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2.8 Improving Recursively 

2.8.1 Least-Squares 

x> ̃A common situation arises that one has a solution ˜ n> P, and more information becomes 

available, often in the form of further noisy linear constraints. One way of using the new 

information is to combine the old and new equations into one larger system, and re-solve. This 

approach may well be the best one. Sometimes, however, perhaps because the earlier equations 

have been discarded, or for reasons of storage or both, one prefers to retain the information in 

the previous solution without re-solving the entire system. So-called recursive methods, in both 

least-squares and minimum variance estimation, provide the appropriate recipes. 

Let the original equations be re-labeled so that we can distinguish them from those that 

come later, in the form, 

{38001} E(1)x + n(1) = y(1) (2.418) 

where the noise n(1) has zero mean and covariance matrix Rqq(1). Let the estimate of the 

solution to (2.418) from one of the estimators be written as x̃(1), with uncertainty P(1). As  a  

specific example, suppose (2.418) is full-rank overdetermined, and was solved using row weighted 
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least-squares as, £ ¤
˜{38002} x(1) = E(1)W Rqq(1)

31E(1)
31 
E(1)W Rqq(1)

31 y(1)> (2.419) 

with corresponding P(1) (column weighting is redundant in the full-rank fully-determined case). 

Some new observations, y(2), are obtained, with the error covariance of the new observations 

given by Rqq(2)> so that the problem for the unknown x is 

6565;
AA?


< 
AA@ 

AA>

x +


E(1)
 997

n(1)
::8
=


997

y(1)
::8
 (2.420) {38003}AA=
E(2) n(2) y(2)


where x is the same unknown. We assume hn(2)i = 0 and 

hn(1)n(2)W i = 0> (2.421) {3.7.4} 

that is, no correlation of the old and new measurement errors. A solution to (2.420) should give 

a better estimate of x than (2.418) alone, because more observations are available. It is sensible 

to row weight the concatenated set to 

656565 

Rqq(1)
3W@2E(1)::8
x +


Rqq(1)
3W@2n(1)::8
=


Rqq(1)
3W@2y(1)::8
= (2.422) {38004} 

Rqq(2)
3W@2E(2) Rqq(2)

3W@2n(2) Rqq(2)
3W@2y(2) 

“Recursive weighted least-squares” seeks the solution to (2.422) without inverting the new, larger 

matrix, by taking advantage of the existing knowledge of x (1) > P (1) –however they might 

actually have been obtained. The objective function corresponding to finding the minimum 

weighted error norm in (2.422) is, 

M = (y(1) � E(1)x)W Rqq(1)
31(y(1) � E(1)x) 

+ (y(2) � E(2)x)W Rqq(2)
31(y(2) � E(2)x) = 

(2.423) {recurs11} 

Taking the derivatives with respect to x, the normal equations produce a new solution, 

x̃(2) = 
© 
E(1)W Rqq(1)

31E(1) + E(2)W Rqq(2)
31E(2) 

ª31 

© 
E(1)W Rqq(1)

31 y(1) + E(2)W Rqq(2)
31 y(2) 

ª 
= 

(2.424) {recurs10} 

This is the result from the brute-force re-solution. But one can manipulate (2.424) into57 (see 

Appendix 3), 

997 
997 

997 
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x (2)=˜˜ x(1)+ h i
P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
[y (2) �E (2) ̃x (1)] 

= x (1) + K (2) [y (2) �E (2) ̃˜ x (1)] > (2.425) 

P (2) = P (1) �K (2) E (2) P (1) > (2.426) 

where h i
{recurs4} K (2) = P (1) E (2)W 

E (2) P (1) E (2)W +Rqq (2) 
31 
= (2.427) 

(Compare Eq. (2.425) with (2.358).) 

An alternate form, for P (2) > found from the matrix inversion lemma, is h i
{recurs5} P (2) = P (1)31 +E (2)W 

Rqq (2)
31 
E (2) 

31 
= (2.428) 

A similar alternative for x̃(2), involving di�erent dimensions of the matrices to be inverted, 

is also available from the matrix inversion lemma> but is generally less useful. (In some large 

problems, however, matrix inversion can prove less onerous than matrix multiplication.) 

