
Chapter 1


Introduction


The most powerful insights into the behavior of the physical world are obtained when direct 

observations are well described by a theoretical framework that is then available for predicting 

new phenomena or new observations. An example is the observed behavior of radio signals 

and their extremely accurate description by the Maxwell equations of electromagnetic radiation. 

Other such examples include planetary motions as described by Newtonian mechanics, or the 

movement of the atmosphere and ocean as described by the equations of fluid mechanics, or 

the propagation of seismic waves in the earth as described by the elastic wave equations. To 

the degree that the theoretical framework supports, and is supported by, the observations one 

develops su!cient confidence to calculate similar phenomena in previously unexplored domains 

or to make predictions of future behavior (the position of the moon 1000 years, or the climate 

state of the earth 100 years, in the future). 

Developing a coherent view of the physical world requires some mastery, therefore, of both 

a framework, and of the meaning and interpretation of real data. Conventional scientific educa-

tion, at least in the physical sciences, puts a heavy emphasis on learning how to solve appropriate 

di�erential and partial di�erential equations (Maxwell, Schrodinger, Navier-Stokes, etc.). One 

learns which problems are “well-posed”, how to construct solutions either exactly or approx-

imately, and how to interpret the results. Much less emphasis is placed on the problems of 

understanding the implications of data, which are inevitably imperfect–containing noise of 

various types, are often incomplete, and possibly inconsistent. 

Many interesting problems arise in using observations in conjunction with theory. In par-

ticular, one is driven to conclude that there are no well-posed problems outside of textbooks, 

that stochastic elements are inevitably present and must be confronted, and that more generally, 

one must make inferences about the world from data that are necessarily always incomplete. 

The main purpose of this introductory chapter is to provide some comparatively simple ex-
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amples of the type of problems one confronts in practice, and for which many interesting and 

useful tools exist for their solution. In an older context, this subject was called the “calculus of 

observations.”2 

1.1 Di�erential Equations 

Di�erential equations are often used to describe natural processes. Consider the elementary 

problem of finding the temperature in a bar where one end, at u = uD> is held at constant 

temperature WD> and at the other end, u = uE > it is held at temperature WE= The only mechanism 

for heat transfer within the bar is by molecular di�usion, so that the governing equation is, 

g2W 
{temper1} � = 0  (1.1) 

gu2 

subject to the boundary conditions, 

{temper2} W (uD) = WD> W  (uE ) = WE = (1.2) 

Eq. (1.1) is so simple we can write its solution in a number of di�erent ways. One form is, 

W (u) = d + eu> (1.3) 

where d> e unknown parameters, until some additional information is provided. Here the addi-

tional information is contained in the boundary conditions (1.2), and with two parameters to 

be found, there is just su!cient information, and µ ¶
uE WD + uDWE WE � WD

W (u) =  + u> (1.4) 
uE � uD uE � uD 

a straight line. Such problems, or analogues for much more complicated systems, are sometimes 

called “forward” or “direct” and they are “well-posed”: exactly enough information is available 

to produce a unique solution (easily proved here, not so easily in other cases). If there are 

small perturbations in Wl> or ul, then the solution changes only slightly–it is also stable and 

di�erentiable. This sort of problem and its solution is what is generally taught starting in 

elementary science courses. 

On the other hand, the problems one encounters in actually doing science di�er significantly– 

both in the questions being asked, and in the information available. A very large number of 

possibilities presents itself: 

1. One or both of the boundary values WD, WE is known from measurements; they are thus 

W (f)given as WD = W (f) ±�WD , WE = ±�WE > where the �WD>E are an  estimate of the  D E 

possible inaccuracies in the theoretical values W (f)= (Exactly what that might mean is taken l 

up later.) 



