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4.7 Nonlinear Models 

Fluid flows are nonlinear by nature, and one must address the data/model combination problem 

where the model is nonlinear. (There are also, as noted above, instances in which the data 

are nonlinear combinations of the state vector elements.) Nonetheless, the focus here on linear 

models is hardly wasted e�ort. As with more conventional systems, there are not many general 

methods for solving nonlinear estimation or control problems; rather, as with forward modeling, 

each situation has to be analyzed as a special case. Much insight is derived from a thorough 

understanding of the linear case, and indeed it is di!cult to imagine tackling any nonlinear 

situation without a thorough grasp of the linear one. Not unexpectedly, the most accessible 

approaches to nonlinear estimation/control are based upon linearizations. 

A complicating factor in the use of nonlinear models is that the objective functions need no 

longer have unique minima. There can be many nearby, or distant, minima, and the one chosen 

by the usual algorithms may depend upon exactly where one starts in the parameter space and 

how the search for the minimum is conducted. Indeed, the structure of the cost function may 

come to resemble a chaotic function, filled with hills, plateaus, and valleys into which one may 

stumble, never to get out again.137 The combinatorial methods described in Chapter 3 are a 

partial solution. 

4.7.1 The Linearized and Extended Kalman Filter 

If one employs a nonlinear model, 

¡ ¢ 
{66001} x(w) =  L x(w � 1)> Bq(w � 1)> �(w)u(w � 1) > (4.154) 

then reference to the Kalman filter recursion shows that the forecast step can be taken as before, 

¡ ¢ 
˜ ˜{66002} x(w> �) =  L x(w � 1)> Bq(w � 1)> 0 > (4.155) 

but it is far from clear how to propagate the uncertainty from P(w � 1) to P(w> �), the previous 
derivation being based upon the assumption that the error propagates linearly, independent 

of  the true value  of  x(w) (or equivalently, that if the initial error is Gaussian, then so is the 

propagated error). With a nonlinear system one cannot simply add the propagated initial 

condition error to that arising from the unknown controls. A number of approaches exist to 
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finding approximate solutions to this problem, but they can no longer be regarded as strictly 

optimal, representing di�erent linearizations. 

Suppose that we write, 

x(w) = xr(w) +�x(w) > q = q0(w) +�q(w) > (4.156) {66003} 

¡ ¢ 
L x(w)> Bq(w)> �u(w)> w  = ¡ ¢ ¡ ¢W 

Lr xr(w)> qr(w)> 0> w  + L{ xr(w)> 0 �x(w) ¡ ¢W ¡ ¢W 
+ Lt xr(w)> qr(w) �q(w) +  Lx xr(w)> qr(w) u(w) 

where 

(4.157) {66004} 

L{ xr(w)> qr(w) =
¡ ¢ CL 

Cx(w) 
> 

Lx xr(w)> qr(w) =
¡ ¢ CL 

Cu(w) 
= 

Lt xr(w)> qr(w) =
¡ ¢ CL 

Cq(w) 
> 

Then, ¡ ¢ 
�xr(w) = Lr xr(w� 1)> Bqr(w� 1)> 0> w 1 > (4.158) {66006} 

defines a nominal solution, or trajectory, xr(w). The model is assumed to be di�erentiable 

in this manner; all discrete models are so di�erentiable, numerically, barring a division by 

zero somewhere. Note that all discrete models are by definition discontinuous, and discrete 

di�erentiation automatically accomodates such discontinuities. Numerical models often have 

switches, typically given by “if xx, then yy” statements. Even these models are di�erentiable in 

the sense we need, except at the isolated point where the “if” statement is evaluated; typically 

the code representing the derivatives will also have a switch at this point. 

A non-linear models, in particular, can have trajectories which bifurcate in a number of 

di�erent ways, so that subject to slight di�erences in state, the trajectory can take widely 

di�ering pathways as time increases. This sensitivity can be a very serious problem for a Kalman 

filter forecast, because a linearization may take the incorrect branch, leading to divergences well-

beyond any formal error estimate. Note, however, that the problem is much less serious in a 

smoothing problem, as one then has observations available indicating the branch actually taken. 

