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2.5 The Singular Vector Expansion 

Least-squares is a very powerful, very useful method for finding solutions of linear simultaneous 

equations of any dimensionality and one might wonder why it is necessary to discuss any other 

form of solution. But even in the simplest form of least-squares, the solution is dependent upon 

the inverses of EW E, or  EEW . In practice, their existence cannot be guaranteed, and we need 

to understand what that means, the extent to which solutions can be found when the inverses 

do not exist and the e�ect of introducing weight matrices W, S. This problem is intimately 

related to the issue of controlling solution and residual norms. Second, the relationship between 

the equations and the solutions is somewhat impenetrable, in the sense that structures in the 

solutions are not easily relatable to particular elements of the data |l. For many purposes, 

particularly physical insight, understanding the structure of the solution is essential. We will 

return to examine the least-squares solutions using some extra machinery. 

2.5.1 Simple Vector Expansions 

Consider again the elementary problem (2.1) of representing an O—dimensional vector f as a sum 

of a complete set of O—orthonormal vectors gl, 1 � l � O, gW 
l gm = �lm . Without error, 

O X 
f = dm gm > dm = g W 

m f = (2.185) {34001} 
m=1 

But if for some reason, only the first N coe!cients dm are known, we can only approximate f by 

its first N terms: 

N X 
f̃ = em gm 

m=1 (2.186) {34002} 

= f + �f1> 

and there is an error, �f1. From the orthogonality of the gl, it follows that �f1 will have minimum 

o2 norm only if it is orthogonal to the N vectors retained in the approximation, and then only 

if em = dm as given by (2.185). The only way the error could be reduced further is by increasing 

N. 

Define an O× N matrix, GN whose columns are the first N of the gm . Then  b = a = GW 
N f 

is the vector of coe!cients dm = gW 
m f , 1 � m � N, and the finite representation (2.186) is (one 

should write it out), 

f̃ =GN a =GN (G
W 
N f ) = (GN G

W 
N )f > a = {dl}> (2.187) {34003} 
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where the third equality follows from the associative properties of matrix multiplication. This 

expression shows that a representation of a vector in an incomplete orthonormal set produces 

a resulting approximation which is a simple linear combination of the elements of the correct 

values (i.e., a weighted average, or “filtered” version of them). Column l of GNGW produces N 

the weighted linear combination of the true elements of f which will appear as ĩl= 

Because the columns of GN are orthonormal, GW GN = IN , that  is,  the  N × N identity N


matrix; but GNGW 6 O
= IO unless N = O= (That GOGW = IO for N = O follows from the theorem N 

for square matrices that shows a left inverse is also a right inverse.) If N ?  O, GN is “semi-

orthogonal.” If N = O, it is “orthogonal”; in this case, G31 = GW 
O. If it is only semi-orthogonal, O 

GW is a left inverse, but not a right inverse. Any orthogonal matrix has the property that its N 

transpose is identical to its inverse. 

GNG
W is known as a “resolution matrix,” with a simple interpretation. Suppose the true N 

value of f were fm0 = [  0 0 0 = =  =  0 1 0 = 0 == 0 ]W , that is, a Kronecker delta �mm0 > with unity in element 

m0 and zero otherwise. Then the incomplete expansion (2.186) or (2.187) would not reproduce 

the delta function but, 

{34004} f̃m0 = GNG
W 
Nfm0 > (2.188) 

which is column m0 of GNGW 
N . Each column (or row) of the resolution matrix tells one what 

the corresponding form of the approximating vector would be, if its true form were a Kronecker 

delta. 

To form a Kronecker delta requires a complete set of vectors. An analogous elementary result 

of Fourier analysis shows that a Dirac delta function demands contributions from all frequencies 

to represent a narrow, very high pulse. Removal of some of the requisite vectors (sinusoids) 

produces peak broadening and sidelobes. Here, depending upon the precise structure of the gl, 

the broadening and sidelobes can be complicated. If one is lucky, the e�ect could be a simple 

broadening (schematically shown in figure 2.9) without distant sidelobes), leading to the tidy 

interpretation of the result as a local average of the true values, called “compact resolution.”40 

A resolution matrix has the property, 

{34005} trace(GNG
W 
N) =  N >  (2.189) 

which follows from noting that, ¡ ¢ 
trace GNG

W = trace(GW 
N NGN) = trace(IN) =  N= 

2.5.2 Square-Symmetric Problem. Eigenvalues/Eigenvectors 

Orthogonal vector expansions are particularly simple to use and interpret, but might seem 

irrelevant to dealing with simultaneous equations where neither the row nor column vectors of 
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Figure 2.9: Example of a row, m0> of a 10×10 resolution matrix, perhaps the fourth one, showing 

widely distributed averaging in forming fm0 (upper panel). Lower panel shows so-

called compact resolution, in which the solution e.g., is a readily interpreted local 

{fig3_9.eps} average of the true solution. Such situations are not common. 

the coe!cient matrix are so simply related. What we will show, however, is that we can always 

find sets of orthonormal vectors to greatly simplify the job of solving simultaneous equations. To 

do so, we digress to recall the basic elements of the “eigenvector/eigenvalue problem” mentioned 

in passing on P. 24. 

