have seen, the SVD 

automatically finds the exact solution, subject to making the solution norm as small as possible. 

Because the coe!cient of {1 in (2.319) is 10 times that of {2, it is obviously  more  e!cient in 

minimizing the norm to give {1 a larger value than {2–because it contributes more e!ciently 

in producing |. Although we have demonstrated this dependence for a trivial example, similar 

behavior occurs for underdetermined systems in general. In many cases, this distribution of the 

elements of the solution vector x is desirable, the numerical value 10 appearing for good physical 

reasons. In other problems–the numerical values appearing in the coe!cient matrix E are an 
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“accident.” In the box-balance example of Chapter 1, the distances defining the interfaces of the 

boxes are a consequence of the spatial distance between measurements. Unless one believed that 

velocities should be larger where the distances are greater or the fluid depth was greater, then 

the solutions may behave unphysically.46 Indeed, in some situations the velocities are expected 

to be inverse to the fluid depth and such a prior statistical hypothesis is best imposed after one 

has removed the structural accidents from the system. (The tendency for the solutions to be 

proportional to the column norms is not rigid. In particular, the equations themselves may 

preclude the proportionality.) 

Take a positive definite, diagonal matrix S, and  rewrite  (2.88) as 

ESW@2S3W@2 x + n = y= 

Then, 
0 0 = S3W@2E0 x + n = y> E0 = ESW@2> x x = 

Solving 

˜0 = E0W (E0E0W x = SW@2 ̃ 0 x )31 y > ˜ x = (2.320) {34090} 

How should S be chosen? Apply the recipe (2.320) for the simple one equation example of (2.319), 

with ;
AA?


< 
AA@ 

AA>


1@d2 0 
S = AA=
 0 1@e2 

< 
AA@ 

AA> 

;
AA? 

: ½ ¾ 

E0 
1 

+ (2.321)= 10@d 1@e > E
0E0W =

100 
2d2 e

2 

E0E0W ¢31 d2e
= 
100e2 + d2

¡
(2.322) 

10@d d2 2e0x̃ 3> (2.323)=
AA=
 100e2 + d2 

1@e 
;
AA?


< 
AA@ 

AA>


10@d2 2d2e
SW@2 ˜0 xx̃ = 3= (2.324)=
AA=
 100e2 + d2 

1@e2 

˜The relative magnitudes of the elements of x are proportional to 10@d2 , 1@e2 . To make the 

numerical values identical, choose d2 = 10, e2 = 1, that is, divide the elements of the first 

column of E by 
s
10 and the second column by 

s
1. The apparent rule (which is correct and 
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general) is to divide each column of E by the square root of its length. The square root of the 

length may be surprising, but arises because of the second multiplication by the elements of SW@2 

in (2.320). This form of column scaling should be regarded as “non-statistical,” in that it is 

based upon inferences about the numerical magnitudes of the columns of E and does not employ 

information about the statistics of the solution. Indeed, its purpose is to prevent the imposition 

of structure on the solution for which no statistical basis has been anticipated. In general, the 

elements of x will not prove to be equal–because the equations themselves do not permit it. ˜

If the system is full-rank overdetermined, the column weights drop out, as claimed for least-

squares above. To see this result, consider that in the full-rank case, 

˜0 x = (E0W E0)31E0W y 

x = SW@2(S1@2EW ESW@2)31S1@2EW˜ y (2.325) 

= SW@2S3W@2(EW E)31S31@2S1@2EW y = (EW E)31EW y = 

Usually row-scaling is done prior to column scaling so that the row norms have a simple physical 

interpretation. 

2.5.10 Solution and Observation Resolution. Data Ranking 

Typically, either or both of the set of vectors vl, ul used to present x, y will be deficient 

in the sense of the expansions in (2.186). It follows immediately from Eqs. (2.187) that the 

particular-SVD solution is, 

˜ Nx = Tyx> (2.326) {34093a} x = VNV
W 

and the data vector with which both it and the general solution are consistent is, 

{34093b} y = UNU
W˜ Ny = Txy= (2.327) 

It is convenient therefore, to define the solution and observation resolution matrices, 

{resol1} Ty = VNV
W

NN > Tx = UNU
W = (2.328) 

The interpretation of the solution resolution matrix is identical to that in the square-symmetric 

case (P. 77). 

Interpretation of the data resolution matrix is slightly subtle. Suppose an element of y was 

fully resolved, that is, some row, m0, of  UNUW were all zeros except for diagonal element m0,N 

which is one. Then a change of unity in |m0 would produce a change in x̃ which would leave 

unchanged all other elements of ỹ. If  element  m0 is not fully resolved, then a change of unity 

in observation |m0 produces a solution which leads to changes in other elements of ỹ. Stated 
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slightly di�erently, if |l is not fully resolved, the system lacks adequate information to distinguish 

equation l from a linear dependence on one or more other equations. 

One can use these ideas to construct quantitative statements of which observations are the 

most important (“data ranking”). From (2.189), trace(Tx) =  N and the relative contribution 

to the solution of any particular constraint is given by the corresponding diagonal element of 

Tx. 

Consider the example (2.317) without row weighting. At rank 1, 

0=099 
Tx =


0=0099 

;
AA? 

AA= 

< 
AA@ 

AA>

> 

0=099 0=9901


showing that the second equation has played a much more important role in the solution than 

the  first  one–despite the  fact  that  we  asserted  the expected  noise in both to be the  same.  The  

reason is that described above, the second equation in e�ect asserts that the measurement is 

10 times more accurate than in the first equation–and the data resolution matrix informs us 

of that explicitly. The elements of Tx can be used to rank the data in order of importance to 

the final solution. All of the statements about the properties of resolution matrices made above 

apply to both Tx, Ty. 

If row and column scaling have been applied to the equations prior to application of the 

SVD, the covariance, uncertainty, and resolution expressions apply in those new, scaled spaces. 

The resolution in the original spaces is, 

Ty = SW@2Ty0 S
3W@2 > (2.329) {34095a} 

Tx = WW@2Tx0 W
3W@2 > (2.330) {34095b} 

so that 

x̃ = Tyx> ỹ = Txy (2.331) {34096} 

where Ty0 , Tx0 are the expressions Eq. (2.328) in the scaled space. The uncertainty in the new 

space is P = S1@2P0SW@2 where P0 is the uncertainty in the scaled space. 

We have seen an interpretation of three matrices obtained from the SVD: VNVW 
N , UNU

W 
N , 

VN�
32 
N V

W 
N . The reader may well wonder, on the basis of the symmetries between solution and 

data spaces, whether there is an interpretation of the remaining matrix UN�
32 
N U

W 
N? 

To understand its use, recall the normal equations (2.162, 2.163) that emerged from the 

constrained objective function (2.148). They become, using the SVD for E> 

V�UW 
µ = x > (2.332) {35018a} 

U�VW x = y = (2.333) {35018b} 
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No matter what the rank of E> the pair of equations is always square, of dimension P + Q . 

These equations show that U� 2UW 
µ = y= The particular SVD solution is, 

{35019} µ = UN �
32UW˜ N N y > (2.334) 

involving the “missing” fourth matrix. Thus, 

CM 
= 2UN �

32UW 
N N y > 

Cy 

and taking the second derivative, 

C2M 
= 2UN �

32UW{35020} 
Cy2 N N (2.335) 

is the Hessian of M with respect to the data. If any of the �l become very small, the objec-

tive function will be extremely sensitive to small perturbations in y–producing an e�ective 

nullspace of the problem. Eq. (2.335) supports the suggestion that perfect constraints can lead 

to di!culties. 

2.5.11 Relation to Tapered and Weighted Least-Squares 

In using least-squares, a shift was made from the simple objective functions (2.90) and (2.148) 

to the more complicated ones in (2.115) or (2.126). The change was made to permit a degree of 

control of the relative norms of ˜ n, and through the use of W, S of the individual elements and x, ˜

the resulting uncertainties, and covariances. Application of the weight matrices W, S through 

their Cholesky decompositions to the equations prior to the use of the SVD is equally valid– 

thus providing the same amount of influence over the solution elements. The SVD provides its 

control over the solution norms, uncertainties and covariances through choice of the e�ective 

rank N 0 . This approach is di�erent from the use of the extended objective functions (2.115), 

but the SVD is actually useful in understanding the e�ect of such functions. 

Assume any necessary W, S have been applied. Then, the full SVD, including zero singular 

values and corresponding singular vectors, is substituted into (2.117), 

x̃ = (� 2IQ + V� W �VW )31V� W UW y > 

we have 

2I)31VW V� W UWx̃ = V(� W � + � y (2.336) ¡ ¢
2 31 

= V diag �l + � 2 � W UW y> 

or, 
Q WX �l(ul y)˜{34097b} x = 2 vl = (2.337) 
�l + �2 

l=1 
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It is now apparent what the e�ect of “tapering” has done in least-squares. The word refers to the 

tapering down of the coe!cients of the vl by  the presence of  �2 from the values they would have 

in the “pure” SVD . In particular, the guarantee that matrices like (EW E + �2I) always have an 

inverse despite vanishing singular values, is seen to follow because the presence of �2 A 0 assures 

the inverse of the sum always exists, irrespective of the rank of E. The simple addition of a 

positive constant to the diagonal of a singular matrix is a well-known ad hoc method for giving it 

an approximate inverse. Such methods are a form of what is usually known as “regularization,” 

and are procedures for suppressing nullspaces. Note that the coe!cients of vl vanish with �l 

and a solution nullspace still exists. 

The residuals of the tapered least-squares solution can be written in various forms. Eqs. (2.118) 

are, 

W )31UWñ = � 2U(� 2I + �� y (2.338) 
P WX (ul y)�

2 

= ul >2 �l + �2 
l=1 

that is, the projection of the noise onto the range vectors ul no longer vanishes. Some of the 

structure of the range of EW is being attributed to noise and it is no longer true that the residuals 

are subject to the rigid requirement (2.263) of having zero contribution from the range vectors. 

An increased noise norm is also deemed acceptable, as the price of keeping the solution norm 

small, by assuring that none of the coe!cients in the sum (2.337) becomes overly large–values 

we can control by varying �2 . The covariance of this solution about its mean (Eq. 2.119) is 

readily rewritten as 

Q Q W W XX �l�m ul Rqqum 
2C{{ =

(�l + �2)(� 2 + �2) 
vlvm

W 

ml=1 m=1 

Q 2 
2 
X �l W 

(2.339) 
= � vlvq 2(�l + �2)2 l 

l=1 

2 2IQ )
31VW = � 2 V(� W � + � IQ )

31 � W �(� W � + �q

where the second and third lines are again the special case of white noise. The role of �2 in 

controlling the solution variance, as well as the solution size, should be plain. The tapered 

least-squares solution is biassed –but the presence of the bias can greatly reduce the solution 

variance. Study of the solution as a function of �2 is known as “ridge regression”. Elaborate 

techniques have been developed for determining the “right” value of �2=47 
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The uncertainty, P> is readily found as, 

Q Q X W X 2 W 
2 �l vlvlP=� 

¡
2 ¡ vlvl + �q ¡ (2.340) 

2 2 �l + �2 
¢2 

�l + �2 
¢2 

l=1 l=1 ¢ ¡ ¢31 ¡ ¢
2 2 32 

VW 2 W W W 2 31 
VW = � V � W �+� I +� V � �+� 2I � � � �+� Iq

showing the variance reduction possible for finite �2 (reduction of the second term), and the 

bias error incurred in compensation in the first term. 

The truncated SVD and the tapered SVD-tapered least-squares solutions produce the same 

qualitative e�ect–it is possible to increase the noise norm while decreasing the solution norm. 

Although the solutions di�er somewhat, they both achieve a purpose stated above–to extend 

ordinary least-squares in such a way that one can control the relative noise and solution norms. 

The quantitative di�erence between them is readily stated–the truncated form makes a clear 

separation between range and nullspace in both solution and residual spaces: The basic SVD so-

lution contains only range vectors and no nullspace vectors. The residual contains only nullspace 

vectors and no range vectors. The tapered form permits a merger of the two di�erent sets of 

vectors: Then both solution and residuals contain some contribution from both formal range 
2and e�ective nullspaces (for 0 �l ?? �2).� 

We have already seen several times that preventing ñ from having any contribution from the 

range of EW introduces covariances into the residuals, with a consequent inability to produce 

values which are strictly white noise in character (although it is only a real issue as the number 

of degrees of freedom, P � N> goes toward zero). In the tapered form of least-squares, or the 

equivalent tapered SVD, contributions from the range vectors ul> l  � N> is permitted, and a 

potentially more realistic residual estimate is obtained. (There is usually no good reason why ñ 

should be expected to be orthogonal to the range vectors.) 