Assuming a nominal solution is available, we have an equation for the solution perturbation: 

¡ ¢W 
x�x(w) = L{ xr(w� 1)> qr(w� 1) �x(w� 1) + Lt 

W �q(w� 1) + LW u(w� 1) > (4.159) {66007} 

which is linear–called the “tangent linear model,” and of the form already used for the Kalman 

filter, but with redefinitions of the governing matrices. The full solution would be the sum of the 

nominal solution, xr(w)> and the perturbation �x(w). This form of estimate is sometimes known 
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as the “linearized Kalman filter,” or the “neighboring optimal estimator.” Its usage depends 

upon the existence of a nominal solution, di�erentiability of the model, and the presumption 

that the controls �q, u do not drive the system too far from the nominal trajectory. 

The so-called “extended Kalman filter” is nearly identical, except that the linearization is 

taken instead about the most recent estimate x̃(w); that is, the partial derivatives in (4.157) are 

evaluated using not xr(w � 1)> but x̃(w � 1). This latter form is more prone to instabilities, but 

if the system drifts very far from the nominal trajectory, it could well be more accurate than 

the linearized filter. Linearized smoothing algorithms can be developed in analogous ways, and 

as already noted, the inability to track strong model nonlinearities is much less serious with a 

smoother than with a filter. The references go into these questions in great detail. Problems 

owing to multiple minima in the cost function138 can always be overcome by having enough  

observations to keep the estimates close to the true state. The usual posterior checks of model 

and data residuals are also a very powerful precaution against a model failing to track the true 

state adequately. 

It is possible to define physical systems for which su!ciently accurate or useful derivatives of 

the system cannot be defined139 so that neither Lagrange multiplier nor linerearized sequential 

methods can be used. Whether such systems occur in practice, or whether they are somewhat like 

the mathematical pathologies used by mathematicians to demonstrate the limits of conventional 

mathematical tools (e.g., the failure to exist of the derivative of sin (1@w) > w  $ 0> or of the 

existence of space-filling curves) is not so clear. It is clear that all linearization approaches 

do have limits of utility, but they are and will likely remain, the first choice of practitioners 

necessarily aware that no universal solution methods exist. 

4.7.2 Parameter Estimation and Adaptive Estimation 

Often models contain parameters whose values are poorly known. In fluid flow problems, these 

often concern parameterized turbulent mixing, with empirical parameters which the user is 

willing to adjust to provide the best fit of the model to the observations. Sometimes, this 

approach is the only way to determine the parameter values. 

Suppose that the model is linear in x (w) and that it contains a vector of parameters, p> 

whose nominal values, p0> we wish to improve, while also estimating the state vector. Write the 

model as ¡ ¢ 
{66008} x(w) =  A p(w � 1) x(w � 1) + Bq(w � 1) + �u(w � 1)> (4.160) 

where the time dependence in p (w) to the changing estimate of their value rather than a true 

physical time dependence. A general approach to solving this problem is to augment the state 



4.7 NONLINEAR MODELS 253 

vector. That is, 6
5


997

x(w)
::8
{66009} xD(w) =  = (4.161) 

p(w) 

Then write a model for this augmented state as, 

xD(w) = LD [xD(w � 1)> q(w � 1)> u(w � 1)] > (4.162) {66010} 

where
 ;
AA?


<
AA@ 

AA>

xD (w � 1) +Bq(w � 1) + �u(w � 1) = (4.163) {66011}

¡ ¢ 
A p(w � 1) 0 

LD =
AA=
 0 I 

The observation equation is augmented simply as 

yD(w) = ED(w)xD(w) + nD(w) > 

ED(w) = {E(w) 0} > nD(w) = n(w) > 

assuming that there are no direct measurements of the parameters. The evolution equation for 

the parameters can be made more complex than indicated here. A solution can be found by 

using the linearized Kalman filter, for example, linearizing about the nominal parameter values. 

Parameter estimation is a very large subject.140 

A major point of concern in estimation procedures based upon Gauss-Markov type methods 

lies in specification of the various covariance matrices, especially those describing the model 

error–here lumped into Q(w). The reader will probably have concluded that there is, however, 

nothing precluding deduction of the covariance matrices from the model and observations, given 

that adequate numbers of observations are available. For example, it is straightforward to show 

that if a Kalman filter is operating properly, then the so-called innovation, y(w) � Ex̃(w> �), 
should be uncorrelated with all previous measurements: 

