
5.1 Monte Carlo/Ensemble Methods 

5.1.1 Ensemble Methods and Particle Filters 

When a model is non-linear, one of the fundamental computational steps of the Kalman filter 

(and any related calculation such as a smoother) is no longer possible. Consider a Kalman filter 

problem in which the initial conditions, x̃ (0) > contain errors characterized by the covariance 

matrix, P (0) > and the zero-mean disturbance or control, u (0) > is unknown with covariance, 

Q (0) = The state forecast step, Eq. (4.49) proceeds as before. Computation of the forecast 

error covariance, Eq. (4.50), however, which sums the error owing to the initial conditions and 
Wthat of the unknown controls, A (0) P (0) A (0)W + �Q� > depends directly upon the linearity 

assumption, and can no longer be carried out rigorously. For weak nonlinearities, the extended 

or linearized Kalman filters and associated smoothers may be adequate. But when linearizing 

assumptions fail, some other method must be used. A commonly discussed example of a non-

linear (but scalar) model is, 

1 25{w31
{w = + 8  cos  1=2w + %w> 

2 
{w31 + 

1 +  {2 
w31 

{2


|w = w
 + � > 
20 w

273 

Continued on next page...



274 CHAPTER 5 TIME-DEPENDENT METHODS–2 

which is nonlinear in both the evolution equation and in the measurement; %w> � are Gaussian w 

white noise processes.152 Extended Kalman filters work badly for this low-dimensional example. 

The basic idea behind so-called ensemble or Monte Carlo methods is in some ways even 

simpler than the use of Eq. (4.50). (In the signal processing literature, closely related approaches 

are usually called “sequential Monte Carlo methods,” or “particle filtering”.153) One directly 

˜simulates a su!ciently large number of forecasts, x(l) (w> �) > all having the same statistical 
properties, that P (w> �) can be estimated by brute force computation from the many simulations. 

If a su!ciently large ensemble can be generated, one can contemplate estimating not just the 

second moments, but calculating the empirical frequency function for the forecast step. 
˜To see how this approach might work, generate an ensemble of initial conditions, X (0) > 

where each column of the  Q × O> O ? Q matrix corresponds to a possible initial condition 

x (0) and P (0) = Form a similar ensemble for ˜consistent with both ˜ u (0) based upon hu (0)i = 0> 

and Q (0) = (We discuss generation of such ensembles below.) Then one can run the model 
˜ ˜on each column of X (0) > with a disturbance from the corresponding column of U (0) > and 

compute the ensemble of forecasts X̃ (1> �) = Computation of A (0) P (0) A (0)W requires running 

the model 2Q times, where computation of X̃ (1> �) requires only O such model runs. Assuming 

that the true mean of x (1) is zero, estimate, 

O X1˜{ensemble1} P (1> �) =  ˜ X (1> �)W =
1 

X (1> �) ˜ xm (1> �) ̃˜ xm (1> �)W (5.1) 
O O 

m=1 

where ˜ ˜ �)xm (1> �) is column m of X (w> �) > as an estimate of P (1> = Note that if the mean is 

computed from the columns of X̃> and subtracted from the estimate, the factor in front becomes 

1@ (O � 1) = With P̃ (1> �) known, the filter average step (4.51) can be carried out, although if 

the probability densities of the model and data errors are di�erent, the average may have little 

meaning. Because the average is a linear one, the conventional filter error covariance calculation, 

Eq. (4.53) is still appropriate, and one can continue in this fashion through the filter loop. In 

essence, this approach characterizes the so-called ensemble Kalman filter method. The main 

issue here concerns the reliability of the estimates for small ensemble sizes.154 Because of its 

structure, if O is less than Q> the maximum rank of P̃ (1> �) is n = O ? Q>  and the matrix 

will be singular. Singularity implies that some structures (those in the nullspace of P̃ (1> �)) are  

impossible in the initial conditions–a potentially troublesome outcome. 