The solution (2.425) is just the least-squares solution to the full set, but rearranged after 

a bit of algebra. The original data, y(1), and  coe!cient matrix, E(1), have disappeared, to be 

replaced by the first solution x̃(1)> and its uncertainty, P(1). That is to say, one need not retain 

the original data and E(1) for the new solution to be computed. Furthermore, because the new 

solution depends only upon x̃(1), and  P(1), the particular methodology originally employed for 

obtaining them is irrelevant: they might even have been obtained from an educated guess, or 

from some long previous calculation of arbitrary complexity. If the initial set of equations (2.418) 

is actually underdetermined, and should it have been solved using the SVD, one must be careful 

that P(1) includes the estimated error owing to the missing nullspace. Otherwise, these elements 

would be assigned zero error variance, and the new data could never a�ect them. Similarly, the 

dimensionality and rank of E (2) is arbitrary, as long as the matrix inverse exists. 

Example 

Suppose we have a single measurement of a scalar, {> so that , { + q (1) = | (1) > hq (1)i = D E 
0> q (1)2 = U (1) = Then an estimate of { is {̃ (1) = | (1) > with uncertainty S (1) = U(1)= A D E 
second measurement then becomes available, { + q (2) = | (2) > hq (2)i = 0> q (2)2 = U (2) = By 

Eq. (2.425), an improved solution is 

{̃ (2) = | (1) + U (1) @(U (1) + U(2)) (| (1) � | (2)) > 
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with uncertainty by Eq. (2.428), 

S (2) = 1@ (1@U (1) + 1@U(2)) = U(1)U(2)@(U (1) + U (2))= 

If U (1) = U (2) = U> we have {̃ (2) = (| (1) + | (2)) @2> S  (2) = U@2= If there are P succesive 

measurements all with the same error variance, U> one finds the last estimate is, 

˜ ˜{ (P ) =  { (P � 1) + U@ (P � 1) (U@ (P � 1) + U)31 | (P ) 
1 

= {̃ (P � 1) + | (P )
P 

1 
= (| (1) + | (2) + === + | (P )) > 
P 

with uncertainty, 
1 U 

S (P ) =  = > 
((P � 1) @U + 1@U) P 

the conventional average and its variance. Note that each new measurement is given a weight 

1@P relative to the average, {̃ (P � 1) > already computed from the previous P � 1 data points. 

The structure of the improved solution (2.425) is also interesting and suggestive. It is made 

up of two terms: the previous estimate plus a term proportional to the di�erence between the 

new observations y(2), and  a prediction of what those observations should have been were the 

first estimate the wholly correct one and the new observations perfect. It thus has the form 

of a “predictor-corrector.” The di�erence between the prediction and the forecast can be called 

the “prediction error,” but recall there is observational noise in y(2). The new estimate is a 

weighted average of this di�erence and the prior estimate, with the weighting depending upon 

the details of the uncertainty of prior estimate and new data. The behavior of the updated 

estimate is worth understanding in various limits. For example, suppose the initial uncertainty 

estimate is diagonal, P(1) = �2I. Then, 

£ ¤
2 31 

K(2) = E(2)W E(2)E(2)W + Rqq(2)@� = (2.429) {38010} 

If the observations are extremely accurate, the norm of Rqq(2)@�2 is small, and if the second 

set of observations is full rank underdetermined, 

K(2) �$ E(2)W (E(2)E(2)W )31 

and 

x(2) = ˜ x(1)]˜ x(1) + E(2)W (E(2)E(2)W )31[y(2) � E(2)˜
(2.430) 

= [I E(2)W (E(2)E(2)W )31E(2)]x̃(1) + E(2)W (E(2)E(2)W )31 y(2)= � 
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Now, [I � E(2)W (E(2)E(2)W )31E(2)] = IQ �VVW = Qy QW > where V is the full-rank singular y 

vector matrix for E (2) >and it spans the nullspace of E(2) (see Eq. 2.290) The update thus 

replaces, in the the first estimate, all the structures given perfectly by the second set of obser-

vations, but retains those structures from the first estimate about which the new observations 

say nothing–a sensible result. At the opposite extreme, when the new observations are very ° ° 
noisy compared to the previous ones, °Rqq@�2 ° $ 4> kK(2)k $ 0> and the first estimate is 

left unchanged. 