¡ ¢ 
hy(w 0) y(w)� Ex̃(w> �) i = 0 > w0 ? w>  (4.164) {66013} 

(recall Eq. (2.431)). To the extent that (5.29) is not satisfied, the covariances need to be modi-

fied, and algorithms can be formulated for driving the system toward this condition. The possi-

bilities for such procedures have an extended literature under the title “adaptive estimation.”141 

4.7.3 Nonlinear Adjoint Equations; Searching for Solutions 

Consider now a nonlinear model in the context of the Lagrange multipliers approach. Let the 

model be nonlinear in either the state vector, or the model parameters, or both, so that a typical 
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objective function is, 

M = [x(0) � x0]
W 
P(0)31 [x(0) � x̃0] 

wi X 
+ [E(w)x(w) � y(w)]W 

R(w)31 [E(w)x(w) � y(w)] 
w=1 

wi 31 (4.165) X 
+ u(w)W Q(w)31 u(w) 
w=0

wi
X 

� 2 µ(w)W [x(w) � L [x(w � 1)> Bq(w � 1)> �u(w � 1)]] = 
w=1 

The observations continue to be treated as linear in the state vector, but even this assumption 

can be relaxed. The normal equations are: 

µ ¶
{66015} 1 CM 

= Q (w)31 
u(w) +  

CL (x(w)> Bq(w)> �u(w)) W 
W � µ(w + 1)  =  0 > (4.166) 2 Cu(w) Cu (w)


0 w
� � wi � 1 

CM1{66016} 2 Cµ(w)
= x(w) � L [x(w � 1)> Bq(w � 1)> �u(w � 1)] = 0 > 1 w (4.167) � � wi 

¶
CM CL (x(0)> Bq(0)> �u(0)) W 

{66017} 1 = P(0)31 [x(0) � x0] +  

µ 

µ(1) = 0 > (4.168) 2 Cx(0) Cx(0)

CM


{66018} 1 = E(w)W R(w)31 [E(w)x(w) � y(w)] � µ(w) (4.169) 2 Cx(w) ¶W 

µ(w + 1)  =  0 > 1 w+ 

µ 
CL (x(w)> Bq(w)> �u(w)) 

Cx(w) 
� � wi � 1 

CM 
{66019} 1 = E(wi )

W R(wi )
31 [E(wi )x(wi ) � y(wi )] � µ(wi ) =  0 = (4.170) 2 Cx(wi ) 

These are nonlinear because of the nonlinear model (4.167)–although the adjoint model (4.169) 

remains linear in µ(w)–and the linear methods used thus far will not work directly. The oper-

ators, 

µ 
CL (x (w) > Bq (w) > �u (w) > w) 

¶
> 

µ 
CL (x (w) > Bq (w) > �u (w) > w) 

¶ 

> (4.171) {adjoint1} 
Cu (w) Cx(w) 

appearing in the above equations are, as in Eq. (4.157), the derivatives of the model with respect 

to the control and statevectors. Assuming they exist, they represent a linearization of the model 

about the state and control vectors and again are the tangent linaer model. Their transposes 

are, in this context, the adjoint model. There is some ambiguity about the terminology: the 

form of (4.171) or the transposes are definable independent of the form of M= Otherwise, Eq. 

(4.169) and its boundary condition (4.170) depend upon the actual observations and the details 
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of M ; one might call this pair the “adjoint evolution” equation to distinguish it from the adjoint 

model. 

If the nonlinearity is not too large, perturbation methods may work. This notion leads to 

what is usually called “neighboring optimal control”142 Where the nonlinearity is large, the 

approach to solution is an iterative one. Consider what one is trying to do. At the optimum, 

if we can find it, M will reach a stationary value in which the terms multiplying the µ(w) will 

vanish. Essentially, one uses search methods that are able to find a solution (there may well be 

multiple such solutions, each corresponding to a local minimum of M). 

There are many known ways to seek approximate solutions to a set of simultaneous equations, 

linear or nonlinear, using various search procedures. Most such methods are based upon what 

are usually called “Newton” or “quasi-Newton” methods, or variations on steepest descent. The 

most popular approach to tackling the set (4.166)—(4.170) has been a form of conjugate gradient 

or modified steepest descent algorithm. The iteration cycles are commonly carried out by making 

a first estimate of the initial conditions and the boundary conditions—for example, setting u = 0. 