2.5.12 Resolution and Variance of Tapered Solutions 

The tapered least-squares solutions have an implicit nullspace, arising both from the terms 

corresponding to zero singular values, or from values small compared to �2 . To obtain a measure 

of solution resolution when the vl vectors have not been computed, consider a situation in which 

the true solution were xm0 � �m>m0 , that is, unity in the m0 element and zero elsewhere. Then, in 

the absence of noise, the correct value of y would be 

{34099} Exm0 = ym0 > (2.341) 

defining ym0 . Suppose we actually knew (had measured) ym0 , what solution xm0 would be ob-

tained? 
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Assuming all covariance matrices have been applied and suppressing any primes, tapered 

least-squares (Eqs. 2.121) produces, 

{34100} x̃m0 = EW (EEW + � 2I)31 ym0 = EW (EEW + � 2I)31Exm0 > (2.342) 

which is row (or column) m0 of 

Ty = EW (EEW + � 2I)31E = (2.343) {34101} 

Thus we can interpret any row or column of Ty as the solution for one in which a Kronecker delta 

was the underlying correct one. It is an easy matter, using the SVD of E and letting �2 $ 0 

to show that (2.343) reduces to VVW . These expressions apply in the row- and column-scaled 

space and are suitably modified to take account of any W> S which may have been applied, as 

in Eqs. (2.329), (2.330). An obvious variant of (2.343) follows from the alternative least-squares 

solution (2.128), with W =�2I> S = I> 

Ty = 
¡
EW E+� 2I 

¢31 
EW E (2.344) 

Data resolution matrices are obtained similarly. Let |m = �mm1 = Eq. (2.136) produces 

{34142} 

x̃m1 = EW ¡EEW +� 2I 
¢31 

ym1 > 

which if substituted into the original equations is, 

(2.345) 

Thus, 

Ex̃m1 = EEW ¡EEW +� 2I 
¢31 

ym1 = (2.346) 

The alternate form is, 

Tx = EEW ¡EEW +� 2I 
¢31 

(2.347) 

Tx = E 
¡
EW E+� 2I 

¢31 
EW = 

All of the resolution matrices reduce properly to either UUW > VVW 

(2.348) 

as �2 $ 0 when the SVD 

for E is substituted. 

2.6 Combined Least-Squares and Adjoints 

2.6.1 Exact Constraints 

Consider now a modest generalization of the constrained problem Eq. (2.88) in which the un-

knowns x are also meant to satisfy some constraints exactly, or nearly so, for example, 

Ax = b = (2.349) {35001} 
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In some contexts, (2.349) is referred to as the “model,” a term also employed, confusingly, for 

the physics defining E along with the statistics assumed to describe x> n= In the end, there is no 

unique meaning to the term, and only the context is a guide. We will temporarily refer to Eq. 

(2.349) as “perfect constraints,” as opposed to those involving E> which generally always have 

a non-zero noise element. 

An example of a model in these terms occurs in acoustic tomography (Chapter 1), where 

measurements exist of both density and velocity fields, and they are connected by dynamical 

relations; the errors in the relations are believed to be so much smaller than those in the data, 

that for practical purposes, the constraints (2.349) might as well be treated as though they are 

perfect.48 But otherwise, the distinction between constraints (2.349) and the observations is 

an arbitrary one, and the introduction of an error term in the former, no matter how small, 

removes any particular reason to distinguish them: A may well be some subset  of  the rows of  

E. What follows can in fact be obtained by imposing the zero noise limit for some of the rows 

of E in the solutions already described. Furthermore, whether the model should be satisfied 

exactly, or should contain a noise element too, is situation dependent. One should be wary of 

introducing exact equalities into estimation problems, because they carry the strong possibility 

of introducing small eigenvalues, or near singular relationships, into the solution, and which may 

dominate the results. Nonetheless, carrying one or more perfect constraints does produce some 

insight into how the system is behaving. 

Several approaches are possible. Consider for example, the objective function, 

2{35002} M = (Ex � y)W (Ex � y) + � (Ax b)W (Ax � b) (2.350)� 

where W, S have been previously applied if necessary, and �2 is retained as a trade-o� parameter. 

This objective function corresponds to the requirement of a solution of the combined equation 

sets,
 6565;
AA?


<
AA@ 

AA>

x +

997 
n 

u b 

997

E
 ::8


::8

y 

(2.351){35003} =
AA=
A


in which u is the model noise, and the weight given to the model is �2I.) For any finite �2, the  

perfect constraints are formally “soft” because they are being applied only as a minimized sum 

of squares. The solution follows immediately from (2.96) with 

E �$


;
AA?
E


<
AA@ 

AA>

>


;
AA?
y


<
AA@ 

AA>

>
A
A

y �$
AA= =
�A �b 
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assuming the matrix inverse exists. As �2 $ 4, the second set of equations is being imposed 

with arbitrarily great accuracy, and barring numerical issues, becomes as exactly satisfied as one 

wants (this approach is an example of a “penalty method”). 

Alternatively, the model can be imposed as a hard constraint. All prior covariances and 

scalings having been applied, and Lagrange multipliers introduced, the problem is one with an 

objective function, 

M = n W n � 2µ W (Ax � b) = (Ex � y)W (Ex � y)� 2µ W (Ax � b) > (2.352) {35004} 

which is a variant of (2.148). But now, Eq. (2.349) is to be exactly satisfied, and the observations 

only approximately so. 

Setting the derivatives of M with respect to x, µ to zero, gives the normal equations, 

AW 
µ = EW (Ex � y) (2.353) 

Ax = b (2.354) 

Eq. (2.353) represents the adjoint, or “dual” model, for the adjoint or dual solution µ> and the 

two equation sets are to be solved simultaneously for x> µ. They are again P +Q equations in 

P +Q unknowns (P of the �l> Q  of the {l), but need not be full-rank. The first set, sometimes 

referred to as the “adjoint model,” determines µ from the di�erence between Ex> and y= The 

last set is just the exact constraints. 

We can most easily solve two extreme cases in Eqs. (2.353, 2.354)–one in which A is square, 

Q × Q , and of full-rank, and one in which E has this property. In the first case, 

x̃ = A31b (2.355) {35006} 

and, 

µ̃ = A3W (EW EA31 �EW )b = (2.356) {35008} 

Here, the values of x̃ are completely determined by the full-rank, perfect constraints and the 

minimization of the deviation from the observations is passive. The Lagrange multipliers or 

adjoint solution, however, are useful in providing the sensitivity information, CM@Cb = 2µ, 

as already discussed. The uncertainty of this solution is zero because of the full rank perfect 

model assumption (2.354). 

In the second case, from (2.353), 

x̃ = (EW E)31[EW y +AW 
µ] � x̃x + (E

W E)31AW 
µ 

where x̃x = (EW E)31EW y is the ordinary, unconstrained least-squares solution. Substituting 

into (2.354) produces, 

µ̃ = [A(EW E)31AW ]31(b �Ax̃x) (2.357) {35009} 
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and 

x = ˜˜ xx + (E
W E)31AW [A(EW E)31AW ]31(b A˜ (2.358) {35010}� xx) > 

taticupdate1} assuming A is full-rank underdetermined. The perfect constraints are underdetermined; their 

range is being fit perfectly, with its nullspace being employed to reduce the misfit to the data 

as far as possible. The uncertainty of this solution may be written,49 

P = G2(˜n 
x � x) =  (2.359) o £ ¤

� 2 (EW E)31 � (EW E)31AW A(EW E)31AW 31 
A(EW E)31 > 

which represents a reduction in the uncertainty of the ordinary least-squares solution (first term 

on the right) by the information in the perfectly known constraints. The presence of A31 in 

these solutions is a manifestation of the warning about the possible introduction of components 

dependent upon small eigenvalues of A. If neither EW E nor A is of full-rank one can use, e.g., 

the SVD with the above solution; the combined E> A may be rank deficient, or just determined. 

Example


Consider the least-squares problem of solving


{1 + q1 = 1  

{2 + q2 = 1  

{1 + {2 + q3 = 3  

with uniform, uncorrelated noise of variance 1 in each of the equations. The least-squares 

solution is then �
 ¸W 

x̃ = 1=3333 1=3333

with uncertainty ;
AA?


<
AA@ 

AA>


0=6667 0=3333�
P = =
AA=
 0=333 0=6667�

But suppose that it is known or desired that {1�{2 = 1. Then  (2.358) produces x̃ = [1=8333 0=8333]W , 

µ = 0=5, M 0 = 0=8333, with uncertainty 
;
AA?


< 
AA@ 

AA>

=


0=1667 0=1667 
P = AA=
0=1667 0=1667


�
 ¸W 

and theIf the constraint is shifted to {1 � {2 = 1=1, the new solution is x̃ = 1=8833 0=7833

new objective function is M 0 = 0=9383, consistent with the sensitivity deduced from �= 
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A more generally useful case occurs when the errors normally expected to be present in the 

supposedly exact constraints are explicitly acknowledged. If the exact constraints have errors 

either in the “forcing,” b, or in a mis-specification of A> then we write, 

Ax = b + �u > (2.360) {35012} 

 ® 
assuming, hui = 0> uuW = Q. � is a known coe!cient matrix included for generality: If for 

example the errors were thought to be the same in all equations, we could write � = [1> 1> ===1]W , 

and then u would be just a scalar. Let the dimension of u be S × 1= Such representations are not 

unique and more will be said about them in Chapter 4. A hard constraint formulation can still 

be used, in which (2.360) is still to be exactly satisfied, imposed through an objective function 

of form, 

M = (Ex � y)W R31 
qq (Ex � y) + u W Q31 u 2µ W (Ax b � �u) = (2.361) {35013} � � 

Here, the noise error covariance matrix has been explicitly included. Finding the normal equa-

tions by setting the derivatives with respect to (x> u> µ) to zero produces, 

AW 
µ = EW R31 

qq (Ex � y) (2.362) 

W � µ = Q31 u (2.363) 

Ax + �u = b (2.364) 

This system is (2Q + S ) equations in (2Q + S ) unknowns, where the first equation is again 

the adjoint system, and dependent upon Ex � y. Because u is simple function of the Lagrange 

multipliers, the system is easily reduced to, 

AW 
µ = EW R31 

qq (Ex � y) (2.365) 

Ax + �Q� W 
µ = b (2.366) 

which is now 2Q × 2Q> the u having dropped out. If all matrices are full-rank, the solution is 

immediate; otherwise the SVD is used. 

To use a soft constraint methodology, write 

M = (Ex � y)W R31 
qq (Ex � y) + (Ax b �u)W Q31(Ax b �u)W > (2.367) {soft1} � � � � 

and find the normal equations. It is again readily confirmed that the solutions using (2.350) 

or (2.361) are identical, and the hard/soft distinction is seen again to be artificial. The soft ° ° 
constraint method can deal with perfect constraints, by letting °Q31° $ 0 but stopping when 

numerical instability sets in. The resulting numerical algorithms fall under the general subject 
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of “penalty” and “barrier” methods.50 Objective functions like ((2.361), 2.367) will be used 

extensively in Chapter 4. 

Example 

Consider the partial di�erential equation 

�u 
C{ 

2! + 
C! 

= � sin { sin | (2.368) {35014} 

A code was written to solve it by finite di�erences for the case � = 0=05 and ! = 0  on the 

boundaries 0 � { � �> 0 �> as depicted in figure 2.13. The discretized form of the model � | � 

is then the perfect Q × Q constraint system 

{35015} Ax = b > x = {!lm } (2.369) 

and b is the equivalently discretized � sin { sin |. The theory of partial di�erential equations 

shows that this system is full-rank and generally well-behaved. But let us pretend that information 

is unknown to us, and seek the values x which makes the objective function 

{35016} �M = x W x 2µ W (Ax � b) (2.370) 

stationary with respect to x, µ, that is the Eqs. (2.353, 2.354) with E = I> y = 0= Physically, 

xW x is identified with the solution potential energy. The solution µ, corresponding to the solution 

of fig. 2.13b is shown in fig. 2.13c. What is the interpretation? The Lagrange multipliers 

represent the sensitivity of the solution potential energy to perturbations in the forcing field. 