Consider a square, P × P matrix E and the simultaneous equations, 

Egl = �lgl> 1 l P >  (2.190) {34006} � � 

that is, the problem of finding a set of vectors gl whose dot products with the rows of E are 

proportional to themselves. Such vectors are “eigenvectors,” and the constants of proportion-

ality are the “eigenvalues.” Under special circumstances, the eigenvectors form an orthonormal 

spanning set: Textbooks show that if E is  square  and symmetric,  such a result is guaranteed. It  

is easy to see that if two �m > �n are distinct, then the corresponding eigenvectors are orthogonal: 

Egm = �m gm > (2.191) 

Egn = �n gn (2.192) 

WLeft multiply the first of these by gn > and the second by gW and subtract: m 

W W gn Egm � gm
W Egn = (�m � �n) gn gm = (2.193) 
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WBut because E = EW > the left-hand side vanishes, and hence gn gm by the assumption �m =6 �n. A  

similar construction proves that the �l are all real, and an elaboration shows that for coincident 

�l, the corresponding eigenvectors can always be made orthogonal. 

Example


To contrast with the above result, consider the non-symmetric, square matrix,


<
AAAAAA

;
AAAAAA 1 2 3 

?
 @

A
AAAAA

=
0 1 4 


0 0 1 


A
AAAAA=
 >


Solution to the eigenvector/eigenvalue problem produces �l = 1> and ul = [1> 0> 0]W > 1 l 3.� � 

The eigenvectors are not orthogonal, and are certainly not a spanning set. On the other hand, 

the eigenvector/eigenvalues of, 
<
AAAAAA

;
AAAAAA 1 1 2� �

1 2  1� �

1=5 2  2=5�

@
A
AAAAA>


6565 

? 

AAAAAA= 

65 

are,


9999997


�


�
 =


9999997


::::::8


> u3 =


9999997


0=72�

0=90


::::::8


0=29 + 0=47l


0=17 + 0=25l


::::::8


> u2 

0=29 0=47l� � 

>u1 = 0=17 0=25l� � 

0=19 + 0=61l 0=19 0=61l 0=14�


�m = [�1=07 + 1=74l> 1=07 � 1=74 l> 2=64]
�

(rounded) are not orthogonal, but are a spanning set. The complex eigenvalues/eigenvectors 

appear in complex conjugate pairs and in some contexts are called “principal oscillation patterns” 

(POPs). 

Suppose for the moment that we have the square, symmetric, special case, and recall how 

eigenvectors can be used to solve (2.16). By convention, the pairs (�l> gl) are  ordered in the  

sense of decreasing �l. If  some  �l are repeated, an arbitrary order choice is made. 

With an orthonormal, spanning set, both the known y and the unknown x can be written 
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as, 

P X 
{34007a} x = �lgl> �l = g W 

l x > (2.194) 
l=1 

P X 
{34007b} y = �lgl> �l = g W 

l y = (2.195) 
l=1 

By convention, y is known, and therefore �l can be regarded as given. If the �l could be found, 

x would be known. 

Substitute (2.194) into (2.16), 

P P X X 
E 
l=1 

�lgl = 
l=1 

¡
g W 
l y 
¢ 
gl> 

or, using the eigenvector property, 

(2.196) 

P P X X 

l=1 

�l�lgl = 
l 

¡
g W 
l y 
¢ 
gl= (2.197) {34008} 

But the expansion vectors are orthonormal and so 

�l�l = g W 
l y> (2.198) {34009a} 

�l = 
gW 
l y 
> (2.199) {34009b} 

�l 

x = 
P X gW 

l y 
gl = (2.200) {34009c} 

l=1 
�l 

Apart from an obvious di!culty if an eigenvalue vanishes, the problem is now completely solved. 

Define a diagonal matrix, �, with elements, �l, in descending numerical value, and the matrix 

G, whose columns are the corresponding gl in the same order, the solution to (2.16) can be 

written, from (2.194), (2.198)—(2.200) as 

� = �31GW y> (2.201) {34010a} 

x = G�31GW y (2.202) {34010b} 

where �31 = diag(1@�l). 

Vanishing eigenvalues, l = l0, cause trouble and must be considered. Let the corresponding 

eigenvectors be gl0 . Then any part of the solution which is proportional to such an eigenvector 

is “annihilated” by E, that  is,  gl0 is orthogonal to all the rows of E. Such a result means that 

there is no possibility that anything in y could provide any information about the coe!cient �l0 . 

If y corresponds to a set of observations (data), then E represents the connection (“mapping”) 
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between system unknowns and observations. The existence of zero eigenvalues shows that the 

act of observation of x removes certain structures in the solution which are then indeterminate. 

Vectors gl0 (and there may be many of them) are said to lie in the “nullspace” of E. Eigenvectors 

corresponding to non-zero eigenvalues lie in its “range.” The simplest example is given by the 

“observations,” 

{1 + {2 = 3 > 

{1 + {2 = 3 = 

Any structure in x such that {1 = �{2 is destroyed by this observation, and by inspection, the 

nullspace vector must be g2 = [1>�1]W @
s
2= (The purpose of showing the observation twice is to 

produce an E which is square.) 

Suppose there are N ? P  non-zero �l. Then  for  l A N, Eq. (2.198) is 

{34011} 0�l = gl
W y> N + 1 l P >  (2.203) � � 

and two cases must be distinguished. 

