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1.2 Partial Di�erential Equations 

Finding the solutions of linear di�erential equations is equivalent, when discretized, to solving 

sets of simultaneous linear algebraic equations. Unsurprisingly, the same is true of partial 

di�erential equations. As an example, consider a very familiar problem: 

Solve 
2! = �> (1.12) {eq:13001} u 

for !, given  �, in the domain r 5 G, subject to the boundary conditions ! = !0 on the boundary 

CG, where  r is a spatial coordinate of dimension greater than 1. 

Continued on next page...
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Figure 1.1: Square, homogeneous grid used for discretizing the Laplacian, thus reducing the 

{grid1.tif} partial di�erential equation to a set of linear simultaneous equations. 

This statement is the Dirichlet problem for the Laplace-Poisson equation, whose solution is 

well-behaved, unique, and stable to perturbations in the boundary data, !0,  and  the source or  

forcing, �. Because it is the familiar boundary value problem, it is by convention again labeled 

a forward or direct problem. Now consider a di�erent version of the above: 

Solve (1.12) for � given ! in the domain G. 

This latter problem is even easier to solve than the forward problem: merely di�erentiate ! 

twice to obtain the Laplacian, and � is obtained directly from (1.12). Because the problem as 

stated is inverse to the conventional forward one, it is labeled, as with the ordinary di�erential 

equation, an inverse problem. It is inverse to a more familiar boundary value problem in the 

sense that the usual unknowns ! have been inverted or interchanged with (some of) the usual 

knowns �. Notice that both forward and inverse problems, as posed, are well-behaved and 

produce uniquely determined answers (ruling out mathematical pathologies in any of �> !0> CG, 

or !). Again, there are many variations possible: one could, for example, demand computation 

of the boundary conditions, !0, from given information about some or all of !> �. 

Write the Laplace-Poisson equation in finite di�erence form for two Cartesian dimensions: 

{eq:13002} !l+1>m � 2!l>m + !l31>m + !l>m+1 � 2!l>m + !l>m31 = (�{)
2 �lm > l>  m  5 G> (1.13) 

with square grid elements of dimension �{. To make the bookkeeping as simple as possible, 

suppose the domain G is the square Q × Q grid displayed in Figure 1.1, so that CG is the four 
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line segments shown. There are (Q � 2) × (Q � 2) interior grid points, and Equations (1.13) 

are then (Q � 2) × (Q � 2) equations in Q2 of the !lm . If this is the forward problem with 

specified, there are fewer equations than unknowns. But if we append to (1.13) the set of �lm 

boundary conditions: 

lm > l>  m  5 CG > (1.14) {eq:13003} !lm = !0 

there are precisely 4Q � 4 of these conditions, and thus the combined set (1.13) plus (1.14), 

which we write again as (1.9) with, 
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a set  of  P = Q2 equations in P = Q2 unknowns. (The operator, vec> forms a column vector out 

of the two-dimensional array !lm .) The nice properties of the Dirichlet problem can be deduced 

from the well-behaved character of the matrix A. Thus the forward problem corresponds directly 

with the solution of an ordinary set of simultaneous algebraic equations.3 One complementary 

inverse problem says: “Using (1.9) compute �lm and the boundary conditions, given !lm ,” an 

even simpler computation–it involves just multiplying the known x by the known matrix A. 

But now let us make one small change in the forward problem, changing it to the Neumann 

one: 

Solve, 
2! = �> (1.15) {eq:13005} u 

for !, given  �, in the domain r 5 G subject to the boundary conditions C!@C  ̂m = !0 on the 0 

boundary CG, where  r is again the spatial coordinate and m̂ is the unit normal to the boundary.


This new problem is another classical, much analyzed forward problem. It is, however, well-


known that the solution is indeterminate up to an additive constant. This indeterminacy is clear
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in the discrete form: Equations (1.14) are now replaced by 

!l+1>m � !l>m = !0
0
0 
lm >  l>  m  5 CG0 (1.16) {eq:13006} 

etc., where CG0 represents the set of boundary indices necessary to compute the local normal 

derivative. There is a new combined set: 

{eq:13007} Ax = b1> x =vec  
© 
!lm 
ª 
> b1 = vec  

© 
�lm > !

00 
lm 

ª 
(1.17) 

Because only di�erences of the !lm are specified, there is no information concerning the absolute 

value of x. When we obtain some machinery in Chapter 2, we will be able to demonstrate 

automatically that even though (1.17) appears to be P equations in P unknowns, in fact only 

P � 1 of the equations are independent, and thus the Neumann problem is an underdetermined 

one. This property of the Neumann problem is well-known, and there are many ways of handling 

it, either in the continuous or discrete forms. In the discrete form, a simple way is to add one 

equation setting the value at any point to zero (or anything else). Notice, however, that in all 

cases, the inverse problem of determining b1 from x remains simple and well-posed. 