One integrates (4.167) forward in time to produce a first guess for x(w). A first guess set of 

Lagrange multipliers is obtained by integrating (4.169) backward in time. Normally, (4.166) is 

not then satisfied, but because the values obtained provide information on the gradient of the 

objective function with respect to the controls, one knows the sign of the changes to make in 

the controls to reduce M . Perturbing the original guess for u(w) in this manner, one does another 

forward integration of the model and backward integration of the adjoint. Because the Lagrange 

multipliers provide the partial derivatives of M with respect to the solution, (Eq. (4.168) permits 

calculation of the direction in which to shift the current estimate of x (0) to decrease M)> one can 

employ a conjugate gradient or steepest descent method to modify x̃ (0) and carry out another 

iteration. 

In this type of approximate solution, the adjoint solution, µ̃(w), is really playing two distinct 

roles. On the one hand, it is a mathematical device to impose the model constraints; on the 

other, it is being used as a numerical convenience for determining the direction and step size to 

best reduce the objective function. The two roles are obviously intimately related, but as we 

have seen for the linear models, the first role is the primary one. The problem of possibly falling 

into the wrong minimum of the objective function remains here, too. 

In practice, L (x (w� 1) >Bq (w� 1) >�u (w� 1) > w� 1) is represented as many lines of com-

puter code. Generating the derivatives in Eq. (4.171) can be a major undertaking. Fortunately, 

and remarkably, the automatic di�erentiation (AD) tools mentioned above can convert the code 

for L [x (w) >Bq (w) >�u (w) > w] into the appropriate code for the derivatives. While still requir-

ing a degree of manual intervention, this AD software renders Lagrange multiplier methods a 
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practical approach for model codes running to many thousands of lines.143 The basic ideas are {pagead2} 

sketched in the next subsection and the Chapter Appendix. 

4.7.4 Automatic Di�erentiation, Linearization, and Sensitivity 

The linearized and extended filters and smoothers (e.g., Eq. 4.158) and the normal equations 

(4.166-4.170) involve derivatives such as CL@Cx (w). One might wonder how these are to be 

obtained. Several procedures exist, but to motivate what is perhaps the most elegant method, 

let us begin with a simple example of a two-dimensional non-linear model. 

H{dpsoh. 

Let 65 

dxW (w � 1) x (w � 1) + f997

::8
x (w) =  L (x (w � 1)) =
 (4.172){nonlin1} 

exW (w � 1) x (w � 1) + g 

where d> e> f> g are fixed constants. Time stepping from w = 0> 

65 

dxW (0) x (0) + f997

::8
x (1)
 = > (4.173) 

exW (0) x (0) + g 

dxW (1) x (1) + f 

65 

997 
::8
x (2) = 

ex W (1) x (1) + g 
=== 

Consider the dependence, Cx (w) @Cx (0) > 

;
AA?


<
AA@ 

AA>


C{1(w) C{2 (w) 
Cx (w) C{1(0) C{1(0) 

(4.174){nonlin4} =
AA=
Cx (0) C{1(w) 
C{2(0) 

C{2 (w) 
C{2(0) 

For w = 2> by the definitions and rules of Chapter 2, we have,


;
AA?


<
AA@ 

AA>

= 
CL (L (x (0))) 
Cx (0) 

= L0 (x (0)) L0 (L (x (0))) = (4.175) 

C{1(2) C{2(2) 
Cx (2) C{1(0) C{1(0)

{chain4} =
AA=
Cx (0) C{1(2) 
C{2(0) 

C{2(2) 
C{2(0) 

Noting, 
Cx (2) CL (x (1)) Cx (1) CL (x (1)) CL (x (0)) CL (x (1))

{nonlin3} = = = (4.176)
Cx (0) Cx (0) Cx (0) Cx (1) Cx (0) Cx (1) 



4.7 NONLINEAR MODELS 257 

where we have used the “chainrule” for di�erentiation. Substituting into (4.176) we have, 
;
AA?


;
AA? 

< 
AA@ 

AA> 

< 
AA@ 

AA>


2d{1 (0) 2e{1 (0) 2d{1 (1) 2e{1 (1) 

2d{2 (1) 2e{2 (1) 

Cx (2) 
= 

Cx (0) A
A=

A
A=
2d{2 (0) 2e{2 (0) 

;
AA?


;
AA? 