The general case represents a weighted average of the previous estimate with elements found 

from the new data, with the weighting depending both upon the relative noise in each, and upon 

the structure of the observations relative to the structure of x as represented in P (1) > Rqq (2) > 

E (2) = The matrix being inverted in (2.427) is the sum of the measurement error covariance 

x(1). To see this, let � be the error gegammaerror}	 Rqq(2), and the error covariance of the “forecast” E(2)˜

component in x̃(1) = x (1) + �, which by definition has covariance h��W i = P(1). Then the 

expected covariance of the error of prediction is hE(1)��W E (1)W i = E(1)P(1)E(1)W , which  D E 
appears in K(2). Because of the assumptions (2.421), and � (1) x (1)W = 0> it follows that, 

{innov1}	 hy (1) (y (2) �E (2) ̃x (1))i = 0=	 (2.431) 

That is, the prediction error or “innovation,” y (2) �E (2) ̃x (1) > is uncorrelated with the previous 

measurement. 

It is useful to notice that Eq. (2.359), the solution to the least-squares problem subject 

to certain perfect constraints imposed by a Lagrange multiplier, can be recovered from the 

minimum variance solution (2.425) by putting E(2) = A, y(2) = b, Rqq(2) $ 0. That  is,  this  

earlier solution can be conceived of as having been obtained by first solving the conventional 

least-squares problem, and then being modified by the later information that Ax = b> with 

very high accuracy. 

The possibility of a recursion based on Eqs. 2.425, 2.426 (or 2.428) is obvious–all subscript 

1 variables being replaced by subscript 2 variables, which in turn are replaced by subscript 3 

variables, etc. The general form would be, 

˜ ˜	 x (q � 1)] (2.432) x (q) =  x (q � 1) +K (q) [y (q) �E (q) ̃h	 i
K (q) =  P (q � 1) E (q)W 

E (q) P (q � 1) E (q)W +Rqq (q) 
31 

(2.433) 

P (q) =  P (q � 1) �K (q) E (q) P (q � 1) (2.434) 
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An alternative form for Eq. (2.434) is, from (2.428), 

{recurs9} P (q) =  
h 
P (q � 1)31 +E (q)W 

Rqq (q)
31 
E (q) 

i31 
= (2.435) 

The computational load of the recursive solution needs to be addressed. A least-squares 

solution does not require one to calculate the uncertainty P (although the utility of x̃ without 

such an estimate is unclear). But to use the recursive form, one must have P (q � 1) > otherwise 

the update step, Eq. (2.432) cannot be used. In very large problems, such as appear in oceanog-

raphy and meteorology (Chapter 6), the computation of the uncertainty, from (2.434), or (2.435) 

can become prohibitive. In such a situation, one might simply store all the data, and do one 

large, single calculation–if this is feasible. Normally, it will involve less pure computation than 

will the recursive solution which must repeatedly update P (q) = 

The comparatively simple interpretation of the recursive, weighted least-squares problem will 

be used in Chapter 4 to derive the Kalman filter and suboptimal filters in a very simple form. 

It also becomes the key to understanding “assimilation” schemes such as “nudging,” “forcing to 

climatology,” and “robust diagnostic” methods. 

2.8.2 Minimum Variance Recursive Estimates 

The recursive least-squares result is identical to a recursive estimation procedure, if appropriate 

least-squares weight matrices were used. Suppose there exist two independent estimates of an 

unknown vector x, denoted x̃d, x̃e with estimated uncertainties Pd, Pe, respectively. They are 

either unbiased , or have the same bias, that is, hx̃di = hx̃ei = xE that is, have the same mean. 