In principle, one can use the ensemble members to produce estimates of the complete prob-

ability densities of ˜ u> no matter how non-linear the model–leading to the use of maximum x> ̃

likelihood methods. These are computationally more demanding, however. Even small ensem-

bles provide at least a qualitative indication of where maximum uncertainty is likely to lie, but 

their use should not stretch beyond their actual limited information content. 
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How does one generate ensemble members with zero mean and given spatial covariance, 

P (0)? Let 

P (0) = V�VW > D E 
(s)

and suppose �(s) is white noise from a pseudo-random number generator such that, � = 0>l l D E 
(s)
d
(s)

�l m = �lm where s is the ensemble member label. Form 
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as required. It is readily confirmed too, that the ensemble members are uncorrelated with each 

other. 

The members of the ensemble of initial conditions can have highly non-Gaussian probability 

densities. One would then select the �(s) from populations with whatever is the appropriate prob-m 

ability density. 155 More generally, the initial condition disturbances may have specific structures 

related to the dynamics. Some of those structures may give rise to particularly rapidly growing 

disturbances, and which if excited can give an ensemble spread much larger than that obtained 

from purely random components. A very large e�ort in weather forecasting in particular, has 

gone into generating small ensembles that have a useful breadth.156 Unknown model parameters 

extend far beyond initial conditions, including for example, mixing parameterizations, boundary 

conditions, source/sink components, etc. Ensembles can be generated by calculating solutions 

from random perturbations to any and all of these problem elements simultaneously. 

Example. 

Let the initial estimate for the mass-spring oscillator of the Example on P. 194, be x̃ (0) = 

[1> 1]W , and  have error covariance 

P (0) = 
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Figure 5.1: (Left) Empirical histogram of an ensemble of 100 values of {̃1 (0) obtained from a 

log-normal distribution with parameters (1,1). A similar ensemble of values was 

generated for {2 (0) > with no correlation between the two. The random variables 

are regarded as di�erent realizations of the noise occurring in the true value x (0) = 

[1> 1]W =(Right) Historgram of 100 realizations of {1 (w = 500) from the mass spring 

oscillator (n = 0=1>�w = 1> u  = 0=01). Note the tendency for the frequency function 

lognorm1.eps} to tend towards Gaussian. 

It is thought that the errors follow a log-normal distribution, ³ ´1 
s (�) =  s

2�� 
exp � (ln � � 1)2 @2 = (5.2) {lognorm1} 

˜An ensemble of initial conditions of the form x (0) = [1> 1]W + � was generated, producing a 

frequency function (histogram) of values for {1(0) as shown in Fig. 5.1. After 500 time steps ˜


(with n = 0=1> u  = 0=01>�w = 1)  ̃ 
{1 (500) tends toward Gaussian, and in this linear system, it 

would be reasonable to calculate  the  mean position as  {1 (500) where the overbar indicates an ˜

average of the ensemble, and the error of the mean position is computed simply from its standard 

deviation in the ensemble. The latter can be used in the Kalman averaging step. But in a highly 

non-Gaussian distribution, as seen in the left panel of Fig. 5.1, the sample mean and variance 

may di�er greatly from the true mean and variance owing to the presence of a few strong outliers. 

(One would be strongly advised to work with the logarithm of {1 (0) ; see Aitchison and Brown, ˜


1957; such a transformation would not be possible with ˜
{1 (500) because it can be negative.) 

Calculation of probability densities, or the defining low moments of the probability densities 

for filter/smoother solutions can also be approached by solving equations for the evolution of the 
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densities or moments. Dynamical evolution equations can be used to write an explicit equation 

(the so-called Fokker-Planck, or Kolmogorov equation in the physics and mathematics literature, 

respectively) for the evolution of the state probability density. 157 Because the solution of such 

equations in high dimensions is forbidding, one can alternatively seek approximate equations for 

the evolution of the low moments. 

This subject is a large and sophisticated one; a growing literature describes applications at 

various levels of approximation in oceanography and meteorology. But we must leave it to the 

references to deal with it further.158 