<
AA@ 

AA> 

<
AA@ 

AA>


2d22d{1 (0) 2e{1 (0) 2de 
W (0) x (0) >= xA
A=


A
A 2=
2d{2 (0) 2e{2 (0) 2de 2e

which it may be confirmed is identical to Eq. (??). By direct calculation from Eq. (4.173), we


have ;
AA?


<
AA@ 

AA>

= (4.177) {chain3} 

d{1 (0) e{1 (0)Cx (2) ¡ ¢
2= 4  d2 + e x (0)W 

x (0)
Cx (0) AA=
d{2 (0) e{2 (0) 

Now let us use the chain rule on, 

x (2) = L (L (x (0))) = 

Cx (2) 
= L0 (x (0)) L0 (L (x (0))) > (4.178)

Cx (0) ;
AA?


< 
AA@ 

AA>

=


2d{1 (0) 2e{1(0) 
L0 (x (0)) = AA=
2d{2 (0) 2e{2 (0) 
;
AA?


< 
AA@ 

AA>

=


;
AA?


< 
AA@ 

AA>

=


2d2x (0)W 
x (0) 2dex (0)W2d{1 (1) 2e{1(1) x (0) 

L0 (L (x (0))) = L0 (x (1)) = A
A A
A=
2dex (0)W 
x (0) 2e2x (0)W=
2d{2 (1) 2e{2 (1) x (0) 

Multiplying, as in (4.178), 
;
AA?


;
AA? 

< 
AA@ 

AA> 

< 
AA@ 

AA>


2d2x (0)W 
x (0) 2dex (0)W2d{1 (0) 2e{1(0) x (0) 

= A
A=

A
A 2dex (0)W 

x (0) 2e2x (0)W= 
;
AA?


2d{2 (0) 2e{2 (0) x (0) 
<
AA@ 

AA>


d{1 (0) e{1 (0)¡ ¢
24 d2 + e x (0)W 

x (0)AA=
d{2 (0) e{2 (0) 

consistent with (4.177). Hence, as required, 
;
AA?
2d{1 (0) 2e{1(0) 

;
AA? 

<
AA@ 

AA> 

2d2x (0)W 
x (0) 2dex (0)W 

<
AA@ 

AA>


x (0) 
gx (2) = gx (0)W = A
A AA= 2dex (0)W 

x (0) 2e2x (0)W 
x (0)2d{2 (0) 2e{2 (0) =
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As a computational point note that this last equation involves a matrix-matrix multiplication on 

the right. But if written as a transpose, 

;
AA?


W 

AA

<
AA@ 

AA> 

;
AA?


<
AA@

W 

2d2x (0)W 
x (0) 2dex (0)W 

x (0) 2d{1 (0) 2e{1(0) 
gx (2)W = gx (0) =
A
A AA>= 2e22dex (0)W 

x (0) x (0)W 
x (0) =
2d{2 (0) 2e{2 (0) 

gx (2)W can be found from matrix-vector multiplications alone, and which for large matrices is a 

vastly reduced computation. This reduction in computational load lies behind the use of so-called 

reverse mode methods described below. 

Going much beyond these simple statements takes us too far into the technical details. 144 

The chain rule can be extended, such that, 

Cx (w) CL (x (w � 1)) Cx (w � 1) CL (x (w)) CL (x (w � 2)) CL (x (w � 1))
{chainrule1} = = = (4.179)

Cx (0) Cx (0) Cx (0) Cx (w � 1) Cx (0) Cx (w � 1) 
CL (x (w � 3)) CL (x (w � 2)) CL (x (w � 1)) 

= = === 
Cx (0) Cx (w � 2) Cx (w � 1) 

CL (x (w � 2)) CL (x (w � 1)) 
= 
CL (x (0)) 

=== 
Cx (0) Cx (w � 2) Cx (w � 1) 

Although this result is formally correct, such a calculation could be quite cumbersome to code 

and carryout for a more complicated model (examples of such codes do exist). An alternative, of 

course, is to systematically and separately perturb each of the elements of x (0) > and integrate 

the model forward from w = 0  to w> thus numerically evaluating Cx (w) @C{l (0) > 1 � l � Q= The 

model would thus have to be run Q times, and there might be issues of numerical accuracy. 

(The approach is similar to the determination of numerical Green functions considered above.) 