How should the two be combined to give a third estimate x̃+ with minimum error variance? Try 

a linear combination, 

x̃ + = Ld ̃xd + Le ̃xe = (2.436) {38014} 

If the new estimate is to be unbiased, or is to retain the prior bias (that is, the same mean), it 

follows that, 

hx̃ +i = Ldhx̃di + Lehx̃ei (2.437) {38015} 

or, 

xE = LdxE +LexE (2.438) 

or, 

Le = I � Ld (2.439) 

Then the uncertainty is, 

P+ = h(x̃ + � x)(x̃ + � x)W i = h(Ld ̃xd + (I � Ld)x̃e)(Ld ̃xd + (I � Ld)x̃e)
W i 

(2.440) 
= LdPdLW 

d + (I � Ld)Pe(I � Ld)W 
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xd�x) (˜where the independence assumption has been used to set h(˜ xe�x)i = 0. P+ is positive 

definite; minimizing its diagonal elements with respect to Ld yields (after writing out the diagonal 

elements of the products), 

Ld = Pe(Pd + Pe)
31> Le = Pd(Pd + Pe)

31 = 

(Blithely di�erentiating and setting to zero produces the correct answer: 

µ ¶
C (diag P+) CP+ 

= diag  = diag  [2PdLd Ld)] = 0> 
CLd CLd	

�Pe (I � 

or,Ld = Pe(Pd + Pe)31). The new combined estimate is, 

˜+{recurs15}	 x = Pe(Pd + Pe)
31 ̃ xe = (2.441) xd + Pd(Pd + Pe)

31 ̃

This last expression can be rewritten by adding and subtracting x̃d as, 

˜+ ˜	 xdx =	 xd + Pe(Pd + Pe)
31 ̃

+Pd(Pd + Pe)
31 ̃ xdxe � (Pd + Pe)(Pd + Pe)

31 ̃

= xd + Pd(Pd + Pe)
31(˜ ˜˜ xe � xd) =	 (2.442) 

Notice in particular, the re-appearance of a predictor-corrector form relative to x̃d= 

The uncertainty of the estimate (2.442) is easily evaluated as 

{38019b}	 P+ = Pd Pd(Pd + Pe)
31Pd = (2.443) � 

or, by straightforward application of the matrix inversion lemma, is, 

{38019a}	 P+ = (P31 + P3e 
1)31 = (2.444) d 

The uncertainty is again independent of the observations. Eqs. (2.442-2.444) are the general 

rules for combining two estimates with uncorrelated errors. 

xd and its uncertainty are known, but that instead of ˜Now suppose that ˜ xe there are mea-

surements, 

{38020} E(2)x + n(2) = y(2)> (2.445) 

with hn(2)i = 0, hn(2)n(2)W i = Rqq(2). From this second set of observations, we estimate 

the solution, using the minimum variance estimator (2.404, 2.406) with no use of the solution 
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variance; that is, let kR31 
{{ k $ 0. The reason for suppressing R{{, which logically could come 

from Pd, is to maintain the independence of the previous and the new estimates. Then, 

h i
˜{38021a} xe = E (2)W 

Rqq (2)
31 
E (2) 

31 
E (2)W 

Rqq(2)
31 y (2) (2.446) h i

{38021b} Pe = E (2)W 
Rqq (2)

31 
E (2) 

31 
= (2.447) 

Substituting (2.446), (2.447) into (2.442), (2.443), and using the matrix inversion lemma (see 

Appendix 3) gives 

x ˜ xd) > (2.448) ˜+ = xd + PdE(2)W [E(2)PdE(2)
W + Rqq(2)]31(y (2) � E(2)˜³ ´

P+ = P31 + E (2)W 
Rqq (2)

31 
E (2) 

31 
(2.449) d 

which is the same as (2.432), 2.435) and thus a recursive minimum variance estimate coincides 

with a corresponding weighted least-squares recursion. The new covariance may also be confirmed 

to be that in either of Eqs. (2.434) or (2.435). Notice that if x̃d was itself estimated from an 

earlier set of observations, that those data have disappeared from the problem, with all the 

information derived from them contained in x̃d and Pd= Thus, again, earlier data can be wholly 

discarded after use. It does not matter where x̃d originated, whether from over- or under-

determined equations or a pure guess–as long as Pd is realistic. Similarly, expression (2.448) 

remains valid whatever the dimensionality or rank of E (2) as long as the inverse matrix exists. 

The general implementation of this sequence for a continuing data stream corresponds to Eqs. 

(2.432)-(2.435). 