The sensitivity is greatest in the right-half of the domain, and indeed displays a boundary layer 

character. A physical interpretation of the Lagrange multipliers can be inferred, given the simple 

structure of the governing equation (2.368), and the Dirichlet boundary conditions. This equation 

is not self-adjoint; the adjoint partial di�erential equation is of form, 

{35017c} � 2� 
C� u � 
C{ 

= g> (2.371) 

where g is a forcing term, subject to mixed boundary conditions, and whose discrete form is 

obtained by taking the transpose of the A matrix of the discretization (See the Chapter Appendix.) 

The forward solution exhibits a boundary layer on the left-hand wall, while the adjoint solution 

has a corresponding behavior in the dual space on the right-hand wall. The structure of the µ 

would evidently change if M were changed.51 

The original objective function M is very closely analogous to the Lagrangian (not to be 

confused with the Lagrange multiplier) in classical mechanics. In mechanics, the gradients of 

the Lagrangian commonly are virtual forces (forces required to enforce the constraints). The 

modified Lagrangian, M 0, is used in mechanics to impose various physical constraints, and the 
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Figure 2.13: Numerical solution of the partial di�erential equation, Eq. (2.368). Panel (a) 

shows the imposed symmetric forcing � sin { sin |= (b) Displays the solution !> and 

(c) shows the Lagrange multipliers, or adjoint solution, � and whose structure is a 

{3-11cnv.tif} near mirror image of != 

virtual force required to impose the constraints, for example, the demand that a particle follow 

a particular path, is the Lagrange multiplier.52 In an economics/management context, the 

multipliers are usually called “shadow prices” as they are intimately related to the question of 

how much profit will change with a shift in the availability or cost of a product ingredient. The 

terminology “cost function” is a sensible subsitute for what we call the “objective function.” 

More generally, there is a close connection between the stationarity requirements imposed 

upon various objective functions throughout this book, and the mathematics of classical me-

chanics. An elegant Hamiltonian formulation of the material is possible. 

2.6.2 Relation to Green Functions53 

Consider any linear set of simultaneous equations, involving an arbitrary matrix, A> 

Ax = b= (2.372) {green3} 

Write the adjoint equations for an arbitrary right-hand-side, 

AW z = r= (2.373) {green4} 

Then the simple scalar relation, 

z W Ax � x W AW z =0 (2.374a) {bilinear1} 
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(the “bilinear identity”) and implies, 

z W b = x W r= (2.375) {bilinear2} 

In the special case, r = 0> we have 

z W b =0> (2.376) 

that is, b, the right-hand side of the original equations (2=372)> must be orthogonal to any 

solution of the homogeneous adjoint equations. (In SVD-terms, this result is nothing but the 

solvability condition Eq. (2.265).) If A is of full rank, then there is no non-zero solution to the 

homogeneous adjoint equations. 

Now assume that A is Q × Q of full rank. Add a single equation to (2.372) of the form 

{s = �s (2.377) 

or 

{green5} e W 
s x =�s (2.378) 

where es = �ls and �s is unknown,. We also demand that Eq. (2.372) should remain exactly 

satisfied. The combined system of (2.372) and (2.378), written as, 

A1x = b1 (2.379) 

is overdetermined. If it is to have a solution without any residual, it must still be orthogonal to 

any solution of the homogeneous adjoint equations, 

{green7} AW 
1 z = 0= (2.380) 

There is only one such solution (because there is only one vector, z = uQ +1> in the null space of 

AW 
1 )= Write uQ +1 = [gs>�]

W > separating out the first Q elements of uQ +1> calling them gs> and 

calling the one remaining element �= Thus Eq. (2.375) is, 

u W 
Q +1b1 = g W 

s b+��s = 0= (2.381) 

Choose � = �1 (any other choice can be absorbed into gs)= Then, 

{green6} �s = g W 
s b= (2.382) 

If gs were known, then �s in (2.382) would be the only value consistent with the solutions to 

(2.372), and would be the correct value of {s= But (2.380) is the same as, 

{green8} AW gs = es (2.383) 
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(recalling � = �1). Because we would like to find all elements {s, we would need to solve (2.383) 

for all 1 � s � Q> that is, 

{green9} AW G = IQ (2.384) 

which is Q separate problems, each for the corresponding column of G = {g1> g2> ===gQ }. Here, 

G is the Green function. With G known, we have immediately, 

x = GW b> (2.385) 

(from Eq. (2.382)). The Green function is an inverse to the adjoint equations (and generalizes 

in the continuous case to an operator inverse). 

2.7 Minimum Variance Estimation & Simultaneous Equations 

The fundamental objective for least-squares is minimization of the noise norm (2.90), although 

we complicated the discussion somewhat by introducing trade-o�s against kx̃k, various  weights  in  

the norms, and even the restriction that x̃ should satisfy certain equations exactly. Least-squares 

methods, whether used directly as in (2.96) or indirectly through the vector representations of the 

SVD, are fundamentally deterministic. Statistics were used only to understand the sensitivity 

of the solutions to noise, and to obtain measures of the expected deviation of the solution from 

some supposed truth. 

But there is another, very di�erent, approach to obtaining estimates of the solution to 

equation sets like (2.88), directed more clearly toward the physical goal: to find an estimate 

x̃ which deviates as little as possible in the mean-square from the true solution. That is, we 

wish to minimize the statistical quantities h(x̃l � {l)2i for all l= The next section is devoted 

to understanding how to find such an ˜ n), through an excursion into x (and the corresponding ˜


statistical estimation theory. It is far from obvious that this ˜
x should bear any resemblance to 

one of the least-squares estimates; but as will be seen, under some circumstances the two are 

identical. Their possible identity is extremely useful, but has apparently led many investigators 

to seriously confuse the methodologies, and therefore the interpretation of the result. 

2.7.1 The Fundamental Result 

Suppose we are interested in making an estimate of a physical variable, x, which  might  be  a  

vector or a scalar, and is either constant or varying with space and time. To be definite, let 

x be a function of an independent variable r, written discretely as rm (it might be a vector of 

space coordinates, or a scalar time, or an accountant’s label). Let us make some suppositions 
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about what is usually called “prior information.” In particular, suppose we have an estimate of 

the low-order statistics describing x, that is, specifying its mean and second moments: 

hxi = 0 > hx(rl)x(rm )
W i = R{{(rl> rm ) = (2.386) {36001} 

To make this problem concrete, one might think of x as being the temperature anomaly (about 

the mean) at a fixed depth in the ocean (a scalar) and rm a vector of horizontal positions; or 

conductivity in a well, where rm would be the depth coordinate, and x is the vector of scalars at 

any location, rs> {s = { (rs). Alternatively, x might be the temperature at a fixed point, with 

um being the scalar of time. But if the field of interest is the velocity vector, then each element 

of x is itself a vector, and one can extend the notation in a straightforward fashion. To keep the 

notation a little cleaner, however, we will treat the elements of x as scalars. 

Now  suppose that we have some observations,  |l, as a function of the same coordinate rl, 

with a known, zero mean, and second moments 

{36002} R|| (rl> rm ) =  hy (rl) y (rm )
W i > R{| (rl> rm ) =  hx(rl)y(rm )

W i > 1 l> m P (2.387) � � 

(the individual observation elements can also be vectors–for example, two or three components 

of velocity and a temperature at a point–but as with x, the modifications required to treat this 

case are straightforward, and we here assume scalar observations). Could the measurements be 

used to make an estimate of x at a point r̃� where no measurement is available? Or could many 

measurements be useto obtain a better estimate even at points where there exists a measure-

ment? The idea is to exploit the concept that finite covariances carry predictive capabilities 

from known variables to unknown ones. A specific example would be to suppose the measure-

ments are of temperature |(rm ) =  |0(rm ) +  q(rm ), where  q is the noise and we wish to estimate 

the temperature at di�erent locations, perhaps on a regular grid r̃�, 1 � � � Q . This  special  

problem is one of gridding or mapmaking (the tilde is placed on r� as a device to emphasize 

that this is a location where an estimate is sought; the numerical values of these places or labels 

are assumed known). Alternatively, and somewhat more interesting, perhaps the measurements 

are more indirect, with |(ul) representing a velocity field component at depth in a fluid and 

believed connected through a di�erential equation to the temperature field. We might want to 

estimate the temperature from measurements of the velocity. 

Given the previous statistical discussion (P. 30), it is reasonable to ask for an estimate ˜ r�),{(˜

whose dispersion about its true value, {(r̃�) is as small as possible, that is, 

S (r̃�> r̃�) =  h(˜ r�) � {(˜ {(˜{(˜ r�))(˜ r� ) � {(˜ ˜=r))i|r� 
r̃� � 

is to be minimized. If we would like to answer the question for more than one point, and if we 

would like to understand the covariance of the errors of our estimates at various points r̃�, then  
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we can form a vector of values to be estimated, {{̃(r�)} � x̃> and the uncertainty among them, 

{36003} 
P(r̃�> r̃� ) =  h({̃(r̃�) � {(r̃�))({̃(r̃� ) � {(r̃� ))i 

= h(x̃ � x)(x̃ � x)W i > 1 � � � Q >  1 � � � Q >  
(2.388) 

where the diagonal elements, P(r̃�> r̃�), are  to  be  individually minimized (not in the sum of 

squares). Thus we seek the solution with minimum variance about the correct value. 

What should the relationship be between data and estimate? At least initially, one might 

try a linear combination of data, 

P X 
{̃(r̃�) =  E(r̃�> rm )|(rm ) > (2.389) {36004} 

m=1 

for all �, which makes the diagonal elements of P in (2.388) as small as possible. By letting B 

be an Q × P matrix all the points can be handled at once, 

x̃ (r̃�) =  B(r̃�> rm )y (rm ) = (2.390) {36005} 

(This notation is redundant. Eq. (2.390) is a shorthand for (2.389), in which the argument has 

been put into B explicitly as a reminder that there is a summation over all the data locations 

rm for all mapping locations r̃�, but it is automatically accounted for by the usual matrix 

multiplication convention. It su!ces to write x̃ = By=) 

An important result, often called the “Gauss-Markov theorem,” produces the values of B 

that will minimize the diagonal elements of P. 54 Substituting (2.390) into (2.388) and expanding, 

P(r̃�> r̃� ) =  h(B(r̃�> rm )y (rm ) � x(r̃�))(B(r̃� > ro)y (ro) � x(r̃� ))
W i 

� h(By � x)(By � x)W i 

= B 
 
yy W ® � 

 
xy W ® BW � B 

 
yx W ® + 

 
xx W ® 

(2.391) {36006} 

Using R{| = RW 
|{, Eq.  (2.391) is,  

P = BR|| BW � R{| BW � BRW 
{| + R{{ = (2.392) {36007} 

Notice that because R{{ represents the moments of x evaluated at the estimation positions, it 

is a function of r̃�, r̃� , whereas  R{| involves covariances of y at the data positions with x at 

the estimation positions, and is consequently a function R{| (r̃�> rm ). 

Now, using the matrix identity (2.38)–that is, completing the square (adding and subtract-

ing R{| R31 
|| R

W 
{| ), (2.392) becomes, 

P = (B � R{| R
31 
|| )R|| (B � R{| R

31 
|| )
W � R{| R

31 
|| R

W 
{| + R{{ = (2.393) {36009} 
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Setting r̃� = r̃� so that (2.393) is the variance of the estimate at point r̃� about its true 

value, and noting that all three terms in Eq. (2.393) are positive definite, minimization of any 

diagonal element of P is obtained by choosing B so that the first term vanishes or, 

¡ ¢
B(r̃�> rm ) =  R{| (r̃�> rl) R|| rl> rm 

31 
= R{| R31 = (2.394) {36010}|| 

(The diagonal elements of (B R{| R
31 R{| R

31 
|| )
W need to be written out explicitly� || )R|| (B � 

to see that Eq. (2=394) is necessary. Consider the 2 × 2 case: The first term of Eq. (2.393) is of 

the form,
 ;
AA?


;
AA? 

< 
AA@ 

AA> 

;
AA? 

< 
AA@ 

AA> 

F11 F12 

F21 F22 

< 
AA@ 

AA>


W 

F11 F12 U11 U12 

U21 U22 

>
A
A=

A
A A
AF21 F22 =
 =


where C = B R{|R
31= Then, one has the diagonal of,||� 

;
AA?