3 1.1 DIFFERENTIAL EQUATIONS 

2. One or both of the positions, uD>E is also the result of measurement and are of the form 
(f)
uD>E ± �uD>E = 

3. WE is missing altogether, but is known to be positive, WE A 0= 

4. One of the boundary values e.g., WE > is unknown, but an interior value Wlqw = W (f) ± �Wlqwlqw 

is provided instead. Perhaps many interior values are known, but none of them perfectly. 

Other possibilities exist. But even this short list raises a number of interesting, practical 

problems. One of the themes of this book is that almost nothing in reality is known perfectly. 

It is possible that �WD> �WE are very small; but as long as thye are not actually zero, there is 

no longer any possibility of finding a single unique solution. 

Many variations on this model and theme arise in practice. Suppose the problem is made 

slightly more interesting by introducing a “source” VW (u) > so that the temperature field is 

thought to satisfy the equation, 
g2W (u) 

= VW (u) > (1.5) {temper3} 
gu2 

along with its boundary conditions, producing another conventional forward problem. One can 

convert (1.5) into a di�erent problem by supposing that one knows W (u) > and seeks VW (u) = 

Such a problem is even easier to solve than the conventional one: di�erentiate W twice. Because 

convention dictates that the “forward problem” involves the determination of W (u) from a known 

VW (u) and boundary data, this latter problem might be labelled as an “inverse” one–simply 

because it contrasts with the conventional formulation. 

In practice, a whole series of new problems can be raised: suppose VW (u) is imperfectly 

known. How should one proceed? If one knows VW (u) and W (u) at a series of positions 

ul 6= uD> uE , could one nonetheless deduce the boundary conditions? Could one deduce VW (u) 

if it were not known at these interior values? 

W (u) has been supposed to satisfy the di�erential equation (1.1). For many purposes, it is 

helpful to reduce the problem to one that is intrinsically discrete. One way to do this would be 

to expand the solution in a system of polynomials, 

W (u) = �0u 0 + �1u 1 + === + �quq> (1.6) 

and 
1VW (u) = �0u 

0 + �1u + === + �qu
q (1.7) 

where the �l would conventionally be known, and the problem has been reduced from the need 

to find a function W (u) defined for all values of u> to one in which only the finite number of 

parameters �l> 0 � l � q must be found. 
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An alternative discretization is obtained by using the coordinate u= Divide the interval uD = 

0 u � uE into Q � 1 intervals of length �u> so that uE = (Q � 1) �u= Then, taking a simple � 

two-sided di�erence: 

W (2�u) � 2W (�u) +  W (0) = (�u)2 

W (3�u) � 2W (2�u) +  W (1�u) = (�u)2 

= 

= 

W ((Q � 1) �u) � 2W ((Q � 2) �u) +  W ((Q � 3)�u) = (�u)2 

VW (0) 

VW (1�u) 

(1.8) 

VW ((Q � 2) �u) 

If one counts the number of equations in (1.8) it is readily found that there are Q � 2 of them, 

but with a total of Q unknown W (s�u) = The two missing pieces of information are provided 

by the two boundary conditions W (0�u) =  W0> W  ((Q � 1) �u) =  WQ 31. Thus the problem of 

solving the di�erential equation has been reduced to finding the solution of a set of ordinary 

linear simultaneous algebraic equations, which we will write, in the notation of Chapter 2 as, 

{equal1} Ax = b> (1.9) 

where A is a square matrix, x is the vector of unknowns W (s�w) > and b is the vector of values 

q (s�w) > and of boundary values. The list above, of variations, e.g., where a boundary condition 

is missing, or where interior values are provided instead of boundary conditions, become state-

ments then about having too few, or possibly too many, equations for the number of unknowns. 

Uncertainties in the Wl or in the t (s�u) become statements about having to solve simultane-

ous equations with uncertainties in some elements. That models, even nonlinear ones, can be 

reduced to sets of simultaneous equations is the unifying theme of this book. One might need 

truly vast numbers of grid points, s�u> or polynomial terms, and ingenuity in the formulation to 

obtain adequate accuracy, but as long as the number of parameters, Q ?  4> one has achieved 

a great, unifying simplification. 

