2.12 Appendix 3 Recursive Least-Squares and Gauss-Markov Solutions

The recursive least-squares solution Eq. (2.425) is appealingly simple. Unfortunately, obtaining it from the concatenated least-squares form (Eq. 2.424),

$$
\begin{aligned}
\tilde{\mathbf{x}}(2)= & \left\{\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{E}(1)+\mathbf{E}(2)^{T} \mathbf{R}_{n n}(2)^{-1} \mathbf{E}(2)\right\} \times \\
& \left\{\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{y}(1)+\mathbf{E}(2)^{T} \mathbf{R}_{n n}(2)^{-1} \mathbf{y}\right\}
\end{aligned}
$$

is not easy at all. First note that

$$
\begin{align*}
\tilde{\mathbf{x}}(1) & =\left[\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{E}(1)\right]^{-1} \mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{y}(1) \tag{2.461}\\
& =\mathbf{P}(1) \mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{y}(1)
\end{align*}
$$

where,

$$
\mathbf{P}(1)=\left[\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{E}(1)\right]^{-1}
$$

are the solution and uncertainty of the overdetermined system from the first set of observations alone. Then

2.12 APPENDIX 3 RECURSIVE LEAST-SQUARES AND GAUSS-MARKOV SOLUTIONS151

$$
\tilde{\mathbf{x}}(2)=\left\{\mathbf{P}(1)^{-1}+\mathbf{E}(2)^{T} \mathbf{R}_{n n}(2)^{-1} \mathbf{E}(2)\right\}^{-1} \times\left\{\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{y}(1)+\mathbf{E}(2)^{T} \mathbf{R}_{n n}(2)^{-1} \mathbf{y}(2)\right\}
$$

Now we apply the matrix inversion lemma, in the form Eq. (2.36), to the first bracket (using $\left.\mathbf{C} \rightarrow \mathbf{P}(1)^{-1}, \mathbf{B} \rightarrow \mathbf{E}(2), \mathbf{A} \rightarrow \mathbf{R}_{n n}(2)\right)$

$$
\begin{aligned}
\tilde{\mathbf{x}}(2)= & \left\{\mathbf{P}(1)-\mathbf{P}(1) \mathbf{E}(2)^{T}\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1} \mathbf{E}(2) \mathbf{P}(1)\right\}\left\{\mathbf{E}(1)^{T} \mathbf{R}_{n n}(1)^{-1} \mathbf{y}(1)\right\}+ \\
& +\left\{\mathbf{P}(1)-\mathbf{P}(1) \mathbf{E}(2)^{T}\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1} \mathbf{E}(2) \mathbf{P}(1)\right\}\left\{\mathbf{E}(2)^{T} \mathbf{R}_{n n}(2)^{-1} \mathbf{y}(2)\right\} \\
= & \tilde{\mathbf{x}}(1)-\mathbf{P}(1) \mathbf{E}(2)^{T}\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1} \mathbf{E}(2) \tilde{\mathbf{x}}(1)+ \\
& +\mathbf{P}(1) \mathbf{E}(2)^{T}\left\{\mathbf{I}-\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1} \mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}\right\} \mathbf{R}_{n n}(2)^{-1} \mathbf{y}(2)
\end{aligned}
$$

using (2.461) and factoring $\mathbf{E}(2)^{T}$ in the last line. Using the identity,

$$
\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1}\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]=\mathbf{I}
$$

and substituting for I in the previous expression, factoring, and collecting terms, we have finally,

$$
\begin{equation*}
\tilde{\mathbf{x}}(2)=\tilde{\mathbf{x}}(1)+\mathbf{P}(1) \mathbf{E}(2)^{T}\left[\mathbf{E}(2) \mathbf{P}(1) \mathbf{E}(2)^{T}+\mathbf{R}_{n n}(2)\right]^{-1}[\mathbf{y}(2)-\mathbf{E}(2) \tilde{\mathbf{x}}(1)] \tag{2.462}
\end{equation*}
$$

\{recurs16\}
which is the desired expression. The new uncertainty is given by (2.426) or (2.428).
Manipulation of the recursive Gauss-Markov solution (2.441) or (2.442) is similar, involving repeated use of the matrix inversion lemma. Consider Eq. (2.441) with \mathbf{x}_{b} from Eq. (2.446),

$$
\begin{aligned}
\tilde{\mathbf{x}}^{+}= & \left(\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right)^{-1}\left[\mathbf{P}_{a}+\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right]^{-1} \tilde{\mathbf{x}}_{a}+ \\
& \mathbf{P}_{a}\left[\mathbf{P}_{a}+\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right]^{-1}\left(\mathbf{E}(2)^{T} \mathbf{R}_{n n} \mathbf{E}(2)\right)^{-1} \mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{y}(2)
\end{aligned}
$$

Using Eq. (2.37) on the first term (with $\mathbf{A} \rightarrow\left(\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right)^{-1}, \mathbf{B} \rightarrow \mathbf{I}, \mathbf{C} \rightarrow \mathbf{P}_{a}$), and on the second term with $\mathbf{C} \rightarrow\left(\mathbf{E}(2) \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right), \mathbf{A} \rightarrow \mathbf{P}_{a}, \mathbf{B} \rightarrow \mathbf{I}$, this last expression becomes,

$$
\tilde{\mathbf{x}}^{+}=\left[\mathbf{P}_{a}^{-1}+\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)\right]^{-1}\left[\mathbf{P}_{a}^{-1} \tilde{\mathbf{x}}_{a}+\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{y}(2)\right]
$$

yet another alternate form. By further application of the matrix inversion lemma, ${ }^{60}$ this last expression can be manipulated into Eq. (2.448), which is necessarily the same as (2.462).

These expressions have been derived assuming that matrices such as $\mathbf{E}(2)^{T} \mathbf{R}_{n n}^{-1} \mathbf{E}(2)$ are non-singular (full-rank overdetermined). If they are singular, they can be inverted using a generalized inverse, e.g. replacing $\tilde{\mathbf{x}}(1)$ with the particular SVD solution, but taking care that \mathbf{P} (1) includes the nullspace contribution (e.g., from Eq. (2.271)).