< 
AA@ 

AA>

>


F2 
12U2211U11 + F12F11 (U21 + U12) +  F2 · 

AA=
 ·= F2 
22U2221U11 + F21F22 (U21 + U12) +  F2 

and these diagonals vanish (with U11> U22 A 0> only if F11 = F12 = F21 = F22 = 0  or, 

|| ). Thus the minimum variance estimate is,B = R{| R31 

¡ ¢ 
˜ r�) =  R{| (˜ || rl> rm y (rm ) > (2.395){36011} x(˜ r�> rl) R

31 

and the actual minimum value of the diagonal elements of P is found by substituting back 

into (2.392) producing, 

{36012} P(˜ || (rm > rn)R
W r�> r̃� ) =  R{{(r̃�> r̃� ) � R{| (r̃�> rm )R31 
{| (r̃� > rn) = (2.396) 

{pagemap1} 

The bias of (2.396) is 

{36013} hx̃ xi = R{| R31 x = (2.397)� || hyi � 

If hyi = x = 0, the estimator is unbiased , and called a “best linear unbiased estimator,” or 

“BLUE”; otherwise it is biassed. The whole development here began with the assumption that 

hxi = hyi = 0;  what is usually done is to remove the sample mean from the observations y> and 

to ignore the di�erence between the true and sample means. An example of using this machinery 

for mapping purposes will be seen in Ch. 3. Under some circumstances, this approximation is 

unacceptable, and one must account for the mapping error introduced by the use of the sample 

mean. A general approach falls under the label of “kriging”, which is also briefly discussed in 

Chapter 3. 
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2.7.2 Linear Algebraic Equations 

The result (2.394)—(2.396) is the abstract general case and is deceptively simple. Invocation of 

the physical problem of interpolating temperatures etc., is not necessary: the only information 

actually used is that there are finite covariances between x> y> n. Although we will explicitly 

explore its use for mapping in Chapter 3, suppose instead that the observations are related to 

the unknown vector x as in our canonical problem, that is, through a set of linear equations: 

Ex + n = y. The measurement covariance, R|| , can then be computed directly as: 

R|| = h(Ex + n)(Ex + n)W i = ER{{EW + Rqq = (2.398) {36014} 

The unnecessary, but simplifying and often excellent, assumption was made that the cross-terms 

of form, 

R{q = RW 
q{ = 0> (2.399) {36015} 

so that 

R{| = hx(Ex + n)W i = R{{EW > (2.400) {36016} 

that is, there is no correlation between the measurement noise and the actual state vector (e.g., 

that the noise in a temperature measurement does not depend upon whether the true value is 

10� or 25�). 

Under these circumstances, Eqs. (2.395), (2.396) take on the form: 

¡ ¢
x̃ = R{{EW ER{{E

W +Rqq 
31 
y (2.401) 

n = y � E˜˜ x (2.402) ¡ ¢
P = R{{�R{{EW ER{{E

W +Rqq 
31 
ER{{ (2.403) 

These latter expressions are extremely important; they permit discussion of the solution to 

a set of linear algebraic equations in the presence of noise using information concerning the 

statistics of both the noise and the solution. Notice that they are identical to the least-squares 

expression (2.136) if S = R{{, W = Rqq, except that there the uncertainty was estimated 

about the mean solution; here it is taken about the true one. As is generally true of all linear 

methods, the uncertainty, P, is independent of the actual data, and can be computed in advance 

should one wish. 

From the matrix inversion lemma, Eqs. (2.401, 2.403) can be rewritten 
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¡ ¢31 
˜ {{ +E

W 
qq qq y (2.404) x = R31 R31E EW R31 

n = y � E˜˜ x (2.405) ¡ ¢31 
P = R31 R31E (2.406) {{ +E

W 
qq 

Although these alternate forms are algebraically and numerically identical to Eqs. (2.401-

2.403), the size of the matrices to be inverted changes from P × P matrices to Q × Q , where  

E is P × Q (but note that Rqq is P × P ; the  e!cacy of this alternate form may depend upon 

whether the inverse of Rqq is known). Depending upon the relative magnitudes of P , Q , one  

form may be much preferable to the other. Finally, (2.406) has an important interpretation we 

will discuss when we come to recursive methods. Recall, too, the options we had with the SVD 

of solving P × P or Q × Q problems. Note that in the limit of complete a priori ignorance of ° ° 
the solution, °R31 ° $ 0> Eqs. (2.404, 2.406) reduce to, {{ 

¡ ¢
x= EW R31E EW R31˜ qq 

31 
qq y> ¡ ¢31 

P= EW R31E >qq 

the conventional weighted least-squares solution, now with P = C{{= More generally, the pres-

{{ introduces a bias into the solution so that h˜ = x> which, however, produces ence of finite R31 xi 6

a smaller solution variance than in the unbiased solution. 

The solution (2.401-2.403, 2.404-2.406) is an “estimator”; it was found by demanding a 

solution with the minimum dispersion about the true solution and is found, surprisingly, to 

be identical with the tapered, weighted least-squares solution when S = R{{> W = R > theqq

least-squares objective function weights are chosen, as is commonly done. This correspondence 

of the two solutions often leads them to be seriously confused. It is essential to recognize that 

the logic of the derivations are quite distinct: We were free in the least-squares derivation to use 

weight matrices which were anything we wished–as long as appropriate inverses existed. 

The correspondence of least-squares with what is usually known as minimum variance es-

timation can be understood by recognizing that the Gauss-Markov estimator was derived by 

minimizing a quadratic objective function. The least-squares estimate was obtained from mini-

mizing a summation which is a sample estimate of the Gauss-Markov objective function when 

S = R{{> W = R .qq
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2.7.3 Testing After the Fact 

As with any statistical estimator, an essential step is the testing after an apparent solution has 

x, n is consistent with the assumed prior statistics reflectedbeen found, that the behavior of ˜ ˜

in R{{, Rqq, and any assumptions about their means or other properties. Such a posteriori 

checks are both necessary and very demanding. One sometimes hears it said that estimation 

using Gauss-Markov and related methods is “pulling solutions out of the air” because the prior 

covariance matrices R{{, Rqq often are only poorly known. But producing solutions which pass 

the test of consistency with the prior covariances can be very di!cult. It is also true that the 

solutions tend to be somewhat insensitive to the details of the prior covariances and it is easy 

to become overly concerned with the detailed structure of R{{, Rqq. 

As stated previously, it is also rare to be faced with a situation in which one is truly ignorant 

of the covariances, true ignorance meaning that arbitrarily large or small numerical values of {l, 

ql would be acceptable. In the box inversions of Chapter 1 (to be revisited in Chapter 5), solution 

velocities of order 1000 cm/s might be regarded as absurd, and their absurdity is readily asserted 

by choosing R{{ = diag(10cm/s)
2 , which reflects a mild belief that velocities are 0(10cm/s) with 

no known correlations with each other. Testing of statistical estimates against prior hypotheses 

is a highly developed field in applied statistics, and we leave it to the references already listed 

for their discussion. Should such tests be failed, one must reject the solutions ˜ n and ask whyx, ˜

they failed–as it usually implies an incorrect model, (E> and the assumed statistics of solution 

and/or noise). 

Example 

The underdetermined system 

6
5
;
AA? 

AA= 

1 1  

1 

< 
AA@ 

AA>

x + n =


997

1 1  1 ::8
> 

1 1 1  1� � �

with noise variance hnn W i = =01I, has a solution, if R{{ = I, of 

�
 �
W ¸W 

=


¸
x̃ = EW (EEW + =01I)31 y = 0 =4988 =4988 0 ˜> n = =0025 =0025� 
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If the solution was thought to be large scale and smooth, one might use the covariance 
;
A
AAAAAAAAA

<
A
AAAAAAAAA

1 =999 =998 =997


=?
AAAAAAAAAA

@
A
AAAAAAAAA

999 1 =999 =998 
R{{ = > 

=998 =999 1 =999


>= 997 =998 =999 1
=

which produces a solution, 
�
 ¸W 

>
x̃ = 0=2402 ± 0=028 0=2595 ± 0=0264 0=2595 ± 0=0264 0=2402 ± 0=0283
�


ñ = 0=0006 0=9615�
¸W 

>


which has the desired large-scale property. (One might worry a bit about the structure of the 

residuals; but two equations are wholly inadequate to draw any conclusions.) 

2.7.4 Use of Basis Functions 
sisfunctions} 

A superficially di�erent way of dealing with prior statistical information is often commonly used. 

Suppose that the indices of {l refer to a spatial or temporal position, call it ul, so  that  {l = {(ul). 

Then it is often sensible to consider expanding the unknown x in a set of basis functions, Im , 

for example, sines and cosines, Chebyschev polynomials, ordinary polynomials, etc. One might 

write 
O X 

{(ul) =  �m Im (ul) 
m=1 

<
AAAAAAAAAA

;
AAAAA

or


I1(u1) I2(u1) · · ·  IO(u1) 

I1(u2) I2(u2) · · ·  IO(u2) 

AAAAA?
 @
A
AAAAAAAAA

>
 � = [�1 · · ·�O]
W x = F� > F = A
AAAAAAAAA

· · · ·


>=I1(uQ ) I2(uQ ) · · ·  IO(uQ ) 

which, when substituted into (2.88), produces 

{36019} L� + n = y > L = EF = (2.407) 

If O ? P  ? Q , one can convert an underdetermined system into one which is formally overde-

termined and, of course, the reverse is possible as well. It should be apparent, however, that the 
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solution to (2.407) will have a covariance structure dictated in large part by that contained in 

the basis functions chosen, and thus there is no fundamental gain in employing basis functions 

although they may be convenient, numerically or otherwise. If P�� denotes the uncertainty of 

� then, 

P = FP��FW > (2.408) 

is the uncertainty of x̃= If there are special conditions applying to x, such as boundary conditions 

at certain positions, uE , a choice of basis function satisfying those conditions could be more 

convenient than appending them as additional equations. 

Example 

If, in the last example, one attempts a solution as a first order polynomial, 

{l = d+ eul> u1 = 0> u2 = 1> u3 = 2> = = =  

the system will become two equations in the two unknowns d, e: 
6565 

997 

< 
AA@ 

AA> 

65 

4 6  d 

0 0  �

;
AA?997 

997

d 1::8


::8

::8
EF + n = >=
AA=
 1e
 e 

and if no prior information about the covariance of d, e is provided, 

[d̃> ẽ] =  [0=0769> 0=1154] > 
�
 ¸

˜ W >x = 0=0769 ± 0=0077 0=1923 ± 0=0192 0=3076 ± 0=0308 0=4230 ± 0=0423

ñ = [0=0002> 1=00]W >�

which is also large  scale and  smooth,  but  clearly di�erent than that from the Gauss-Markov 

estimator. Although this latter solution has been obtained from a just-determined system, it is 

not clearly “better.” If a linear trend is expected in the solution, then the polynomial expansion is 

certainly convenient–although such a structure can be imposed through use of R{{ by specifying 

a growing variance with ul. 

2.7.5 Determining a Mean Value 

Let the measurements of the physical quantity continue to be denoted |l and suppose that 

each is made up of an unknown large scale mean, p, plus a deviation from that mean of �l. 

Then, 

p+ �l = |l > 1 l P (2.409) {36020a}� � 
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or 

Dp + � = y > D = 1 1  1  · · ·  

� 
1

¸W 

> (2.410) {36020b} 

and we seek a best estimate, p̃, of  p. In (2.409) or (2.410) the unknown x has become the 

scalar p, and the deviation of the field from its mean is the noise, that is, � n, whose true � 

mean is zero. The problem is evidently a special case of the use of basis functions, in which only 

one function–a zerowk—order polynomial, p, is retained. 

Set Rqq = h�� W i. If, for example, we were looking for a large-scale mean temperature in a 

fluid flow filled with eddies, then Rqq is the sum of the covariance of the eddy field plus that of 

observational errors and any other fields contributing to the di�erence between |l and the true 

mean p. 2To be general, suppose R{{ = hp
2i = p0> and from (2.404), 

{36021b} 

˜

½ ¾
1 31 

p
p = 2 qq 

0 
+DW R31D DW R31 

qq y 

= 
1 

1@p2 
qq D qq y= 

0 +D
W R31 DW R31 

(2.411) 

(DW R31D is a scalar).55 
qq The expected uncertainty of this estimate is (2.406), 

{36021c} S = 

½ ¾
2 qq 
0 
+DW R31D = 

1 31 1 
p 1@p2 

qq D0 +D
W R31 > (2.412) 

(also a scalar). 