Consider a bit more interesting ordinary di�erential equation, that for the simple mass-spring 

oscillator, 
g2� (w) g� (w)

{ms1} p + % + n0� (w) =  V� (w) > (1.10) 
gw2 gw 

where p is mass, n0 is a spring constant, and % is a dissipation parameter. Although the equation 

is slightly more complicated than is (1.5), and we have relabelled the independent variable as w 

(to suggest time), rather than as u> there really is no fundamental di�erence. This di�erential 

equation can also be solved in any number of ways. As a second order equation, it is well-

known that one must provide two extra conditions to have enough information to have a unique 



5 1.2 PARTIAL DIFFERENTIAL EQUATIONS 

solution. Typically, there are initial conditions, � (0) > g�  (0) @gw–a position and velocity, but 

there is nothing to prevent us from assigning two end conditions, � (0) > �  (w = wi ) > or even two 

velocity conditions g� (0) @gw> g� (wi ) @gw> etc. 

If we naively discretize (1=10) as we did the straight-line equation, we have, 

¶
%�w n(�w)2 %�w 

�(s�w + �w) � 

µ
2 � 

p 
� 

p 

¶ 

�(s�w) � 

µ 

p 
� 1 �(s�w � �w) (1.11) 

= (�w)2 V� (s�w) > 2 s 1 
p 

� � Q � 

which is another set of simultaneous equations as in (1.9) in the unknown � (s�w) ;  an equation 

count again would show that there are two fewer equations than unknowns–corresponding to 

the two boundary or two initial conditions. In Chapter 2, several methods will be developed 

for solving sets of simultaneous linear equations, even when there are apparently too few or too 

many of them. In the present case, if one were given � (0) > �  (1�w) > Eq. (1.11) could be stepped 

forward in time,  generating  � (3�w) > �  (4�w) > ...,� ((Q � 1) �w). The result would be identical to 

the solution of the simultaneous equations–but with far less computation. 

But if one were given � ((Q � 1) �w) instead of � (1�w) > such a simple time-stepping rule could 

no longer be used. One would have a similar di!culty if t (m�w) were missing for some m> but 

instead one had knowledge of � (s�w) > for some s= Looked at as a set of simultaneous equations, 

there is no conceptual problem: one simply solves it, all at once, by Gaussian elimination or 

equivalent. There lv a problem only if one sought to time-step the equation forward, but without 

the required second condition at the starting point–there would be inadequate information to 

go forward in time. Many of the methods explored in this book are ways to solve simultaneous 

equations while avoiding the need for all-at-once brute force solution. Nonetheless, one is urged 

to always recall that most of the interesting algorithms are just clever ways of solving large sets 

of such equations. 

1.2 Partial Di�erential Equations 

Finding the solutions of linear di�erential equations is equivalent, when discretized, to solving 

sets of simultaneous linear algebraic equations. Unsurprisingly, the same is true of partial 

di�erential equations. As an example, consider a very familiar problem: 

Solve 
2! = �> (1.12) {eq:13001} u 

for !, given  �, in the domain r 5 G, subject to the boundary conditions ! = !0 on the boundary 

CG, where  r is a spatial coordinate of dimension greater than 1. 
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Figure 1.1: Square, homogeneous grid used for discretizing the Laplacian, thus reducing the 

{grid1.tif} partial di�erential equation to a set of linear simultaneous equations. 

This statement is the Dirichlet problem for the Laplace-Poisson equation, whose solution is 

well-behaved, unique, and stable to perturbations in the boundary data, !0,  and  the source or  

forcing, �. Because it is the familiar boundary value problem, it is by convention again labeled 

a forward or direct problem. Now consider a di�erent version of the above: 

Solve (1.12) for � given ! in the domain G. 