Case (1): 

{34012} gl
W y = 0 > N + 1 l P =  (2.204) � � 

We could then put �l = 0, N + 1 l P , and the solution can be written � � 

N X Wgl y˜{34013} x = gl> (2.205) 
�ll=1 

and Ex̃ = y, exactly. We have put a tilde over x because a solution of the form, 

N P X W Xgl y˜{34014} x = gl + �lgl > (2.206) 
�ll=1 l=N+1 

with the remaining �l taking on arbitrary values also satisfies the equations exactly. That is, 

the true value  of  x could contain structures proportional to the nullspace vectors of E, but the 

equations (2.16) neither require their presence, nor provide information necessary to determine 

their amplitudes. We thus have a situation with a “solution nullspace.” Define the matrix GN 

to be P × N, carrying only the first N of the gl, that is the range vectors, �N to be N × N 

with only the first N, non-zero eigenvalues, and the columns of QJ are the P � N nullspace 

vectors (it is P × (P � N)), then the solutions (2.205) and (2.206) are, 

˜ = GN �
31GW x N N y > (2.207) 

˜ = GN �
31GW x N y +QJ�J> (2.208) N 
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where �J is the vector of unknown nullspace coe!cients, respectively. Eq. (2.204) is often 

known as a “solvability condition.” The solution in (2.207), with no nullspace contribution will 

be called the “particular” solution. 

If G is written as a partitioned matrix, 

G = {GN QJ} > 

it follows from the column orthonormality that 

GGW = I =GN G
W 

JN +QJQ
W (2.209) {34016a} 

or 

J � NQJQ
W = I GN G

W = (2.210) {34016b} 

Vectors QJ span the nullspace of G= 

Case (2): 

gl y 6W = 0 > l A N + 1 > (2.211) {34017} 

for one or more of the nullspace vectors. In this case, Eq. (2.198) is the contradiction, 

0�l 6= 0> 

and Eq. (2.197) is actually, 

N P X X 
�l�lgl = (gl 

W y)gl> N ? P >  (2.212) {34018} 
l=1 l=1 

that is, with di�ering upper limits on the sums. Owing to the orthonormality of the gl, there  

is no choice of �l, 1 � l � N on the left which can match the last P � N terms on the right. 

Evidently there is no solution in the conventional sense unless (2.204) is satisfied, hence the 

name “solvability condition..” What is the best we might do? Define “best” to mean that the 

solution x̃ should be chosen such that, 

Ex̃ = ỹ> 

n = y � y, which we call the “residual,” should be as small as possible (in where the di�erence, ˜ ˜

the o2 norm). If this choice is made, then the orthogonality of the gl shows immediately that 

� �the best choice is still (2.199), 1 l N. No choice of nullspace vector coe!cients, nor any 

other value of the coe!cients of the range vectors, can reduce the norm of ñ. The best solution 

is then also (2.205) or (2.207). 

In this situation, we are no longer solving the equations (2.16), but rather are dealing with 

a set that could be written, 

Ex � y> (2.213) {34019} 
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where the demand is for a solution that is the “best possible,” in the sense just defined. Such 

statements of approximation are awkward, and it is more useful to always rewrite (2.213) as, 

Ex + n = y> (2.214) {34020} 

where n is the residual. If x̃ is given by (2.206) then, 

P X 
˜{34021} n = (gl

W y)gl> (2.215) 
l=N+1 

nW ˜ y is orthogonal to the residuals. by (2.212). Notice that ˜ y = 0 : ˜


Example Let


{1 + {2 = 1> 

{1 + {2 = 3= 

Then using �1 = 2> g1 = [1> 1]
W @
s
2> �2 = 0> g 2 = [1>�1]W @

s
2> one has x̃ = [1@2> 1@2]W 2 g1> 

y = [2> 2]W 2 g1> ˜˜ n = [�1> 1]W 2 g2= 

This outcome, where P -equations in P -unknowns were found in practice not to be able 

to determine some solution structures, is labeled “formally just-determined.” The expression 

“formally” alludes to the fact that the appearance of a just-determined system did not mean 

that the characterization was true in practice. One or more vanishing eigenvalues mean that 

neither the rows nor columns of E are spanning sets. 

Some decision has to be made about the coe!cients of the nullspace vectors in (2.208). The 

form could be used as it stands, regarding it at as the “general solution.” The analogy with the 

solution of di�erential equations should be apparent–typically, there is a particular solution 

and a homogeneous solution–here the nullspace vectors. When solving a di�erential equation, 

determination of the magnitude of the homogeneous solution requires additional information, 

often provided by boundary or initial conditions; here additional information is also necessary, 

but missing. 

Despite the presence of indeterminate elements in the solution, a great deal is known about 

them: They are proportional to the nullspace vectors. Depending upon the specific situation, 

we might conceivably be in a position to obtain more observations, and would seriously con-

sider observational strategies directed at observing these missing structures. The reader is also 

reminded of the discussion of the Neumann problem in Chapter 1. 

Another approach is to define a “simplest” solution, appealing to what is usually known as 

“Ockham’s Razor,” or the “principle of parsimony,” that in choosing between multiple expla-

nations of a given phenomenon, the simplest one is usually the best. What is “simplest” can 
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be debated, but here there is a compelling choice: The solution (2.207), that is without any 

nullspace contributions, is less structured than any other solution. (It is often, but not always 

true that the nullspace vectors are more “wiggly” than those in the range. The nullspace of 

the Neumann problem is a counter example. In any case, including any vector not required by 

the data is arguably producing more structure than is required.) Setting all the unknown �l to 

zero is thus one plausible choice. It follows from the orthogonality of the gl that this particular 

solution is also the one of minimum solution norm. Later, other choices for the nullspace vectors 

will be made. 