The estimates may appear somewhat unfamiliar; they reduce to more common expressions 

in certain limits. Let the �l be uncorrelated, with uniform variance �2; Rqq is then diagonal 

and (2.411) reduces to, 

{36022a} p̃ = 
1 

|l = 
p0 

(1@p2 
0 +P@�

2)�2 �2 +Pp2 |l > 
P P X 2 X 

l=1 0 l=1 

(2.413) 

where the relations DW D =P , DW y = l=1 |l were used. The expected value of the estimate 
PP 

is 

{36022b} 
2 X 2 

pi = 
�2 +

p

Pp2 h|li = 0 = p>  
0 l 0 

P 

h ˜ 0 p

�2 +Pp2 Pp  6 (2.414) 

that is, it is biassed, as inferred above, unless h|li = 0, implying  p = 0. P becomes, 

{36022c} S = 
1 

1@p2 
0 +P@�

2 
= 

� p2 2 
0 

�2 +Pp2 
0 
= (2.415) 

Under the further assumption that p2 ,0 $4

1 
P X 

{36022d} p̃ = 
P 

|l > (2.416) 
l=1 

{36022e} S = � @P > 2 (2.417) 
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which are the ordinary average and its variance (the latter expression is the well-known “square 

root of P rule” for the standard deviation of an average; recall Eq. (2.43)); h ̃pi in (2.416) 

is readily seen to be the true mean–this estimate has become unbiased. But the magnitude 

of (2.417) always exceeds that of (2.415)–acceptance of bias in the estimate (2.413) reduces 

gemeanvalue2} the uncertainty of the result–a common trade-o� in estimation problems. 

Eqs. (2.411)—(2.412) are the more general estimation rule–accounting through Rqq for cor-

relations in the observations and their irregular distribution. Because many samples are not 

independent, (2.417) may be extremely optimistic. Eq. (2.412) gives one the appropriate ex-

pression for the variance when the data are correlated (that is, when there are fewer degrees of 

freedom than the number of sample points). 

Example 

The mean is needed for the P =500 values of the measured time series, shown in Fig. 

˜2.14. If one calculates the ordinary average, p = �20=0> and the standard error, treating the 

measurements as uncorrelated, is by Eq. (2.417) is ±0=31= If on the other hand, one uses the 

covariance function displayed in Fig. 2.14, and (Eqs. 2.411, 2.412) with p
20 $4> one obtains

p̃ = �23=7> with a standard error of ±20= The true mean of the time series is actually zero (it 

was generated that way), and one sees the dire e�ects of assuming uncorrelated measurement 

noise, when the correlation is actually very strong. Within 2 standard deviations (a so-called 95% 

confidence interval for the mean), one finds, correctly, that the sample mean is indistinguishable 

from zero, whereas the mean assuming uncorrelated noise would appear to be very well determined 

and markedly di�erent from zero. 56 (One might be tempted to apply a transformation to render 

the observations uncorrelated before averaging, and so treat the result as having P degrees-of-

freedom. But recall, e.g. that for Gaussian variables (P. 37), the resulting numbers will have 

di�erent variances, and one would be averaging apples and oranges. 

The use of the prior estimate, p
20, is interesting. Letting p
20 go to infinity does not mean


that an infinite mean is expected ((2.416) is finite). It is is merely a statement that there is 

no information whatever, before we start, as to the magnitude of the true average–it could be 

arbitrarily large (or small and of either sign) and if it came out that way, would be acceptable. 

Such a situation is, of course, unlikely and even though we might choose not to use information 

concerning the probable size of the solution, we should remain aware that we could do so (the 

importance of the prior estimate diminishes as P grows–so that with an infinite amount of 

data it has no e�ect at all on the estimate). If a prior estimate of p itself is available, rather 

than just its mean square, the problem should be reformulated as one for the estimate of the 

perturbation about this value. 
2
0It is very important not to be tempted into making a first estimate of p by using (2.416), 
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Figure 2.14: Time series |w (upper panel) whose mean is required. Lower panel displays the 

autocovariance h|w|w0 i as a function of |w w0| (in this special case, it does not� 

corrmean.eps} depend upon w> w0 separately.) True mean of |w is zero by construction. 

substituting into (2.413), thinking to reduce the error variance. For the Gauss-Markov theorem 

to be valid, the prior information must be truly independent of the data being used. 

2.8 Improving Recursively 

2.8.1 Least-Squares 

x> ̃A common situation arises that one has a solution ˜ n> P, and more information becomes 

available, often in the form of further noisy linear constraints. One way of using the new 

information is to combine the old and new equations into one larger system, and re-solve. This 

approach may well be the best one. Sometimes, however, perhaps because the earlier equations 

have been discarded, or for reasons of storage or both, one prefers to retain the information in 

the previous solution without re-solving the entire system. So-called recursive methods, in both 

least-squares and minimum variance estimation, provide the appropriate recipes. 

Let the original equations be re-labeled so that we can distinguish them from those that 

come later, in the form, 

{38001} E(1)x + n(1) = y(1) (2.418) 

where the noise n(1) has zero mean and covariance matrix Rqq(1). Let the estimate of the 

solution to (2.418) from one of the estimators be written as x̃(1), with uncertainty P(1). As  a  

specific example, suppose (2.418) is full-rank overdetermined, and was solved using row weighted 
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least-squares as, £ ¤
˜{38002} x(1) = E(1)W Rqq(1)

31E(1)
31 
E(1)W Rqq(1)

31 y(1)> (2.419) 

with corresponding P(1) (column weighting is redundant in the full-rank fully-determined case). 

Some new observations, y(2), are obtained, with the error covariance of the new observations 

given by Rqq(2)> so that the problem for the unknown x is 

6565;
AA?


< 
AA@ 

AA>

x +


E(1)
 997

n(1)
::8
=


997

y(1)
::8
 (2.420) {38003}AA=
E(2) n(2) y(2)


where x is the same unknown. We assume hn(2)i = 0 and 

hn(1)n(2)W i = 0> (2.421) {3.7.4} 

that is, no correlation of the old and new measurement errors. A solution to (2.420) should give 

a better estimate of x than (2.418) alone, because more observations are available. It is sensible 

to row weight the concatenated set to 

656565 

Rqq(1)
3W@2E(1)::8
x +


Rqq(1)
3W@2n(1)::8
=


Rqq(1)
3W@2y(1)::8
= (2.422) {38004} 

Rqq(2)
3W@2E(2) Rqq(2)

3W@2n(2) Rqq(2)
3W@2y(2) 

“Recursive weighted least-squares” seeks the solution to (2.422) without inverting the new, larger 

matrix, by taking advantage of the existing knowledge of x (1) > P (1) –however they might 

actually have been obtained. The objective function corresponding to finding the minimum 

weighted error norm in (2.422) is, 

M = (y(1) � E(1)x)W Rqq(1)
31(y(1) � E(1)x) 

+ (y(2) � E(2)x)W Rqq(2)
31(y(2) � E(2)x) = 

(2.423) {recurs11} 

Taking the derivatives with respect to x, the normal equations produce a new solution, 

x̃(2) = 
© 
E(1)W Rqq(1)

31E(1) + E(2)W Rqq(2)
31E(2) 

ª31 

© 
E(1)W Rqq(1)

31 y(1) + E(2)W Rqq(2)
31 y(2) 

ª 
= 

(2.424) {recurs10} 

This is the result from the brute-force re-solution. But one can manipulate (2.424) into57 (see 

Appendix 3), 

997 
997 

997 
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x (2)=˜˜ x(1)+ h i
P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
[y (2) �E (2) ̃x (1)] 

= x (1) + K (2) [y (2) �E (2) ̃˜ x (1)] > (2.425) 

P (2) = P (1) �K (2) E (2) P (1) > (2.426) 

where h i
{recurs4} K (2) = P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
= (2.427) 

(Compare Eq. (2.425) with (2.358).) 

An alternate form, for P (2) > found from the matrix inversion lemma, is h i
{recurs5} P (2) = P (1)31 +E (2)W 

Rqq (2)
31 
E (2) 

31 
= (2.428) 

A similar alternative for x̃(2), involving di�erent dimensions of the matrices to be inverted, 

is also available from the matrix inversion lemma> but is generally less useful. (In some large 

problems, however, matrix inversion can prove less onerous than matrix multiplication.) 

The solution (2.425) is just the least-squares solution to the full set, but rearranged after 

a bit of algebra. The original data, y(1), and  coe!cient matrix, E(1), have disappeared, to be 

replaced by the first solution x̃(1)> and its uncertainty, P(1). That is to say, one need not retain 

the original data and E(1) for the new solution to be computed. Furthermore, because the new 

solution depends only upon x̃(1), and  P(1), the particular methodology originally employed for 

obtaining them is irrelevant: they might even have been obtained from an educated guess, or 

from some long previous calculation of arbitrary complexity. If the initial set of equations (2.418) 

is actually underdetermined, and should it have been solved using the SVD, one must be careful 

that P(1) includes the estimated error owing to the missing nullspace. Otherwise, these elements 

would be assigned zero error variance, and the new data could never a�ect them. Similarly, the 

dimensionality and rank of E (2) is arbitrary, as long as the matrix inverse exists. 

Example 

Suppose we have a single measurement of a scalar, {> so that , { + q (1) = | (1) > hq (1)i = D E 
0> q (1)2 = U (1) = Then an estimate of { is {̃ (1) = | (1) > with uncertainty S (1) = U(1)= A D E 
second measurement then becomes available, { + q (2) = | (2) > hq (2)i = 0> q (2)2 = U (2) = By 

Eq. (2.425), an improved solution is 

{̃ (2) = | (1) + U (1) @(U (1) + U(2)) (| (1) � | (2)) > 
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with uncertainty by Eq. (2.428), 

S (2) = 1@ (1@U (1) + 1@U(2)) = U(1)U(2)@(U (1) + U (2))= 

If U (1) = U (2) = U> we have {̃ (2) = (| (1) + | (2)) @2> S  (2) = U@2= If there are P succesive 

measurements all with the same error variance, U> one finds the last estimate is, 

˜ ˜{ (P ) =  { (P � 1) + U@ (P � 1) (U@ (P � 1) + U)31 | (P ) 
1 

= {̃ (P � 1) + | (P )
P 

1 
= (| (1) + | (2) + === + | (P )) > 
P 

with uncertainty, 
1 U 

S (P ) =  = > 
((P � 1) @U + 1@U) P 

the conventional average and its variance. Note that each new measurement is given a weight 

1@P relative to the average, {̃ (P � 1) > already computed from the previous P � 1 data points. 

The structure of the improved solution (2.425) is also interesting and suggestive. It is made 

up of two terms: the previous estimate plus a term proportional to the di�erence between the 

new observations y(2), and  a prediction of what those observations should have been were the 

first estimate the wholly correct one and the new observations perfect. It thus has the form 

of a “predictor-corrector.” The di�erence between the prediction and the forecast can be called 

the “prediction error,” but recall there is observational noise in y(2). The new estimate is a 

weighted average of this di�erence and the prior estimate, with the weighting depending upon 

the details of the uncertainty of prior estimate and new data. The behavior of the updated 

estimate is worth understanding in various limits. For example, suppose the initial uncertainty 

estimate is diagonal, P(1) = �2I. Then, 

£ ¤
2 31 

K(2) = E(2)W E(2)E(2)W + Rqq(2)@� = (2.429) {38010} 

If the observations are extremely accurate, the norm of Rqq(2)@�2 is small, and if the second 

set of observations is full rank underdetermined, 

K(2) �$ E(2)W (E(2)E(2)W )31 

and 

x(2) = ˜ x(1)]˜ x(1) + E(2)W (E(2)E(2)W )31[y(2) � E(2)˜
(2.430) 

= [I E(2)W (E(2)E(2)W )31E(2)]x̃(1) + E(2)W (E(2)E(2)W )31 y(2)= � 
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Now, [I � E(2)W (E(2)E(2)W )31E(2)] = IQ �VVW = Qy QW > where V is the full-rank singular y 

vector matrix for E (2) >and it spans the nullspace of E(2) (see Eq. 2.290) The update thus 

replaces, in the the first estimate, all the structures given perfectly by the second set of obser-

vations, but retains those structures from the first estimate about which the new observations 

say nothing–a sensible result. At the opposite extreme, when the new observations are very ° ° 
noisy compared to the previous ones, °Rqq@�2 ° $ 4> kK(2)k $ 0> and the first estimate is 

left unchanged. 