This latter problem is even easier to solve than the forward problem: merely di�erentiate ! 

twice to obtain the Laplacian, and � is obtained directly from (1.12). Because the problem as 

stated is inverse to the conventional forward one, it is labeled, as with the ordinary di�erential 

equation, an inverse problem. It is inverse to a more familiar boundary value problem in the 

sense that the usual unknowns ! have been inverted or interchanged with (some of) the usual 

knowns �. Notice that both forward and inverse problems, as posed, are well-behaved and 

produce uniquely determined answers (ruling out mathematical pathologies in any of �> !0> CG, 

or !). Again, there are many variations possible: one could, for example, demand computation 

of the boundary conditions, !0, from given information about some or all of !> �. 

Write the Laplace-Poisson equation in finite di�erence form for two Cartesian dimensions: 

{eq:13002} !l+1>m � 2!l>m + !l31>m + !l>m+1 � 2!l>m + !l>m31 = (�{)
2 �lm > l>  m  5 G> (1.13) 

with square grid elements of dimension �{. To make the bookkeeping as simple as possible, 

suppose the domain G is the square Q × Q grid displayed in Figure 1.1, so that CG is the four 
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line segments shown. There are (Q � 2) × (Q � 2) interior grid points, and Equations (1.13) 

are then (Q � 2) × (Q � 2) equations in Q2 of the !lm . If this is the forward problem with 

specified, there are fewer equations than unknowns. But if we append to (1.13) the set of �lm 

boundary conditions: 

lm > l>  m  5 CG > (1.14) {eq:13003} !lm = !0 

there are precisely 4Q � 4 of these conditions, and thus the combined set (1.13) plus (1.14), 

which we write again as (1.9) with, 

65 
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a set  of  P = Q2 equations in P = Q2 unknowns. (The operator, vec> forms a column vector out 

of the two-dimensional array !lm .) The nice properties of the Dirichlet problem can be deduced 

from the well-behaved character of the matrix A. Thus the forward problem corresponds directly 

with the solution of an ordinary set of simultaneous algebraic equations.3 One complementary 

inverse problem says: “Using (1.9) compute �lm and the boundary conditions, given !lm ,” an 

even simpler computation–it involves just multiplying the known x by the known matrix A. 

But now let us make one small change in the forward problem, changing it to the Neumann 

one: 

Solve, 
2! = �> (1.15) {eq:13005} u 

for !, given  �, in the domain r 5 G subject to the boundary conditions C!@C  ̂m = !0 on the 0 

boundary CG, where  r is again the spatial coordinate and m̂ is the unit normal to the boundary.


This new problem is another classical, much analyzed forward problem. It is, however, well-


known that the solution is indeterminate up to an additive constant. This indeterminacy is clear
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in the discrete form: Equations (1.14) are now replaced by 

!l+1>m � !l>m = !0
0
0 
lm >  l>  m  5 CG0 (1.16) {eq:13006} 

etc., where CG0 represents the set of boundary indices necessary to compute the local normal 

derivative. There is a new combined set: 

{eq:13007} Ax = b1> x =vec  
© 
!lm 
ª 
> b1 = vec  

© 
�lm > !

00 
lm 

ª 
(1.17) 

Because only di�erences of the !lm are specified, there is no information concerning the absolute 

value of x. When we obtain some machinery in Chapter 2, we will be able to demonstrate 

automatically that even though (1.17) appears to be P equations in P unknowns, in fact only 

P � 1 of the equations are independent, and thus the Neumann problem is an underdetermined 

one. This property of the Neumann problem is well-known, and there are many ways of handling 

it, either in the continuous or discrete forms. In the discrete form, a simple way is to add one 

equation setting the value at any point to zero (or anything else). Notice, however, that in all 

cases, the inverse problem of determining b1 from x remains simple and well-posed. 

1.3 More Examples 

e:boxmodel1} A Tracer Box Model 

In scientific practice, one often has observations of elements of the solution of the di�erential 

system or other model. Such situations vary enormously in the complexity and sophistication 

of both the data and the model. A useful and interesting example of a simple system, with 

applications in many fields, is one in which there is a large reservoir (Figure 1.2) connected to a 

number of source regions which provide fluid to the reservoir. One would like to determine the 

agetracerfig} rate of mass transfer from each source region to the reservoir. 