If the nullspace vector contributions are set to zero, the true solution has been expanded 

in an incomplete set of orthonormal vectors. Thus, GN G
W 
N is the resolution matrix, and the 

relationship between the true solution and the minimal one is just 

x̃ =GN G
W 
N x = x � QJ�J> ỹ =GN G

W 
N y> ñ = QJQ

W 
Jy = (2.216) {34022} 

{pagesqsymm} 

These results are so important, we recapitulate them: (2.206) or (2.208) is the general 

solution. There are three vectors involved, one of them, y, known, and two of them, x, n, 

unknown. Because of the assumption that E has a complete orthonormal set of eigenvectors, all 

three of these vectors can be expanded, exactly, as, 

P P P X X X 
x = �lgl> n = �lgl> y = (y W gl)gl = (2.217) {34023} 

l=1 l=1 l=1 

Substituting into ((2.214)), and using the eigenvector property produces, 

P P P X X X 
�lEgl + �lgl = (y W gl)gl 

l=1 l=1 l=1 

or, 
N P P X X X 
�l�lgl + �lgl = (y W gl)gl = 

l=1 l=1 l=1 

From the orthogonality property, 

�l�l + �l = y W gl> 1 � l � N >  (2.218) {34025a} 

�l = y W gl> N + 1 � l � P =  (2.219) {34025b} 

In dealing with the first relationship, a choice is required. If we set, 

�l = g W 
l n = 0 > 1 � l � N >  (2.220) {34025c} 
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the residual norm is made as small as possible, by completely eliminating the range vectors from 

the residual. This choice is motivated by the attempt to satisfy the equations as well as possible, 

but is seen to have elements of arbitrariness. A decision about other possibilities depends upon 

knowing more about the system and will be the focus of attention later. 

The relative contributions of any structure in y, determined by the projection, gl
W y will 

depend upon the ratio gl
W y@�l. Comparatively weak values of gl

W y may well be amplified by 
Wsmall, but non-zero, elements of �l= One must keep track of both gl y> and gl

W y@�l= 

Before leaving this special case, note one more useful property of the eigenvector/eigenvalues. 

For the moment, let G have all its columns, containing both the range and nullspace vectors, with 

the nullspace vectors being last in arbitrary order. It is thus an P ×P matrix. Correspondingly, 

let � contain all the eigenvalues on its diagonal, including the zero ones; it too, is P × P . Then  

the eigenvector definition (2.190) produces, 

{34026} EG = G� = (2.221) 

Multiply both sides of (2.221) by GW : 

{34027} GW EG = GW G� = �= (2.222) 

G is said to “diagonalize” E. Now multiply both sides of (2.222) on the left by G and on the  

right by GW : 

{34028} GGW EGGW = G�GW = (2.223) 

Using the orthogonality of G, 

{34029} E = G�GW > (2.224) 

a useful representation of E, consistent with its symmetry, known as the “singular value decom-

position” or SVD. 

Recall that � has zeros on the diagonal corresponding to the zero eigenvalues, and the 

corresponding rows and columns are entirely zero. Writing out (2.224), these zero rows and 

columns multiply all the nullspace vector columns of G by zero, and it is found that the nullspace 

columns of G can be eliminated, � reduced to its N × N form, and the decomposition (2.224) 

is still exact–in the form, 

{34030} E = GN �N G
W 
N > (2.225) 

also known as the SVD. It is readily confirmed that the representation (decomposition) in either 

Eq. (2.224, or 2.225) is identical to 

{svd5} E =�1g1g W + �2g2g W + === + �N gN g W = (2.226) 1 2 N 
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That is, a square symmetric matrix can be exactly represented by a sum of products orthonormal 

vectors glgW multiplied by a scalar, �l= l 

Example.


Consider the matrix from the last example,

;
AA?


< 
AA@ 

AA>

=


1 1  
E = AA=
1 1  

We have 6565 
�
 �997 

997

1 1::8


::8


¸ ¸
2 1 0
 1 

E = +
 =1 1 
 1 1s
2 

s
2 
s
2 

s
2

�
1 1�

The simultaneous equations (2.214) are, 

GN �N G
W 
N x + n = y = (2.227) {34031} 

Left multiply both sides by �31GW (existence of the inverse is guaranteed by the removal ofN N 

the zero eigenvalues) and, 

N x +�31GWGW N n = �31GW (2.228) {34032}N N N y = 

But GW N n is the projection of theN x are the projection of x onto the range vectors of E, and  GW 

noise. We have agreed to set the latter to zero, and obtain, 

N x = �31GWGW 
N N y > 

the dot products of the range of E with the solution. Hence, it must be true, since the range 

vectors are orthonormal, that 

x GN G
W (2.229) {34033a}N N y >˜ � N x � GN �

31GW 

˜ x =GN G
W y = E˜ N y > (2.230) {34033b} 

which is identical to the particular solution (2.205). The residuals are 

˜ ˜ y � E˜ N )y = QJQ
W n = y � y = x = (IP GN G

W
Jy> (2.231) {34034}� 

with ˜ y = 0.  Notice that matrix  H of Eq. (2.98) is just GN G
WnW ˜ N > and hence (I � H) is the 

projector of y onto the nullspace vectors. 
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The expected value of the solution (2.205) or (2.229) is, 

hx̃ � xi =GN �
31 
N G

W 
N hyi � 

Q X 

l=1 

�lgl = �QJ�J> (2.232) {34036} 

and so the solution is biassed unless �J = 0. 