The general case represents a weighted average of the previous estimate with elements found 

from the new data, with the weighting depending both upon the relative noise in each, and upon 

the structure of the observations relative to the structure of x as represented in P (1) > Rqq (2) > 

E (2) = The matrix being inverted in (2.427) is the sum of the measurement error covariance 

x(1). To see this, let � be the error gegammaerror}	 Rqq(2), and the error covariance of the “forecast” E(2)˜

component in x̃(1) = x (1) + �, which by definition has covariance h��W i = P(1). Then the 

expected covariance of the error of prediction is hE(1)��W E (1)W i = E(1)P(1)E(1)W , which  D E 
appears in K(2). Because of the assumptions (2.421), and � (1) x (1)W = 0> it follows that, 

{innov1}	 hy (1) (y (2) �E (2) ̃x (1))i = 0=	 (2.431) 

That is, the prediction error or “innovation,” y (2) �E (2) ̃x (1) > is uncorrelated with the previous 

measurement. 

It is useful to notice that Eq. (2.359), the solution to the least-squares problem subject 

to certain perfect constraints imposed by a Lagrange multiplier, can be recovered from the 

minimum variance solution (2.425) by putting E(2) = A, y(2) = b, Rqq(2) $ 0. That  is,  this  

earlier solution can be conceived of as having been obtained by first solving the conventional 

least-squares problem, and then being modified by the later information that Ax = b> with 

very high accuracy. 

The possibility of a recursion based on Eqs. 2.425, 2.426 (or 2.428) is obvious–all subscript 

1 variables being replaced by subscript 2 variables, which in turn are replaced by subscript 3 

variables, etc. The general form would be, 

˜ ˜	 x (q � 1)] (2.432) x (q) =  x (q � 1) +K (q) [y (q) �E (q) ̃h	 i
K (q) =  P (q � 1) E (q)W 

E (q) P (q � 1) E (q)W +Rqq (q) 
31 

(2.433) 

P (q) =  P (q � 1) �K (q) E (q) P (q � 1) (2.434) 
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An alternative form for Eq. (2.434) is, from (2.428), 

{recurs9} P (q) =  
h 
P (q � 1)31 +E (q)W 

Rqq (q)
31 
E (q) 

i31 
= (2.435) 

The computational load of the recursive solution needs to be addressed. A least-squares 

solution does not require one to calculate the uncertainty P (although the utility of x̃ without 

such an estimate is unclear). But to use the recursive form, one must have P (q � 1) > otherwise 

the update step, Eq. (2.432) cannot be used. In very large problems, such as appear in oceanog-

raphy and meteorology (Chapter 6), the computation of the uncertainty, from (2.434), or (2.435) 

can become prohibitive. In such a situation, one might simply store all the data, and do one 

large, single calculation–if this is feasible. Normally, it will involve less pure computation than 

will the recursive solution which must repeatedly update P (q) = 

The comparatively simple interpretation of the recursive, weighted least-squares problem will 

be used in Chapter 4 to derive the Kalman filter and suboptimal filters in a very simple form. 

It also becomes the key to understanding “assimilation” schemes such as “nudging,” “forcing to 

climatology,” and “robust diagnostic” methods. 

2.8.2 Minimum Variance Recursive Estimates 

The recursive least-squares result is identical to a recursive estimation procedure, if appropriate 

least-squares weight matrices were used. Suppose there exist two independent estimates of an 

unknown vector x, denoted x̃d, x̃e with estimated uncertainties Pd, Pe, respectively. They are 

either unbiased , or have the same bias, that is, hx̃di = hx̃ei = xE that is, have the same mean. 

How should the two be combined to give a third estimate x̃+ with minimum error variance? Try 

a linear combination, 

x̃ + = Ld ̃xd + Le ̃xe = (2.436) {38014} 

If the new estimate is to be unbiased, or is to retain the prior bias (that is, the same mean), it 

follows that, 

hx̃ +i = Ldhx̃di + Lehx̃ei (2.437) {38015} 

or, 

xE = LdxE +LexE (2.438) 

or, 

Le = I � Ld (2.439) 

Then the uncertainty is, 

P+ = h(x̃ + � x)(x̃ + � x)W i = h(Ld ̃xd + (I � Ld)x̃e)(Ld ̃xd + (I � Ld)x̃e)
W i 

(2.440) 
= LdPdLW 

d + (I � Ld)Pe(I � Ld)W 
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xd�x) (˜where the independence assumption has been used to set h(˜ xe�x)i = 0. P+ is positive 

definite; minimizing its diagonal elements with respect to Ld yields (after writing out the diagonal 

elements of the products), 

Ld = Pe(Pd + Pe)
31> Le = Pd(Pd + Pe)

31 = 

(Blithely di�erentiating and setting to zero produces the correct answer: 

µ ¶
C (diag P+) CP+ 

= diag  = diag  [2PdLd Ld)] = 0> 
CLd CLd	

�Pe (I � 

or,Ld = Pe(Pd + Pe)31). The new combined estimate is, 

˜+{recurs15}	 x = Pe(Pd + Pe)
31 ̃ xe = (2.441) xd + Pd(Pd + Pe)

31 ̃

This last expression can be rewritten by adding and subtracting x̃d as, 

˜+ ˜	 xdx =	 xd + Pe(Pd + Pe)
31 ̃

+Pd(Pd + Pe)
31 ̃ xdxe � (Pd + Pe)(Pd + Pe)

31 ̃

= xd + Pd(Pd + Pe)
31(˜ ˜˜ xe � xd) =	 (2.442) 

Notice in particular, the re-appearance of a predictor-corrector form relative to x̃d= 

The uncertainty of the estimate (2.442) is easily evaluated as 

{38019b}	 P+ = Pd Pd(Pd + Pe)
31Pd = (2.443) � 

or, by straightforward application of the matrix inversion lemma, is, 

{38019a}	 P+ = (P31 + P3e 
1)31 = (2.444) d 

The uncertainty is again independent of the observations. Eqs. (2.442-2.444) are the general 

rules for combining two estimates with uncorrelated errors. 

xd and its uncertainty are known, but that instead of ˜Now suppose that ˜ xe there are mea-

surements, 

{38020} E(2)x + n(2) = y(2)> (2.445) 

with hn(2)i = 0, hn(2)n(2)W i = Rqq(2). From this second set of observations, we estimate 

the solution, using the minimum variance estimator (2.404, 2.406) with no use of the solution 
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variance; that is, let kR31 
{{ k $ 0. The reason for suppressing R{{, which logically could come 

from Pd, is to maintain the independence of the previous and the new estimates. Then, 

h i
˜{38021a} xe = E (2)W 

Rqq (2)
31 
E (2) 

31 
E (2)W 

Rqq(2)
31 y (2) (2.446) h i

{38021b} Pe = E (2)W 
Rqq (2)

31 
E (2) 

31 
= (2.447) 

Substituting (2.446), (2.447) into (2.442), (2.443), and using the matrix inversion lemma (see 

Appendix 3) gives 

x ˜ xd) > (2.448) ˜+ = xd + PdE(2)W [E(2)PdE(2)
W + Rqq(2)]31(y (2) � E(2)˜³ ´

P+ = P31 + E (2)W 
Rqq (2)

31 
E (2) 

31 
(2.449) d 

which is the same as (2.432), 2.435) and thus a recursive minimum variance estimate coincides 

with a corresponding weighted least-squares recursion. The new covariance may also be confirmed 

to be that in either of Eqs. (2.434) or (2.435). Notice that if x̃d was itself estimated from an 

earlier set of observations, that those data have disappeared from the problem, with all the 

information derived from them contained in x̃d and Pd= Thus, again, earlier data can be wholly 

discarded after use. It does not matter where x̃d originated, whether from over- or under-

determined equations or a pure guess–as long as Pd is realistic. Similarly, expression (2.448) 

remains valid whatever the dimensionality or rank of E (2) as long as the inverse matrix exists. 

The general implementation of this sequence for a continuing data stream corresponds to Eqs. 

(2.432)-(2.435). 

2.9 A Recapitulation 

This chapter has not exhausted the possibilities for inverse methods, and the techniques will be 

extended in several directions in the next Chapters. Given the lengthy nature of the discussion 

so far, however, some summary of what has been accomplished may be helpful. 

The focus is on making inferences about parameters or fields, x, n satisfying linear relation-

ships of the form 

Ex + n = y = 

Such equations arise as we have seen, from both “forward” and “inverse” problems, but the tech-

niques for estimating x, n and their uncertainty are useful whatever the physical origin of the 

equations. Two methods for estimating x, n have been the focus of the chapter: least-squares 

(including the singular value decomposition) and the Gauss-Markov or minimum variance tech-

nique. Least-squares, in any of its many guises, is a very powerful method–but its power and 
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ease of use have (judging from the published literature) led many investigators into serious con-

fusion about what they are doing. This confusion is compounded by the misunderstandings 

about the di�erence between an inverse problem and an inverse method. 

An attempt is made therefore, to emphasize the two distinct roles of least-squares: as a 

method of approximation, and as a method of estimation. It is only in the second formulation 

that it can be regarded as an inverse method. A working definition of an inverse method is a 

technique able to estimate unknown parameters or fields of a model, while producing an estimate 

of the uncertainties of the results. Solution plus uncertainty are the fundamental requirements. 

There are many desirable additional features of inverse methods which can prove extremely im-

portant. Among these features are: (1) Separation of nullspace uncertainties from observational 

noise uncertainties; (2) the ability to rank the data in its importance to the solution; (3) the 

ability to use prior statistical knowledge; (4) understanding of solution structures in terms of 

data structure, (5) the ability to trade resolution against variance. (The list is not exhaustive. 

For example, we will briefly examine in Chapter 4 the use of inequality information.) As with 

all estimation methods, one also trades computational load against the need for information. 

(The SVD, for example, is a powerful form of least-squares, but requires more computation that 

do other forms). The Gauss-Markov approach has the strength of forcing explicit use of prior 

statistical information and is directed at the central goal of obtaining x, n with the smallest 

mean-square error, and for this reason might well be regarded as the default methodology for 

linear inverse problems. It has the added advantage that we know we can obtain precisely the 

same result with appropriate versions of least-squares, including the SVD, permitting the use of 

least-squares algorithms, but at the risk of losing sight of what we are actually attempting. A 

limitation is that the underlying probability densities of solution and noise have to be unimodal 

(so that a minimum variance estimate makes sense). If unimodality fails, one must look to other 

methods. 

The heavy emphasis here on noise and uncertainty may appear to be a tedious business. 

But readers of the scientific literature will come to recognize how qualitative much of the dis-

cussion is–the investigator telling a story about what he thinks is going on with no estimate 

of uncertainties, and no attempt to resolve quantitatively di�erences with previous competing 

estimates of the circulation in the particular region. In a quantitative subject, such vagueness 

is ultimately intolerable. 

A number  of  di�erent procedures for producing estimates of the solution to a set of noisy 

simultaneous equations of arbitrary dimension have been described here. The reader may wonder 

which of the variants makes the most sense to use in practice. Because, in the presence of noise 

one is dealing with a statistical estimation problem, there is no single “best” answer, and one 
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must be guided by model context and goals. A few general remarks might be helpful. 

In any problem where data are to be used to make inferences about physical parameters, 

one typically needs some approximate idea of just how large the solution is likely to be and 

how large the residuals probably are. In this nearly agnostic case, where almost nothing else is 

known, and the problem is very large, the weighted, tapered least-squares solution is a good first 

choice–it is easily and e!ciently computed and coincides with the Gauss-Markov and tapered 

SVD solutions, if the weight matrices are the appropriate covariances. Sparse matrix methods 

exist for its solution should that be necessary. 58 Coincidence with the Gauss-Markov solution 

means one can reinterpret it as a minimum-variance or maximum-likelihood solution (See the 

Chapter Appendix) should one wish. 

It is a comparatively easy matter to vary the trade-o� parameter, �2, to  explore  the  con-

sequences of any errors in specifying the noise and solution variances. Once a value for �2 is 

known, the tapered SVD can then be computed to understand the relationships between solution 

and data structures, their resolution and their variance. For problems of small to moderate size 

(the meaning of “moderate” is constantly shifting, but it is di!cult to examine and interpret 

matrices of more than about 500 × 500), the SVD, whether in the truncated or tapered forms is 

probably the method of choice–because it provides the fullest information about data and its 

relationship to the solution. Its only disadvantages are that one can easily be overwhelmed by 

the available information, particularly if a range of solutions must be examined, and it cannot 

take advantage of sparsity in large problems. The SVD has a flexibility beyond even what we 

have discussed–one could, for example, change the degree of tapering in each of the terms 

of (2.336)—(2.337) should there be reason to repartition the variance between solution and noise, 

or some terms could be dropped out of the truncated form at will–should the investigator know 

enough to justify it. 