We suppose that some chemical tracer or dye, F0 is measured in the reservoir, and that the 

concentrations of the dye, Fl, in each source region are known. Let the unknown transfer rates 

be Ml0 (transfer from source l to reservoir 0). Then we must have, 

{tracer1} F1M10 + F2M20 + ==== + FQ MQ 0 = F0M0"> (1.18) 

which says that for a steady-state, the rate of transfer in, must equal the rate of transfer out 

(written M0")= To conserve mass, 

{tracer2} M10 + M20 + ==== + MQ 0 = M0" = (1.19) 

This model has produced for us two equations in Q + 1  unknowns, [M10>M20> ===MQ 0> M0"] which 

evidently is insu!cient information if Q A  1= The equations have also been written as though 
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Figure 1.2: A simple reservoir problem in which there are multiple sources of flow, at rates Ml0> 

each carrying an identifiable property Fl, perhaps a chemical concentration. In the 

forward problem, given Ml0> Fl one could calculate F0= One form of inverse problem  

{reserv1.tif} provides F0 and the Fl and seeks the values of Ml0= 

everything were perfect. If, for example, the tracer concentrations Fl were measured with finite 

precision and accuracy (they always are), one might try to accommodate the resulting inaccuracy 

as, 

F1M10 + F2M20 + ==== +FQ MQ 0 + q = F0M0" (1.20) {tracer3} 

where q represents the resulting error in the equation. Its introduction, of course, produces 

another unknown. If the reservoir were capable of some degree of storage or fluctuation in level, 

one might want to introduce an error term into (1.19) as well. One should also notice, that 

as formulated, one of the apparently infinite number of solutions to Eqs. (6.1, 1.19) includes 

Ml0 = M0" = 0–no flow at all. More information is required if this null solution is to be excluded. 

To make the problem slightly more interesting, suppose that the tracer F is radioactive, and 

decays with a decay constant �= Eq. (6.1) becomes 

F1M10 + F2M20 + ==== + FQ MQ 0 � F0M0" = �F0 (1.21)�

Now if F0 A 0> the zero solution for Mlm is no longer possible, but we still have many more 

unknowns than equations. These equations are once again in the canonical linear form Ax = b= 
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Figure 1.3: Generic tomographic problem in two dimensions. Measurements are made by inte-

grating through an otherwise impenetrable solid between the transmitting sources 

and receivers using x-rays, sound, radio waves, etc. Properties can be anything mea-

surable, including travel times, intensities, group velocities etc. The tomographic 

problem is to reconstruct the interior from these integrals. In the particular config-

uration shown, the source and receiver are supposed to revolve so that a very large 

number of paths can be built up. It is also supposed that the division into small rect-

angles is an adequate representation. In principle, one can have many more integrals 

than the number of squares defining the unknowns. {tomog1.tif} 
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A Tomographic Problem 

So-called tomographic problems occur in many fields, most notably in medicine, but also in 

materials testing, oceanography, meteorology and geophysics. Generically, they arise when one 

is faced with the problem of inferring the distribution of properties inside an area or volume 

based upon a series of integrals through the region. Consider Fig. 1.3., where to be specific, 

suppose we are looking at the top of the head of a patient lying supine in a so-called CAT-

scanner. The two external shell sectors represent in (a) a source of x-rays and, in (b) a set of 

x-ray detectors. X-rays are emitted from the source and travel through the patient along the 

indicated lines where the intensity of the received beam is measured. Let the absorptivity/unit 

length within the patient be a function, f (r) > where r is the vector position within the patient’s 

head. Consider one source at rv and a receptor at rh connected by the path as indicated. Then 

the intensity measured at the receptor is, 
Z 
rh 

L (rv> ru) =  f (r (v)) gv> (1.22) {tomog1} 
rv 

where v is the arc-length along the path. The basic tomographic problem is to determine f (r) 