The uncertainty is, 

P = G2(x̃ � x) = hGN �
31 
N G

W 
N (y0 + n � y0)(y0 + n � y0)

W GN �
31 
N G

W 
N i 

+ hQJ�J� W 
JQ

W 
Ji 

=GN �
31 
N G

W 
N hnn W iGN �

31 
N G

W 
N +QJh�J� W 

JiQ
W 
J 

=GN �
31 
N G

W 
N RqqGN �

31 
N G

W 
N +QJR��Q

W 
J 

= C{{ +QJR��Q
W 
J > 

(2.233) {34037a} 

defining the second moments, R��, of  the  coe!cients of the nullspace vectors. Under the special 

circumstances that the residuals, n, are white noise, with R = �2 
qI, (2.233) reduces to, 

P = � 2 
qGN �

32 
N G

W 
N +QJR��Q

W 
J = (2.234){34037b} 

Either case shows that the uncertainty of the minimal solution is made up of two distinct parts. 

The first part, the solution covariance, C{{, arises owing to the noise present in the observations, 

and generates uncertainty in the coe!cients of the range vectors; the second contribution arises 

from the “missing” nullspace vector contribution. Either term can dominate. The magnitude of 

the noise term depends largely upon the ratio of the noise variance, �2 
q, to the smallest non-zero 

eigenvalue, � 2 
N . 

Example 

Suppose 

65<
AA@ 

AA> 

Ex= y> 

{1 

6
5
;
AA?
 997


997

11 1 ::8

::8
> (2.235)= y = AA=
1 1  {2 3 

which is inconsistent and  has no solution in the  conventional  sense. E is a square symmetric 

matrix. Solving, 

Egl = �lgl> (2.236) 

6565or
 ;
AA?


<
AA@ 

AA>


997

jl1 ::8


997

0
::8


1 � 1� 
(2.237){eig1} = = AA=
 1 1 �� jl2 0 
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This equation requires
 656565 

997

1 �� ::8
+ jl2 

997

1
 ::8
=


997

0
::8
jl1 

1 1 � 0� 

or, 656565 

997

1 � ::8
+


jl2 

jl1 

997

1
 ::8
=


997

0
::8


� 
> 

1 1 � 0� 

which is 

jl2 

jl1 
= �(1 � �) 

jl2 1 
= = 

jl1 
� 
1 � � 

Both equations are satisfied only if � = 2> 0= This method, which can be generalized, in e�ect 

derives the usual statement that for Eq. (2.237) to have a solution, the determinant, ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1 � 1 ¯ ¯ � ¯ > =  ¯ ¯ ¯ ¯ ¯ 1 1 � ¯� 

must vanish. The first solution is labelled �1 = 2, and substituting back in produces g1 = 

[1> 1]W1I 1> 1]W1I

565 

2
, when given unit length. Also g2 [� > �2 = 0= Hence, =


6 

::8 

W 6
5

�997 

1
::8

1 

2 s
2


997

1
 997


1
::8
 1 1 


¸ 

=E = 
1
s
2


(2.238)
= 

1 1 1 

The equations have no solution in the conventional sense. There is, however, a sensible “best” 

solution: 

Wg1 yx̃ = g1 + �2g2> (2.239) 
�1 6565 

997

1
::8
+ �2 

1
s
2


997

1� ::8


µ ¶
4 1 

2
s
2 

(2.240)
= s
2 

1 1 
6565 

1
::8
+ �2 
1 �1
::8
 (2.241)
= = s
2 

1 1


997 
997 
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6565Notice that


997

2
::8
+ 0 6= 

997

1
::8
= (2.242)Ex̃ = 

2 3 

The solution has compromised the inconsistency. No choice of �2 can reduce the residual norm. 

The equations would more sensibly have been written 

Ex + n = y> 

and the di�erence, n = y �Ex̃ is proportional to j2= A system like (2.235) would most likely 

arise from measurements (if both equations are divided by 2, they represent two measurements 

of the average of ({1> {2)> and n would be best regarded as the noise of observation. 

Example 

Suppose the same problem as in the last example is solved using Lagrange multipliers, that 

is, minimizing, 
2 WM = n W n+� x x � 2µ W (y �Ex � n) = 

Then, the normal equations are 

1 CM 
= � 2 x +EW 

µ = 0 
2 Cx 
1 CM 

= n + µ = 0 
2 Cn 
1 CM 
Cµ 

= y �Ex n = 0> 
2 

�

which produces, 

¡ ¢
˜ 2x = EW EEW +� I 

31 
y 

1 1  

6
5
;
AA?


;
AA?


;
AA? 

AA=


< 
AA@ 

AA>


< 
AA@ 

AA>


;
AA?