To the extent that either or both of x> n have expected structures expressible through co-

variance matrices, these structures can be removed from the problem through the various weight 

matrix and/or the Cholesky decomposition. The resulting problem is then one in completely 

unstructured (equivalent to white noise) elements x> n= In the resulting scaled and rotated sys-

tems, one can use the simplest of all objective functions. Covariance, resolution etc., in the 

original spaces of x> n is readily recovered by appropriately applying the weight matrices to the 

results of the scaled/rotated space. 

Both ordinary weighted least-squares and the SVD applied to row- and column-weighted 

equations are best thought of as approximation, rather than estimation, methods. In particular, 

the truncated SVD does not produce a minimum variance estimate the way the tapered version 

can. The tapered SVD (along with the Gauss-Markov estimate, or the tapered least-squares 
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solutions) produce the minimum variance property by tolerating a bias in the solution. Whether 

the bias is more desirable than a larger uncertainty is a decision the user must make. But the 

reader is warned against the belief that there is any single best method. 

2.10 Appendix 1. Maximum Likelihood 

The estimation procedures used in this book are based primarily upon the idea of minimizing 

the variance of the estimate about the true value. Alternatives exist. For example, given a 

set of observations with known joint probability density, one can use a principle of “maximum 

likelihood.” This very general and powerful principle attempts to find those estimated parameters 

which render the actual observations the most likely to have occurred. By way of motivation, 

consider the simple case of uncorrelated jointly normal stationary time series, {l, where,  

h{li = p> h({l � p) ({m � p)i = � 2 �lm = 

The corresponding joint probability density for x = [{1> {2> ===> {Q ]
W can be written, 

1 
sx (X) =  

(2�)Q@2 �Q 
× (2.450) 

½ ¾ h i1 
exp ([1 � p)2 + ([2 � p)2 + === + ([Q � p)2 = 

2
� 
2�

Substitution of the observed values, [1 = {1>[2 = {2> === into Eq. (2=450) permits evaluation 

of the probability that these particular values occurred. Denote the corresponding probability 

density as O= One can demand those values of p> � rendering the value of O as large as possible. 

O will be a maximum if log (O) is as large as possible: that is we seek to maximize, h i1 
log (O) =  � ({1 � p)2 + ({2 � p)2 + === + ({Q � p)2 + Q log (�) +  

Q 
log (2�) > 

2�2 2 

with respect to p> �= Setting the corresponding partial derivatives to zero and solving produces, 

P Q X 1 X1 
p̃ = {l> � 2 =˜ ˜({l � p)2 = 

Q Q
l=1 l=1 

That is, the usual sample mean, and biassed sample variance maximize the probability of the 

observed data actually occurring. A similar calculation is readily carried out using correlated 

normal, or any random variables with a di�erent probability density. 

Likelihood estimation, and its close cousin, Bayesian methods, are general powerful estima-

tion methods which can be used as an alternative to almost everything covered in this book. 59 

Some will prefer that route, but the methods used here are more intuitive, and adequate for a 

very wide range of problems. 
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2.11 Appendix 2. Di�erential Operators and Green Functions 

Adjoints appear prominently in the theory of di�erential operators and are usually discussed 

independently of any optimization problem. Many of the concepts are those used in defining 

Green functions. 

Consider an example. Suppose we want to solve an ordinary di�erential equation, 

gx (�) g2x (�)
+ = � (�) > (2.451) {diffeq1} 2g� g� 

subject to boundary conditions on x (�) at � = 0> O=  To proceed, seek first a solution to, 

� 
Cy ( 0) + 

C2y ( 0)�> � �> �

C�2 = � (�0 � �) > (2.452) {diffeq2} 
C� 

where � is arbitrary for the time being. Multiply (2.451) by y, and (2.452) by x and subtract: 

gx (�) g2x (�) Cy (�> �0) C2y (�> �0) y (�> �0) + y (�> �0) 2 � x (�) � 
C� 

� x (�) 
C�2g� g� 

= y (�> �0) � (�) � x (�) y (�> �0) = (2.453) 

Integrate this last equation over the domain, ½ Z O 

y (�> �0) 
gx (�) 

+ 
0 g� ¾ 

g2x (�) Cy (�> �0) C2y (�> �0) y (�> �0) 
g� 2 � x (�) � 

C� 
� x (�) 

C�2 g� (2.454) 

Z O 

= {y (�> �0) � (�) � x (�) � (�0 � �)} g�> (2.455) 
0 

or, ½ ¾ ½ ¾ Z O g gx gy 
Z O g2y (�> �0) g2y (�> �0) y �x x x 

0 g� g� 
� 

g� 
g� + 

0 g� 2 � 
g� 2 g� 

Z O 

= y (�> �0) � (�) g� � x (�0) = (2.456) 
0 

Choose � = �1; then the first term on the left hand-side is integrable, as, 

Z O g 
{xy} g� = xy|O 

0 > (2.457) 
0 g� 

as is the second term on the left, 

Z O ½ 

g� 
� y 

¾ � 

g� 
� y 

¸O g gy gx gy gx 
x g� = x (2.458) 

0 g� g� g� 0 
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and thus, Z O O gx 
x (�0) =  y (�> �0) � (�) g� + xy|O + 

� 
x
gy 

¸
(2.459) 0 g� 

� y
g�0	 0 

Because the boundary conditions on y were not specified, we are free to choose them such that 
O y = 0  on � = 0> O  such that e.g., the boundary terms reduce simply to [xgy@g�]0 , which  is  then  

known. 

Here, y is the adjoint solution to Eq. (2.452), with � = �1> defining the adjoint equation 

to (2.451); it was found by requiring that the terms on the left-hand-side of Eq. (4.32) should 

be exactly integrable. y is also the problem Green function (although the Green function is 

sometimes defined so as to satisfy the forward operator, rather than the adjoint one). Text-

books show that for a general di�erential operator, L, the requirement that y should render the 

analogous terms integrable is that, 
W LW{adjoint11}	 x W Ly = y x (2.460) 

where here the superscript W denotes the adjoint. Eq. (2.460) defines the adjoint operator 

(compare to (2.374a)). 

2.12	 Appendix 3 Recursive Least-Squares and Gauss-Markov 

Solutions 

The recursive least-squares solution Eq. (2.425) is appealingly simple. Unfortunately, obtaining 

it from the concatenated least-squares form (Eq. 2.424), 

n	 o 
x̃ (2) =	 E (1)W 

Rqq (1)
31 
E (1) +E (2)W 

Rqq (2)
31 
E (2) × n	 o 

E (1)W 
Rqq (1)

31 
y (1) +E (2)W 

Rqq (2)
31 
y 

is not easy at all. First note that 

h	 i
x̃ (1) =	 E (1)W 

Rqq (1)
31 
E (1) 

31 
E (1)W 

Rqq (1)
31 
y (1) (2.461) 

= P (1) E (1)W 
Rqq (1)

31 
y (1) > 

where, h	 i
P (1) =	 E (1)W 

Rqq (1)
31 
E (1) 

31 
> 

are the solution and uncertainty of the overdetermined system from the first set of observations 

alone. Then 
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n o © ª 
x̃(2) = P (1)31 + E(2)W Rqq(2)

31E(2) 
31 
× E(1)W Rqq(1)

31 y(1) + E(2)W Rqq(2)
31 y(2) = 

Now we apply the matrix inversion lemma, in the form Eq. (2.36), to the first bracket (using 

C $ P (1)31 > B $ E (2) > A $ Rqq (2)) 

½ ¾ h i © ª 
x̃(2) = P (1) � P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
E (2) P (1) E(1)W Rqq(1)

31 y(1) + ½ ¾ h i © ª 
+ P (1) � P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
E (2) P (1) E(2)W Rqq(2)

31 y(2) 

h i
˜ x (1) + = x (1) � P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
E (2) ̃½ ¾ h i

+P (1) E (2)W 
I E (2) P (1) E (2)W +Rqq (2) 

31 
E (2) P (1) E (2)W 

Rqq(2)
31 y(2)� 

using (2.461) and factoring E (2)W in the last line. Using the identity, h i h i 
E (2) P (1) E (2)W +Rqq (2) 

31 
E (2) P (1) E (2)W +Rqq (2) = I> 

and substituting for I in the previous expression, factoring, and collecting terms, we have finally, 

h i
˜ x (1) + P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
[y (2) � E (2) ̃x(2) = ˜ x (1)] (2.462) {recurs16} 

which is the desired expression. The new uncertainty is given by (2.426) or (2.428). 

Manipulation of the recursive Gauss-Markov solution (2.441) or (2.442) is similar, involving 

repeated use of the matrix inversion lemma. Consider Eq. (2.441) with xe from Eq. (2.446), ³ ´ h i
˜+ 

31 
x = E (2)W 

R31E (2) 
31 

Pd+E (2)W 
R31E (2) x̃d+qq qq h i ³ ´

Pd Pd+E (2)W 
R31E (2) 

31 
E (2)W 

RqqE (2) 
31 
E (2)W 

R31 
qq y (2) = qq ³ ´

Using Eq. (2.37) on the first term (with A $ E (2)W 
R31E (2) 

31 
> B $ I> C $ Pd)> and on qq ¡ ¢ 

the second term with C $ E (2) R31E (2) > A $ Pd> B $ I> this last expression becomes, qq h i h i 
˜+ x = P31+E (2)W 

R31E (2) 
31 

P31 xd+E (2)W 
R31 

d qq d ˜ qq y (2) > 

yet another alternate form. By further application of the matrix inversion lemma,60 this last 

expression can be manipulated into Eq. (2.448), which is necessarily the same as (2.462). 

These expressions have been derived assuming that matrices such as E (2)W 
R31E (2) areqq 

non-singular (full-rank overdetermined). If they are singular, they can be inverted using a 

generalized inverse, e.g. replacing x̃ (1) with the particular SVD solution, but taking care that 

P (1) includes the nullspace contribution (e.g., from Eq. (2.271)). 



152 CHAPTER 2 BASIC MACHINERY 

2.13 Exercises 

Problem 1 Using an eigenvector/eigenvalue analysis, solve (a) 

6565<
AAAAAA

;
AAAAAA 9999997


{1 

{2 

::::::8


=


9999997


1


0


1 1 2� ::::::8 

? @
A
AAAAA

> (2.463)1 2 1�A
AAAAA >= 2 1 6  {3 1� �

and (b) 6565<
AAAAAA

;
AAAAAA 9999997


{1 

{2 

::::::8


=


9999997


1


0


1 1 2
 ::::::8


�

?
 @

A
AAAAA

(2.464)1 2 1�A
AAAAA >= 1=5 2 2=5� {3 1 

Problem 2 (a) Find the  ranges  and null spaces of  

;
AA?


< 
AA@ 

AA>


2 1 1�
(2.465)A =
AA=
3 2 1  

and calculate the solution and data resolution matrices. (b) Let there be a set of observations


y> such that 6
5


997

1
::8
 (2.466)
Ax + n = 

2 

This problem is clearly formally undetermined. Find the solution which minimizes 

M = x W x (2.467) 

and compare it to the SVD solution with null space set to zero. What is the uncertainty of this 

solution? (c) Now consider instead 

<
A
AAAAA

;
A
AAAAA 2 3 

?
 @

A
AAAAA

> (2.468)A = 1 2�

1 1  

A
AAAAA=
 >
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and the formally overdetermined problem 
6
5


Ax + n =


9999997


1
 ::::::8


(2.469)
2 

1�

Wand find the least-squares solution which minimizes n n=What is the uncertainty of this solution? 

How does the solution compare to the SVD solution? (d) For an arbitrary A> solve the least-

squares problem of minimizng 
WM = x W x +�32 n n (2.470) 

and re-write the solution in terms of its SVD. Discuss what happens to the small singular value 

contributions. 

Problem 3 There is one observation 

{+ q1 = 1  (2.471) 

and a priori statistics ? q A=? { A= 0> ? q2 A= 1@2> ? {2 A= 1@2= (a)What is the best 

estimate of {> q? (b) A second measurement becomes available, 

{+ q2 = 3  (2.472) 

with ? q2 A= 0> ? q2 A= 4= What is the new best estimate of { and what is its estimated 2 

uncertainty. Are the various a priori statistics consistent with the final result? 

Problem 4 Two observations of unknown { produce the apparent results 

{ = 1  (2.473) 

{ = 3  (2.474) 

Produce a reasonable value for { under the assumption that (a) both observations are equally 

reliable, and (b) that the second observation is much more reliable (but not infinitely so) than 

the first (make some reasonable numerical assumption about what “reliable” means and state 

what you are doing). Can you re-write eqs. (2.473,2.474) in a more sensible form? 