Practical di!culties such as these have given rise to the idea of “automatic di�erentia-

tion” in which one accepts from the beginning that a computer code will be used to define 

L (x (w) > w>  q (w)) (reintroducing the more general definition of L)=145 One then seeks automatic 

generation of a second code, capable of evaluating the elements in Eq. (4.179), that is terms of 

the form CL (x (q)) @Cx (q) > for any q= Automatic di�erentiation (AD) tools (sometimes called 

“compilers” take the computer codes (typically in Fortran, or C or Matlab) and generate new 

codes for the exact partial derivatives. Various packages go under names like ADIFOR, TAF, 

ADiMAT, etc. The possibility of using such procedures has already been alluded to, where it 

was noted that for a linear model, the first derivative would be the state transition matrix A> 

which may not otherwise be explicitly available. That is, 

Cx (w) 
A (w) =  

CL (x (w) > w>  q (w)) 
= 
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Actual implementation of AD involves one deeply in the structures of computer coding languages, 

and is not within the scope of this book. Note that the existing implementations are not 

restricted to such simple models as we used in the particular example, but deal with the more 

general L (x (w) > w>  q (w)) = 

In many cases, one cares primarily about some scalar quantity, K (x̃ (wi )) > e.g. the heat 

flux or pressure field in a flow, as given by the statevector at the end time, x (wi ) > of a model 

computation. Suppose146 one seeks the sensitivity of that quantity to perturbations in the 

initial conditions (any other control variable could be considered), x (0) = Let L continue to be 

the operator defining the time-stepping of the model. Define �w = L (x (w) > w>  q (w)) = Then, 

¡ £ 
K = K �wi �wi 31 [===�1 [x (0)]]

¤¢ 
> 

that is, the function of the final state of interest is a nested set of operators working on the 

control vector x (0). Then the derivative of K with respect to x (0) is again obtained from the 

chain rule, ³ h i´CK £ ¤
0 0 0 

Cx (0) 
= K 0 �wi 

�wi 31 ===�1 [x (0)] > (4.180) {operator1} 

where the prime denotes the derivative with respect to the argument of the operator L evaluated 

at that time, 
C�w (p) 
Cp 

= 

Notice that these derivatives, are the Jacobians (matrices) of dimension Q × Q at each time-

step, and are the same derivatives that appear in the operators in (4.171). The nested operator 

(4.180) can be written as a matrix product, 

CK 
kW C�1 (p) C�2 (p) C�wi (p) = === 

Cx (0) 
u

Cp Cp Cp 
= (4.181) {operator2} 

uk is the vector of derivatives of function K (the gradient) and so (4.181) is a column vector of 

dimension Q × 1= p represents the statevector at the prior timestep for each �w The adjoint com-

pilers described above compute CK@Cx (0) in what is called the “forward mode”, producing an 

operator which runs from right to left, multiplying wi -Q ×Q matrices starting with C�1 (p) @Cp= 

If however, Eq. (4.181) is transposed, 

µ ¶ µ ¶W µ ¶W µ ¶
C�1 (p) 

WCK W C�wi (p) = === 
Cx (0) Cp 

C�wi 31 (p) 

Cp Cp 
uk> (4.182) {operator3} 

where the first multiplication on the right involves multiplying the column vector uk by an Q ×Q 

matrix, thus producing another Q ×1 vector. More generally, the set of products in (4.182), again 

taken from right to left, involves only multiplying a vector by a matrix, rather than a matrix by 
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a matrix as in (4.181), with a potentially very large computational saving. Such evaluation is 

the reverse or adjoint mode calculation (the transposes generate the required adjoint operators. 

although a formal transpose is not actually formed) and have become available in the automatic 

di�erentiation tools only comparatively recently. In comparing the computation in the forward 

and reverse modes, one must be aware that there is a storage penalty in (4.182) not incurred 

in (4.181).147 In practice, the various operators C�l (p) @Cp are not obtained explicitly, but are 

computed. 

Historically, the forward mode was developed first, and remains the most common imple-

mentation of AD. It permits one to systematically linearize models, and by repeated application 

of the AD tool, to develop formal Taylor series for nonlinear models. With the rise in fluid state 

estimation problems of very large dimension, there has recently been a much greater emphasis 

on the reverse mode. 