for all r in the patient, from measurements of L= In the medical problem, the shell sectors rotate 

around the patient, and an enormous number of integrals along (almost) all possible paths are 

obtained. An analytical solution to this problem, as the number of paths becomes infinite, is 

produced by the Radon transform.4 Given that tumors and the like have a di�erent absorptivity 

than does normal tissue, the reconstructed image of f (r) permits physicians to “see” inside the 

patient. In most other situations, however, the number of paths tends to be much smaller than 

the formal number of unknowns and other solution methods must be found. 

Note first, however, that we should modify Eq. (1.22) to reflect the inability of any system 

to produce a perfect measurement of the integral, and so more realistically we write, 
Z 
rh 

L (rv> ru) =  f (r (v)) gv + q (rv> ru) > (1.23) {tomog2} 
rv 

where q is the measurement noise. 

To proceed, surround the patient with a bounding square (Fig. 1=4)–simply to produce a 

simple geometry–and divide the area into sub-squares as indicated, each numbered in sequence, 

1 � m � Q= These squares are supposed su!ciently small that f (r) is e�ectively constant within 

them. Also number the paths, 1 � l � P= Then Eq. (1.23) can be approximated with arbitrary 

accuracy (by letting the sub-square dimensions become arbitrarily small) as, 

Q X 
Ll = fm �ulm + ql= (1.24) {tomog3} 

m=1 
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Figure 1.4: Simplified geometry for defining a tomographic problem. Some squares may have 

no integrals passing through them; others may be multiply-covered. Boxes outside 

the physical body can be handled in a number of ways, including the addition of 

constraints setting the corresponding fm = 0= {tomog2.tif} 

Here �ulm is the arc length of path l within square m (most of them will vanish for any particular 

path). Once again, these last equations are of the form 

Ex + n = y> (1.25) {canon1} 

where here, E = {�ulm } > x = [fm ]> n = [ql] = Quite commonly there are many more unknown 

fm than there are integrals Ll= (In the present context, there is no distinction between writing 

matrices A> E= E will generally be used where noise elements are present, and A where none are 

intended.) 

Tomographic measurements do not always consist of x-ray intensities. In seismology or 

oceanography, for example, fm is commonly 1@ym where ym is the speed of sound or seismic waves 

within the area; L is then a travel time rather than an intensity. The equations remain the same, 

however. This methodology also works in three-dimensions, the paths need not be straight lines 

and there are many generalizations.5 A problem of great practical importance is determining 

what one can say about the solutions to Eqs. (4.34) even where many more unknowns exist 

than formal pieces of information |l. 

As with all these problems, many other forms of discretization are possible. For example, 
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Figure 1.5: Volume of fluid bounded on four open sides across which fluid is supposed to flow. 

Mass is conserved, giving one relationship among the fluid transports yl; conservation 

of one or more other tracers Fl leads to additional useful relationships. {track1.tif} 

the continuous function f (r) can be expanded, 

X X 
f (r) =  dqpWq (u{)Wp (u|) > (1.26) 

t s 

where r =(u{> u| ) > and the Wq are any suitable expansion functions (sines and cosines, Chebyschev 

polynomials, etc.). The linear equations (4.34) then represent constraints leading to the deter-

mination of the dqp = 

A Second Tracer Problem 

Consider the closed volume in Fig. 1.5 enclosed by four boundaries as shown. There are 

steady flows, yl (}) > 1 � l � 4 either into or out of the volume, each carrying a corresponding 

fluid of constant density �0. } is the vertical coordinate. If the width of each boundary is ol> the 

statement that mass is conserved within the volume is simply, 

u Z 0 X 
ol�0 yl (}) g} = 0> (1.27) {box1} 

l=1 3k 

where the convention is made that flows into the box are positive, and flows out are negative. 