< 
AA@ 

AA>


< 
AA@ 

AA>


31 

997

2 2  1 0 
 1 ::8


2+ �= = A
A=

A
A AA= =
1 1  2 2  0 1  3 

2The limit �2 $4 is readily evaluated. Letting � $ 0 involves inverting a singular matrix. To 

understand what is going on, let us use, 

6565 W 

997

1
::8
2


1
s
2


997

1
::8
E =
 WG�GW = g1�1g + 01 =


1
s
2


+ 0  (2.243) 

1 1 

Hence, 

EEW =G� 2GW 
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Note that the full G> � are being used. Note also that I =GGW = Thus, 

¡ ¢ ¡ ¡ ¢ ¢ ¡ ¢
2	 2 GW 2EEW +� I = G� 2GW +G � =G � 2 + � I GW = 

By inspection, the inverse of this last matrix is necessarily, 

© ¢ª¡ ¢ ¡

6 

¡ ¢31 ¡ ¢
2 31 

GWEEW +I@�2 =G � 2 + � I = 

¡ ¢
But �2 + �2I 31 

is the inverse of a diagonal matrix, 

2 2 2 � + � I 
31 
= diag  1@ �l + � 

2

Then 

¡ © ¡ ¢ª ¢ 
˜ 2	 2 x = EW EEW +� I y =G�GW G diag 1@ �l + � 

2 GW y
¡

© ¡
¢31 

¢ª
2 = G diag �l@ �l + � 

2 GW y 
W565 6
5


N 997

997


997

1
::8


2 1

2 + �
2 

s
2


1
::8

1
::8
+ 0 


1X �l W = 
�l + �

2 
gl y =gl 2 s

2
l=1 1 1 3 

6
5


997

1
::8


4 
= 
2 + �2 

1 

And the solution always exists as long as �2 A 0= It is a tapered-down form of the solution with 

�2 = 0  if all �l 6= 0= 
65656565 

n =

997

1
::8
 E


997

1
::8
=


997

1
::8
�


997

2
::8


4 4 �
2 + �2 2 + �2 

3	 1 3 2 

so that �2 $4> the solution x̃ is minimized, becoming 0 and the residual is equal to y= 

2.5.3	 Arbitrary Systems 

The Singular Vector Expansion and Singular Value Decomposition 

It may be objected that this entire development is of little use, because most problems, includ-

ing those outlined in Chapter 1, produced E matrices which could not be guaranteed to have 

complete orthonormal sets of eigenvectors. Indeed, the problems considered produce matrices 

which are usually non-square, and for which the eigenvector problem is not even defined. 
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For arbitrary square matrices, the question of when a complete orthonormal set of eigen-

vectors exists  is not  di!cult to answer, but becomes somewhat elaborate.41 When a square 

matrix of dimension Q is not symmetric, one must consider cases in which there are Q dis-

tinct eigenvalues and where some are repeated, and the general approach requires the so-called 

Jordan form. But we will next find a way to avoid these intricacies, and yet deal with sets of 

simultaneous equations of arbitrary dimensions, not just square ones. Although the mathemat-

ics are necessarily somewhat more complicated than is employed in solving the just-determined 

simultaneous linear equations using a complete orthonormal eigenvector set, this latter problem 

provides full analogues to all of the issues in the more general case, and the reader will probably 

find it helpful to refer back to this situation for insight. 

Consider the possibility, suggested by the eigenvector method, of expanding the solution x in 

a set of orthonormal vectors. Eq. (2.88) involves one vector, x, of  dimension  Q , and two vectors, 

y, n, of  dimension  P . We would like to use spanning orthonormal vectors, but cannot expect, 

with two di�erent vector dimensions involved, to use just one set: x can be expanded exactly 

in Q , Q -dimensional orthonormal vectors; and similarly, y and n can be exactly represented 

in P , P -dimensional orthonormal vectors. There are an infinite number of ways to select two 

such sets. But using the structure of E> a particularly useful pair can be identified. 

The simple development of the solutions in the square, symmetric case resulted from the 

theorem concerning the complete nature of the eigenvectors of such a matrix. So construct a 

new matrix, 

;
AA?
0 EW 

{34038} B =


< 
AA@ 

AA>

> (2.244)AA=
E 0 


which by definition is square (dimension P + Q by P + Q ) and symmetric. Thus, B satisfies 

the theorem just alluded to, and the eigenvalue problem, 

{34039} Bql = �lql (2.245) 

will give rise to P + Q orthonormal eigenvectors ql (an orthonormal spanning set) whether or 
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not the �l are distinct or non-zero. Writing out (2.245), 
6565 

< 
AA@ 

AA>


9999999999999999997


t1l 

·


tQl  

tQ +1>l 

·


::::::::::::::::::8


= �l 

9999999999999999997


t1l 

·


tQl  

tQ +1>l 

·


::::::::::::::::::8


>


;
AA?
0 EW 

1 l P + Q (2.246){34040} AA=

� � 

E 0  

tQ +P>l tQ +P>l 

where tsl is the pwk element of ql. Taking note of the zero matrices, (2.246) may be rewritten, 
6565 

9999997


tQ +1>l 

·


::::::8


= �l 

9999997


t1l 

·


::::::8


> (2.247) {34041a}EW 

tQ +P>l tQl  
6565 

E


9999997


t1l 

·


::::::8


= �l 

9999997


tQ +1>l 

·


::::::8


1 l P + Q (2.248) {34041b}> � � 

tQl  tQ +P>l 

Define, 6565 
6
5
9999997


tQ +1>l 

·


::::::8


> vl =


9999997


t1l 

·


::::::8


997

::8


vl 
> (2.249) {34042}> or>
= =ul ql 

ul 
tQ +P>l tQl  

that is, defining the first Q elements of ql to be called vl and the last P to be called ul. 