Many fluid models rely on “if...then...” and similar branching statements, such as assignment 

of a variable to the maximum value of a list. For example, if some region is statically unstable 

owing to cooling at the surface, a test for instability may lead the model to homogenize the 

fluid column; otherwise, the stratification is una�ected. Objections to AD are sometimes raised, 

apparently based on the intuitive belief that such a model cannot be di�erentiated. In practice, 

once a branch is chosen, the statevector is well-defined, as is its derivative, the AD code itself 

then having corresponding branches or assignments to maxima or minima of a list. A brief 

example of this issue is given in the Chapter Appendix. Our employment so far of the adjoint 

model and the adjoint evolution equation, has been in the context of minimizing an objective 

function–and to some degree, the adjoint has been nothing but a numerical convenience for 

algorithms which find minima. As we have seen repeatedly however, Lagrange multipliers have 

a straightforward interpretation as the sensitivity of an objective function M> to perturbations 

in problem parameters. This use of the multipliers can be developed independently of the state 

estimation problem. 

H{dpsoh. 

Consider the linear time invariant model 

x (q) =  Ax (q � 1) > 

such that 

x (q) =  Aqx (0) = ³ ´ 
Suppose we seek the dependence of K = x (q)W 

x (q) @2 =  x (0)W 
AqW Aqx (0) @2 on the prob-

lem parameters. The sensitivity to the initial conditions is straightforward, 

CK 
= AqW Aqx (0) = 

Cx (0) 
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Suppose instead that A depends upon an internal parameter, n> perhaps the spring constant in 

the example of the discrete mass-spring oscillator, for which K would be an energy. Then, 

³ ´ 3 ³ ´ 4W 
C x (q)W 

x (q) C x (q)W 
x (q) Cx (q)

= x (q)W Cx (q)CK D= = C = 
Cn Cn Cx (q) Cn Cn 

We have from Eq. (2.33), 

� 
= x (0) = 

gx (q) gAq gA
Aq31 + A 

gA
Aq32+=== + Aq31 gA ̧

 

x (0) > 
gn gn gn gn gn 

and so, � 
CK 

= x (0)W 
AqW gAAq31 + A 

gA
Aq32+=== + Aq31 gA ̧

 

x (0) = 
Cn gn gn gn 

and with evaluation of  gA@gn being straightforward, we are finished. 

The Chapter Appendix describes briefly how computer programs can be generated to carry 

out these operations. 

4.7.5 Approximate Methods 

All of the inverse problems discussed, whether time-independent or not, were reduced ultimately 

to finding the minimum of an objective function, either in unconstrained form [e.g., (2.350) 

or 4.61] or constrained by exact relationships (e.g., models) (2.352) or (4.97). Once the model is 

formulated, the objective function agreed on, and the data obtained in appropriate form (often 

the most di!cult step), the formal solution is reduced to finding the constrained or unconstrained 

minimum. “Optimization theory” is a very large, very sophisticated subject directed at finding 

such minima, and the methods we have described here–sequential estimation and Lagrange 

multiplier methods–are only two of a number of possibilities. 

As we have seen, some of the methods stop at the point of finding a minimum and do not 

readily produce an estimate of the uncertainty of the solution. One can distinguish inverse 

methods from optimization methods by the requirement of the former for the requisite uncer-

tainty estimates. Nonetheless, as noted before in some problems, mere knowledge that there is 

at least one solution may be of intense interest, irrespective of whether it is unique or whether 

its stability to perturbations in the data or model is well understood. 

The reader interested in optimization methods generally is referred to the literature on that 

subject.148 Geophysical fluid problems often fall into the category of extremely large, nonlinear 

optimization, one which tends to preclude the general use of many methods that are attractive 

for problems of more modest size. 
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The continued exploration of ways to reduce the computational load without significantly 

degrading either the proximity to the true minimum or the information content (the uncertain-

ties of the results) is a very high priority. Several approaches are known. The use of steady-state 

filters and smoothers has already been discussed. Textbooks discuss a variety of possibilities 

for simplifying various elements of the solutions. In addition to the steady-state assumption, 

methods include: (1) “state reduction”–attempting to remove from the model (and thus from 

the uncertainty calculation) elements of the state vector that are either of no interest or com-

paratively unchanging;149 (2) “reduced-order observers”,150 in which some components of the 

model are so well observed that they do not need to be calculated; (3) proving or assuming 

that the uncertainty matrices (or the corresponding information matrices) are block diagonal or 

banded, permitting use of a variety of sparse algorithms. This list is not exhaustive. 