} = �k is the lower boundary of the volume and } = 0 is the top one. If the yl are unknown, 

Eq. (1.27) represents one equation (constraint) in four unknowns, 
Z 0 

3k 
yl (}) g}> 1 � l � 4= (1.28) 

One possible, if boring, solution is yl (}) = 0= To make the problem somewhat more interesting, 

we now suppose that for some mysterious reason, the vertical derivatives, y0 l (}) =  gyl (}) @g}> 
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are known so that, Z } 
yl(}) =  yl 

0 (}) g} + el (}0) > (1.29) 
3}r 

where }0 is a convenient place to start the integration (but can be any value). el are integration 

constants (el = yl (}0)) which remain unknown. Constraint (1.27) becomes, 

4 �Z X Z 0 } ¡ ¢ 
0 ol�0 y }0 g}0 + el (}0)

¸ 

g} = 0> (1.30)l 
l=1 3k 3}r 

or, 
4 4 Z 0 Z }X X ¡ ¢ 

0{box2} kolel (}0) = � ol g} y }0 g}0 (1.31)l 
l=1 l=1 3k 3}r 

where the right-hand side is known. Eq. (1.31) is still one equation in four unknown el, but 

the zero-solution is no longer possible, unless the right-hand side vanishes. Eq. (1.31) is a 

statement that the weighted average of the el on the left-hand-side is known. If one seeks to 

obtain estimates of the el separately, more information is required. 

Suppose that information pertains to a tracer, perhaps a red-dye, known to be conservative, 

and that the box concentration of red-dye, F> is  known to be in a steady-state.  Then  conservation  

of F becomes, 

Z4 � Z 0 X Z 0 }X ¡ ¢ ¡ ¢ 
0{box3} kol Fl (}) g}

¸ 

el = 
4 

ol g} Fl }
0 y }0 g}0> (1.32) 

l=1 3k 
� 
l=1 3k 3}r 

l 

where Fl (}) is the concentration of red-dye on each boundary. Eq. (1.32) provides a second 

relationship for the four unknown el. One might try to measure another dye concentration, 

perhaps green dye, and write an equation for this second tracer, exactly analogous to (1.32). 

With enough such dye measurements, one might obtain more constraint equations than unknown 

el= In any case, no matter how many dyes are measured, the resulting equation set is of the form 

(1.9). The number of boundaries is not limited to four, but can be either fewer, or many more.6 

Vibrating String 

Consider a uniform vibrating string anchored at its ends u{ = 0> u{ = O= The free motion of  

the string is governed by the wave equation 

C2� 1 C2� 
= 0> f2 = W@�>  (1.33)

Cu2 
{ 
� 
f2 Cw2 

where W is the tension, and � the density. Free modes of vibration (eigen-frequencies) are found 

to exist at discrete frequencies, vt > 

t�f 
{vibrate2} 2�vt = > t  = 1> 2> 3> ===> (1.34)

O 
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and which is the solution to a classical forward problem. A number of interesting and useful 

inverse problems can be formulated. For example, given vt ± �vt , 1 t P> to determine O>� � 

or f= These are particularly simple problems, because there is only one parameter, either f or O 

to determine. More generally, it is obvious from Eq. (1.34) that one has information only about 

the ratio f@O–they could not be determined separately. 

Suppose, however, that the density varies along the string, � = � (u{) > so that f = f (u{). 

Then (it may be confirmed) that the observed frequencies are no longer given by Eq. (1.34), 

but by expressions involving the integral of f over the length of the string. An important 

problem is then to infer f (u{), and hence � (u{) = One might wonder whether, under these new 

circumstances, O can be determined independently of f? 

A host of such problems, in which the observed frequencies of free modes are used to infer 

properties of media in one to three dimensions exists. The most elaborate applications are in 

geophysics and solar physics, where the normal mode frequencies of the vibrating whole earth 

or sun are used to infer the interior properties for the earth (density and elastic parameters).7 

A good exercise is to render the spatially variable string problem in discrete form. 