Then (2.247)—(2.248) are 

Evl = �lul (2.250) 

EW ul = �lvl = (2.251) 

If (2.250) is left multiplied by EW , and using (2.251), one has, 

EW Evl = � 2 
l vl> 1 � l � Q (2.252) {34044a} 
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Similarly, left multiplying (2.251) by E and using (2.250) produces, 

2EEW ul = �l ul 1 l P= (2.253) {34044b}� � 

These last two equations show that the ul, vl each separately satisfy two independent eigenvec-

tor/eigenvalue problems of the square symmetric matrices EEW , EW E and they can be separately 

given unit norm. The �l come in pairs as ±�l and the convention is made that only the positive 

ones are retained, as the corresponding ul> vl also di�er at most by a minus sign, and hence are 

not independent of the ones retained.42 If one of P , Q is much smaller than the other, only 

the smaller eigenvalue/eigenvector problem needs to be solved for either of ul, vl; the other set 

is immediately calculated from (2.250) or (2.251). Evidently, in the limiting cases, of either a 

single equation or a single unknown, the eigenvalue/eigenvector problem is completely trivial, 

involving a pure scalar, no matter how large is the other dimension. 

In going from (2.247, 2.248) to (2.252, 2.253), the range of the index l has dropped from 

P + Q to P or Q= The missing “extra” equations correspond to negative �l and carry no 

independent information. By definition, �l 0= � 

Example. 

Consider the non-square, non-symmetric matrix, 

E = 

Form the larger matrix B> and solve the eigenvector/eigenvalue problem which produces


0=31623 0=63246 1=1796 × 10316 0=63246 0=31623� � �

0=63246 0=31623 2=0817 × 10316 0=31623 0=63246� � �

Q = 0=35857 �0=22361 0=80178 �0=22361 0=35857 

�0=11952 �0=67082 �0=26726 �0=67082 �0=11952 

0=59761 0=00000 �0=53452 0=00000 0=59761 

<
AAAAAAAAAA

;
AAAAAAAAAA @

A
AAAAAAAAA

0 0 1  1 2�

1 1 0 0 0?


A
AAAAAAAAA >


1 1  0 0 0�

1 2 0 0 0=


<
AAAAAAAAAAAAAA

;
AAAAAAAAAAAAAA @

AAAAAAAAAAAAAA

? 

AAAAAAAAAAAAAA >= 



2.5 THE SINGULAR VECTOR EXPANSION 87 

where Q is the matrix whose columns are ql and S is the diagonal matrix whose values are the 

corresponding eigenvalues. Note that one of the eigenvalues vanishes identically, and that the 

others occur in positive and negative pairs. The corresponding ql di�er only by sign changes in 

parts of the vectors, but they are all linearly independent. Defining a V matrix from the first 

two rows of Q>


and again, only two of the vectors are linearly independent (the zero-vector is not physically 

realizeable). Similarly, the last three rows of Q define a U matrix, 

U =


in which only three columns are linearly independent. Retaining only the last two columns of V 

and the last three of U> and column normalizing each to unity, produces the singular vectors. 

The ul, vl are called “singular vectors,” and the �l are the “singular values.” By conven-

tion, the �l are ordered in decreasing numerical value. . Equations (2.250)—(2.251) provide a 

relationship between each ul and each vl. But because in general, P 6= Q , there  will  be  more  

of one set than another. The only way equations (2.250)—(2.251) can be consistent is if �l = 0, 

l A  min(P>Q) (where min(P>Q) is read as “the minimum of P and Q”). Suppose P ?  Q . 

Then (2.253) is solved for ul, 1 � l � P , and (2.250) is used to find the corresponding vl. There  

are Q � P vl not generated this way, but which can be found using the Gram-Schmidt method 

described on page 20. 

Let there be N non-zero �l; then  

Evl 6= 0  > 1 l N =  (2.254) {34045a}� � 

< 
AA@ 

AA>


<
AAAAAA

;
AAAAAA @

A
AAAAA>


0=35857 0=22361 0=80178 0=22361 0=35857� �
?


0=11952 0=67082 0=26726 0=67082 0=11952� � � � �

0=59761 0=00000 0=53452 0=00000 0=59761�

A
AAAAA=


<
AAAAAAAAAAAAAA

;
AAAAAAAAAAAAAA @

A
AAAAAAAAAAAAA>


0=31623 0=63246 0 0=63246 0=31623� �

0=63246 0=31623 0 0=31623 0=63246� �

0 0 0 0 0 

0 0 0 1=4142 0 

0 0 0 0 2=6458 

2=6458 0 0 0 0�

0 1=4142 0 0 0�
?


A
AAAAAAAAAAAAA=


S =


;
AA?


AA=

V =
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These vl are known as the “range vectors of E” or the “solution range vectors.” For the remaining 

N vectors vl,Q � 

{34045b} Evl = 0 > N + 1 � l � Q >  (2.255) 

known as the “nullspace vectors of E” or the “nullspace of the solution.” If N ? P , there  will  

be N of the ul such that, 

{34046a} EW ul 6= 0 > 1 l N >  (2.256) � � 

which are the “range vectors of EW ” and  P N of the ul such that � 

{34046b} EW ul = 0 > N + 1 l P >  (2.257) � � 

the “nullspace vectors of EW ” or the “data, or observation, nullspace vectors.” The “nullspace” 

of E is spanned by its nullspace vectors, the “range” of E is spanned by the range vectors, etc., 

in the sense, for example, that an arbitrary vector lying in the range is perfectly described by 

a sum of the range vectors. We now have two complete orthonormal sets in the two di�erent 

spaces. Note that (2.255, 2.257) imply that, 

WEvl = 0> ul E = 0> N + 1 � l � Q> (2.258) 

expressing hard relationships among the columns and rows of E= 

Because the ul, vl are complete in their corresponding spaces, x, y, n can be expanded 

without error: 
Q P P X X X 

{34047} x = �lvl > y = �lul > n = �lul > (2.259) 
l=1 m=1 l=1 

Wwhere y has been measured, so that we know � = um y. To  find  x> we need �l, and  to  find  n,m 

we need the �l. Substitute (2.259) into the equations (2.88), and using (2.250)—(2.251), 