Problem 5 For the Neumann problem in the last example, let the right-hand boundary flux 

condition be unknown, but from the forward solution computed in the example, determine as 

best you can the values of the missing boundary fluxes, from knowledge of x on the interior grid 

points. 
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Problem 6 Two observations of 3 unknowns, {> |> } produce the apparent result, 

{� | � } = 1  (2.475) 

{� | � } = 3  (2.476) 

Discuss what if, anything, might be inferred from such a peculiar result. You can make some 

sensible assumptions about what is going on, but say what they are. 

Problem 7 The temperature along an oceanic transect is believed to satisfy a linear rule, � = 

du + e>where u is the distance from a reference point, and d> e are constants. Measurements 

of � at sea, called |> produce the following values,u = 0> |  = 10; u = 1> |  = 9=5; u = 2> |  = 

11=1> u  = 3> |  = 12= (a) Using ordinary least-squares, find an estimate of d> e and the noise in 

each measurement, and their standard errors. (b) Solve it again using the SVD and discuss, via 

the resolution matrices, which of the observations, if any proved most important. Is the solution 

fully resolved? 

Problem 8 Consider the system of equations

6
5
;

AA?


<
AA@ 

AA>


1 2 1 
 997

1
::8
 (2.477)
x + n =
 =
AA=
1 2=1 1  2 

Using the SVD, compare the solutions at ranks 1> 2 for the two cases of

;
AA?


<
AA@ 

AA>

=


1 0=99999 
R = I2>R = (2.478)AA=
0=99999 1


How do the  rank  1 solutions  di�er in their treatment of the noise? What is the di�erence in the 

solutions at rank 2? 

J 
00 

C 
1 

C 
2 

C 
3 

J 
12 

J 
21 

J 
20 

J 
23 J 

32 

J 
30 

{boxprob.eps} Figure 2.15: Three box model describing tracer movement as depicted. 
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Figure 2.15 depicts a simple “box-model”. There are concentrations Fl in each of three boxes 

and the mass flux from box l to box m is Mlm A 0= Box “0” corresponds to externally imposed 

conditions. (a) Write the simultaneous equations for mass conservation in each box. (b) Let 

the concentration source or sink in box l be denoted tl= Write the simultaneous equations for 

concentration steady-state in each box. (c) Initially all Mlm are thought to be about 8 (this is a not 

very sophisticated way of dealing with the positivity constraint on Mlm ) and measurements show 

F0 = 5> F1 = 3> F3 = 1> t1 = 20± 2> t2 = �2± 2> t3 = 8± 10= Assuming the measurements of Fl 

are perfect, make a better estimate of Mlm >by finding the various corrections �Mlm . (d) Assuming 

? �Mlm A= 0> ?  �M2 A= 10> find a solution using the truncated and tapered SVD and the lm 

Gauss-Markov Theorem. Find the uncertainty of the estimates. (e) Solve the problem by linear 

programming without using the a priori variances, but enforicing the positivity constraints on 

the Mlm . 

Problem 9 For the Laplace-Poisson equation u 2! = � with Dirichlet boundary conditions in a 

square domain, put it into discrete form and code it on a computer so that it can be written, 

Ax = b= (2.479) {probl3} 

Choose any reasonable dimension for the number of grid points or finite elements or basis func-

tions. Confirm that A is square. (a) For any reasonable boundary conditions ! and values of e 

�> solve (2.479) as a forward problem (b) Add some random noise to ! and solve it again. (c)e 

Omit any knowledge of � over some part of the domain and find at least one possible solution 

(you could use least-squares). (d) Omit any knowledge of ! over some part of the domain and e 

find at least one possible solution. (e) Suppose ! from (a) is known over part of the domain, 

use that knowledge to help improve the solutions in (b-d). 

Problem 10 At rank 2, the SVD solution is x̃ = [0=27> 1=3> 0=55> 1=55]W which di�ers from � � �
the true solution by the nullspace vectors. How does one interpret this solution? 

Problem 11 Describe and discuss the above solution when n2 ? 0= 

Problem 12 By the same methods used in this last example, study the behavior of the solution 

to the modified Bessel equation 

2 g
2{ g{ 2u + u 
gu2 gu 

� u { = 0> d  u e=� � 
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Problem 13 Consider the simultaneous equations, Ax = y> 

6565<
AAAAAA

;
AAAAAA 9999997


{1 

{2 

::::::8


=


9999997


1


2


1 1 1
 ::::::8


�

?
 @

A
AAAAA

2 1 1
A
AAAAA >= 1 0  2 {3 2� �

(a) Using a numerical routine for symmetric matrix eigenvalue/eigenvector problems (i.e., do 

not use a singular value decomposition program such as MATLAB’s SVD), find the singular 

value decomposition for the matrix A. (b) Find the null space and ranges of A> AW (c) Using 

the singular vectors and singular values, find the general solution to the equations and explain 

the behavior of this solution. Are there any residuals? (d) Find the resolution matrix for the 

solution and for the “data”, y= 

Problem 14 You have five data points, |w = 1> 2> 3> �2> �1 ,w = 0> 1> 3> 4> 5 and you have� �
reason to believe they are given by a reduced Fourier Series 

|w = dfrv(2�w@6) + evlq (2�w@3) + qw (2.480) 

where qw is noise. Solve this problem for estimates of d> e> qw in three ways (a) As an ordinary 

least-squares problem. (You can use a matrix inversion routine if you wish.). (b) As an under-

determined problem in 7 unknowns. (c) By the singular value decomposition (you may use an 

svd routine if you want). Explain the di�erences among the solutions. (d) The noise variance 

is  believed to be  ? q2 A= 1=5= Make an estimate of the uncertainty in your estimates of d> e=w 

Problem 15 Extend the discussion of determining a mean in a correlated time series (P. 135) 

to the problem of finding a trend, and calculate the dependence of the slope of the trend on the 

correlation. 

Problem 16 (a) Set up the Neumann problem as in Problem 9 and show explicitly that there is 

a solution and “observation” null space. Interpret them. (b) Let the normal boundary condition 

be C!@Cq = 3  everywhere. Is there any di!culty? What is its character, and how might it be 

dealt with? 

Problem 17 For the Neumann problem, write the model equations with error terms, and solve 

the problem with additional information providing estimates of !lm at several grid points (ren-

dering the problem formally overdetermined). 
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Notes 
9
Noble & Daniel (1977); Strang (1988). 
10
Lawson & Hanson (1974) 

W11 “Positive definite” will be defined below. Here it su!ces to mean that  c Wc should never be negative, for 

any c= 
12
Golub & Van Loan (1989) 
13
Haykin (1986, p. 61). 
14 Press et al. (1992); Lawson & Hanson (1974); Golub & van Loan (1989); etc. 
15
Determinants are used only rarely in this book. Their definition and properties are left to the references, as 

they are usually encountered in high school mathematics. 
16
Rogers (1980) is an entire volume of matrix derivative identities, and many other useful properties are discussed 

by Magnus and Neudecker (1988). 
17
Magnus and Neudecker (1988), P. 183

18
Liebelt (1967, Section 1—19) 
19
The history of this not-very-obvious identity is discussed by Haykin (1986, p. 385). 
20
A good statistics text such as Cramér (1946), or one on regression such as Seber (1977), should be consulted. 
21
Feller (1957) and Je�reys (1961) represent di�ering philosophies. Jaynes (2003) forcefully and colorfully 

argues the case for so-called Bayesian inference (following Je�reys), and it seems likely that this approach to 

statistical inference will ultimately become the default method; Gauch (2003) has a particularly clear account of 

Bayesian methods. For most of the methods in this book, however, we use little more than the first moments of 

probability distributions, and hence can ignore the underlying philosophical debate. D E  ®  ® 
22
It follows from the Cauchy-Schwarz inequality: Consider (d{0 + |0)2 

= d {02 + |02 +2d h{0|0i D 0 for any 
 ®  ®  ® ¡ ®  ®¢ 

constant d= Choose d = 3 h{0|0i @ {02 > and one has 3 h{0|0i2 
@ {02 + |02 D 0> or 1 D h{0 |0i2 

@ {02 |02 = 

Taking the squareroot of both sides, the required result follows. 
23
Draper & Smith (1998); Seber and Lee (2003). 
24
Numerical schemes for finding C1@2 

are described by Lawson and Hanson (1976) and Golub and Van Loan (1989) �� 
25
Cramér (1946) discusses what happens when the determinant of C�� vanishes, that is, if C�� is singular. 
26
Bracewell (1978). 
27
Cramér (1946). 
28
In problems involving time, one needs to be clear that “stationary” is not the same idea as “steady.” 
29
If the means and variances are independent of l, m and the first cross-moment is dependent only upon |l 3 m|, 

the process { is said to be stationary in the “wide-sense.” If all higher moments also depend only on |l 3 m|, the  

process is said to be stationary in the “strict-sense,” or more simply, just stationary. A Gaussian process has the 

unusual property that wide-sense stationarity implies strict-sense stationarity. 
30
The terminology “least-squares” is reserved in this book, conventionally, for the minimization of discrete sums 

such as Eq. (2.90). This usage contrasts with that of Bennett (2002) who applies it to continuous integrals, such R e 
as, 

d (x (t) 3 u (t))2 gt leading to the calculus of variations and Euler-Lagrange equations. 
31
Seber (1977) or Box et al. (1994) or Draper and Smith (1981) are all good starting points. 
32
Draper and Smith (1981, Chapter 3) and the references given there. 
33
Gill, Murray and Wright (1981). 
34
Wunsch & Minster (1982). 
35
Morse & Feshbach (1953, p. 238); Strang (1988) . 
36
See Sewell (1987) for an interesting discussion. 
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37 But the matrix transpose is not what the older literature calls the “adjoint matrix,” and which is quite 

di�erent. In the more recent literature the latter has been termed the “adjugate” matrix to avoid confusion. 
38
In the meteorological terminology of Sasaki (1970) and others, exact relationships are called “strong” con-

straints, and those imposed in the mean-square are “weak” ones. 
39
Claerbout (2001) displays more examples, and Lanczos (1960) gives a very general discussion of operators 

and their adjoints, Green functions, and their adjoints. See also the Appendix to this Chapter. 
40
Wiggins (1972). 
41
Brogan (1985) has a succinct discussion. 
42
Lanczos (1961), pages 117-118, sorts out the sign dependencies. 
43
Lawson and Hanson (1974). 
44
The singular value decomposition for arbitrary non-square matrices is apparently due to the physicist-turned-

oceanographer Carl Eckart (Eckart & Young, 1939; see the discussion in Haykin, 1986; Klema & Laub, 1980; or 

Stewart, 1993). A particularly lucid account is given by Lanczos (1961) who however, fails to give the decompo-

sition a name. Other references are Noble and Daniel (1977), Strang (1986) and many recent books on applied 

linear algebra. The crucial role it plays in inverse methods appears to have been first noticed by Wiggins (1972). 
45
Munk et al. (1996). 
46
In physical oceanography, the distance would be that steamed by a ship between stops for measurement, and 

the water depth is clearly determined by the local topography. 
47
Lawson & Hanson (1974), or Hansen (1992). Hansen’s (1992) discussion is particularly interesting because 

he exploits the “generalized SVD,” which is used to simultaneously diagonalize two matrices. 
48
Munk and Wunsch (1982). 
49
Seber (1977). 
50
Luenberger (1984). 
51 In oceanographic terms, the exact constraints describe the Stommel Gulf Stream solution. The eastward 

intensification of the adjoint solution corresponds to the change in sign of � in the adjoint model. See Schröter 

and Wunsch (1986) for details and an elaboration to a non-linear situation. 
52
Lanczos (1970) has a good discussion. 
53
See Lanczos (1961, Section 3.19) 
54
The derivation follows Liebelt (1967).

55 Bretherton et al. (1976) obtain similar results.


 ® 
56 The time series was generated as |w = 0=999|w31 + �w> h�wi = 0> � 2


w = 1> a so-called autoregressive process 

of order 1 (AR(1)). The covariance h|l|m i can be determined analytically; see Priestley (1981), p.119. Many 

geophysical processes obey similar rules. 
57
Brogan (1985); Stengel (1986). 
58
Paige & Saunders (1982) 
59
See especially, van Trees (1968). 
60
Liebelt (1967, P.164) 
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