1.4 Importance of the Forward Model 

Inference about the physical world from data requires assertions about the structure of the 

data and its internal relationships. One sometimes hears claims from people who are expert 

in measurements that “I don’t use models.” Such a claim is almost always vacuous. What the 

speaker usually means is that he doesn’t use equations, but is manipulating his data in some 

simple way (e.g., forming an average) that seems to be so unsophisticated that no model is 

present. Consider, however, a simple problem faced by someone trying to determine the average 

temperature in a room. A thermometer is successively placed at di�erent three-dimensional 

locations, rl> at times wl. Let  the  measurements  be  |l and the value of interest is, 

P X1 
p̃ = |l= (1.35) {mean1} 

P 
l=1 

In deciding to compute, and use p̃> the observer has probably made a long list of very sophis-

ticated, but implicit, model assumptions. Among them we might suggest: (1) Thermometers 

require assumptions about the quantity recorded (e.g., an oscillator frequency or a voltage) and 

the connection to the desired temperature as well as potentially elaborate calibration means. 

(2) That the temperature in the room is su!ciently slowly changing that all of the wl can be 

regarded as e�ectively identical. A di�erent observer might suggest that the temperature in the 

room is governed by shock waves bouncing between the walls at intervals of seconds or less. 
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Should that be true, p constructed from the available samples might prove completely mean-˜

ingless. It might be objected that such an hypothesis is far-fetched. But the assumption that 

the room temperature is governed, e.g., by a slowly evolving di�usion process, is a rigid, and 

perhaps incorrect model. (3) That the errors in the thermometer are such that the best estimate 

of the room mean temperature is obtained by the simple sum in Eq. (1.35). There are many 

measurement devices for which this assumption is a very poor one (perhaps the instrument is 

drifting, or has a calibration that varies with temperature), and we will discuss how to deter-

mine averages in Chapter 2. But the assumption that property p is useful, is a strong model ˜

assumption concerning both the instrument being used and the physical process it is measuring. 

This list can be extended (the interpretation of the mean is itself model-dependent), but more 

generally, the inverse problems listed earlier in this chapter only make sense to the degree that 

the underlying forward model is likely to be an adequate physical description of the observations. 

For example, if one is attempting to determine � in Eq. (1.15) by taking the Laplacian u 2!, 

(analytically or numerically), this solution to the inverse problem is only sensible if this equation 

really represents the correct governing physics. If the correct equation to use were, instead, 

C2! 1 C! 
+ = �> (1.36)

Cu2 2 Cu|{ 

where u| is another coordinate, the calculated value of � would be incorrect. One might, however, 

have good reason to use Eq. (1.15) as the most likely hypothesis, but nonetheless remain open to 

the possibility that it is not an adequate descriptor of the required field, �= A good methodology, 

of the type we will develop in subsequent chapters, permits one to ask the question: is my 

model consistent with the data? If the answer to the question is “yes,” a careful investigator 

would never claim that the resulting answer is the correct one and that the model has been 

“validated” or “verified.” One claims only that the answer and the model are consistent with 

the observations, and remains open to the possibility that some new piece of information will be 

obtained that completely invalidates the model (e.g., some direct measurements of � showing 

that the inferred value is simply wrong). One can never validate or verify a model, one can only 

show consistency with existing observations.8 

Notes 
1See Lanczos (1961, Section 3.19) 
2Whittaker and Robinson (1944) 
3Lanczos (1961) has a much fuller discussion of this correspondence. 
4Herman (1980). 
5Herman (1980); Munk et al. (1995). 
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6Oceanographers will recognize this apparently highly artificicial problem as being a slightly simplified version 

of the so-called geostrophic inverse problem, and which is of great practical importance. It is a central subject in 

Chapter 5. 
7Aki and Richards (1980). A famous two-dimensional version of the problem is described by Kac (1966); see 

also Gordon and Webb (1996). 
8Oreskes et al. (1994). 
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