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Expanding x (0) in the right eigenvectors of A> 

Q X 
x (0) = �l (0) gl (5.15) 

l=1 

and, 
Q X 

x (w) =  �l
w �l (0) gl (5.16) 

l=1 

Stability of the model demands that all |�l| � 1= But the lack of orthogonality of the gl means 

that some of the �l may be very large, despite the white noise properties of x (0) = This result 

implies that some elements of x (w) can become very large, even though the limit � w l $ 0, w $4  

means that they are actually transients. To an onlooker, the large response of the system to a 

bounded initial disturbance may make the system look unstable. Furthermore, the disturbance 

may become so large that the system becomes non-linear, and possibly non-linearly unstable.172 

That is, stable fluid systems may well appear to be unstable owing to the rapid growth of 

transients, or linearly stable systems may become unstable in the finite amplitude sense if the 

transients of the linearized system become large enough. 

Now consider the forced situation with time-independent A> 

{nonnmod2} x (w)=  Ax (w � 1) +q (w � 1) = (5.17) 

Take the Fourier transform of the di�erence equation (5.17), using the result173 that if the 

transform of x (w) is, X " 

ˆ x (w) h32�lvw> (5.18)x (v) =  
w=0 

x (v) = Solving for ˆthen the transform of x (w � 1) is h32�lvˆ x (v) > we obtain ¡ ¢
ˆ ˆ{xhat} x (v) =  h32�lvI A 

31 
q (v) = (5.19)�¡ ¢

h32�lvIWe will call A 31, the “resolvent” of A> in analogy to the continuous case terminology �
of functional analysis.174 If the resolvent is infinite for real values of v = vl it implies x̂ (vl) is 

an eigenvector of A and an ordinary resonance is possible. For the mass-spring oscillator of 

Chapter 2, the complex eigenvalues of A produce v1>2 = ±0=0507 + 0=0008l> and the damped 

oscillator has no true resonance. Should any eigenvalue have a negative imaginary part, leading ¯ ¯ 
to ¯h32�lvlw ̄  A 1> the system would be unstable. 

Define } = h32�lv> to be interpreted as an analytic continuation of v into the complex plane. 

The unit circle |}| = 1  defines the locus of real frequencies. The gist of the discussion of what ° ° ° °
are called “pseudo-spectra” is the possibility that the norm of the resolvent °(}I A)31 ° may �
become very large, but still finite, on |}| = 1  without there being either instability or resonance, 

giving the illusion of linear instability. 
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5.6.1 POPs and Optimal Modes 

For any linear model in canonical form, the right eigenvectors of A can be used directly to repre-

sent fluid motions,175 as an alternative e.g., to the singular vectors (EOFs). These eigenvectors 

were called “principal oscillation patterns,” or POPs by K. Hasselmann. Because A is usually 

not symmetric (not self-adjoint), the eigenvalues are usually complex, and there is no guarantee 

that the eigenvectors are a spanning set. But assuming that they provide an adequate expansion 

basis–usually tested by trying them–the right eigenvectors are used in pairs when there are 

complex conjugate eigenvalues. The expansion coe!cients of the time-evolving field are readily 

shown to be the eigenvectors of AW –that is, the eigenvectors of the adjoint model. Assuming 

that the eigenvectors are not grossly deficient as a basis, and/or one is interested in only a few 

dominant modes of motion, the POP approach gives a reasonably e!cient representation of the 

field. 

Alternatively, even when A 6= AW , it always has an SVD and one can try to use the singular 

vectors of A–directly–to represent the time evolving field. The complication is that successive 

multiplications by non-symmetric A transfers the projection from the U vectors to the V vectors 

and back again. Write A = U�VW and assume, as is normally true of a model, that it is full 

rank N = Q and � is square. Using Eqs. (4.97, 4.99), in the absence of observations, 

x (w) =  Ax (w � 1) > (5.20) 

µ (w � 1) = AW 
µ (w) > (5.21) 

one can always write, 

x(w) =  V�(w)> (5.22) {69004} 

where d is a set of vector coe!cients. Write the adjoint solution as, 

µ(w) =  U�(w)= (5.23) {69005} 

Multiply (5.20) by µ (w � 1)W > and (5.21) by x (w)W and subtracting, 

µ (w � 1)W 
Ax (w � 1)= x (w)W 

AW 
µ (w) =  µ (w)W 

Ax (w) > (5.24) {en1} 

or using (5.22, 5.23), 

�(w � 1)W ��(w � 1) = � (w)W �� (w)W > (5.25) {69006} 

which can be interpreted as an energy conservation principle, summed over modes, if the ul, vl 

are regarded as eigenmodes of the model. 

Assume kAk ? 1 so that the system is fully stable. We can ask what disturbance of unit 

magnitude at time w � 1> say, would lead to the largest magnitude of x (w)? That is, we maximize 