Q P N P X X X X 
�lEvl + �lul = �l�lul + �lul (2.260) 

l=1 l=1 l=1 l=1 

P X 
W = (ul y)ul = 

l=1 

Notice the di�ering upper limits on the summations. Because of the orthonormality of the 

singular vectors, (2.260) can be solved as, 

W{34049a} �l�l + �l = ul y > l = 1 to P >  (2.261) 

W{34049b} �l = (ul y � �l)@�l > �l 6= 0 > 1 l N =  (2.262) � � 
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In these equations, if �l 6= 0, nothing prevents setting �l = 0, that is,  

{34049c} u W 
l n = 0 > 1 � l � N> (2.263) 

should we wish, and which will have the e�ect of making the noise norm as small as possible 

(there is arbitrariness in this choice, and later we will choose �l di�erently). Then (2.262) 

produces, 

�l = 
uW 
l y 
�l 
> 1 � l � N =  (2.264) {34050} 

But, because �l = 0, l A N, the only solution to (2.261) for these values of l is �l = u
W 
l y, and  

�l is indeterminate. These �l are non-zero, except in the event (unlikely with real data) that, 

u W 
l y = 0 > N + 1 � l � Q =  (2.265) {34051} 

This last equation is a solvability condition– in direct analogy to (2.204). 

The solution obtained in this manner now has the following form: 

N Q X W Xul yx̃ = vl + �lvl (2.266) {34052a} 
�ll=1 l=N+1


N
X 
y = E˜ W˜ x = (ul y)ul (2.267) {34052b} 

l=1 

P X 
˜ W n = (ul y)ul = (2.268) {34052c} 

l=N+1 

The coe!cients of the last Q � N of the vl in Eq. (2.266), the solution nullspace vectors, 

are arbitrary, representing structures in the solution about which the equations provide no 

information. A nullspace is always present unless N = Q . The solution residuals are directly 

proportional to the nullspace vectors of EW and will vanish only if N = P , or the solvability 

conditions are met. 

Just as in the simpler square symmetric case, no choice of the coe!cients of the solution 

nullspace vectors can have any e�ect on the size of the residuals. If we choose once again to 

exercise Ockham’s razor, and regard the simplest solution as best, then setting the nullspace 

coe!cients to zero, 
N X Wul yx̃ = vl> (2.269) {34053} 
�l

l=1 
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along with (2.268), this is the “particular-SVD solution.” It minimizes the residuals, and simul-

taneously produces the corresponding x̃ with the smallest norm. If hni = 0> the bias of (2.269) 

is evidently, 
Q X 

hx̃ � xi = � �lvl = (2.270) {34054} 
l=N+1 

The solution uncertainty is 

N N Q Q XX W X X 
W{34055a} P = vl 

ul Rqqum vl + vlh�l�m ivm
W = (2.271) 

�l�m
l=1 m=1 l=N+1 m=N+1 

2If the noise is white with variance �q or, if a row-scaling matrix W3W@2 has been applied to 

make it so, then (2.271) becomes, 

N Q X 2 X 
2{34055b} P = 

�q vlv W + h�l ivlvl
W > (2.272) 2 l 

�ll=1 l=N+1 

2where it was also assumed that h�l�m i = h�l i�lm in the nullspace. The influence of very small 

singular values on the uncertainty is very clear: In the solution (2.266) or (2.269) there are 
Werror terms ul y@�l which are greatly magnified by small or nearly vanishing singular values, 

2introducing large terms proportional to �q@�
2 into (2.272). l 

x are clearly a competition between the magnitudes of ul y andThe structures dominating ˜ W 

W�l, given by the ratio, ul y@�l= Large �l can suppress comparatively large projections onto ul, 

and similarly, small, but non-zero �l may greatly amplify comparatively modest projections. In 
W Wpractice,43 one is well-advised to study the behavior of both ul y> ul y@�l as a function of l to 

understand the nature of the solution. 

The decision to omit contributions to the residuals by the range vectors of EW > as we did 

in Eqs. (2.263), (2.268) needs to be examined. Should some other choice be made, the x̃ norm 

would decrease, but the residual norm would increase. Determining the desirability of such 

a trade-o� requires understanding of the noise structure–in particular, (2.263) imposes rigid 

structures, and hence covariances, on the residuals. 

2.5.4 The Singular Value Decomposition 

The singular vectors and values have been used to provide a convenient pair of orthonormal 

spanning sets to solve an arbitrary set of simultaneous equations. The vectors and values have 

another use, however, in providing a decomposition of E. 
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Define � as the P × Q matrix whose diagonal elements are the �l, in order of descending 

values in the same order, U as the P × P matrix whose columns are the ul, V as the Q × Q 

matrix whose columns are the vl. As an example, suppose P = 3, Q = 4; then  
<
AAAAAA

;
AAAAAA�l 0 0 0  
?

0 �2 0 0  

@
AAAAAA

� =
 =
A
AAAAA= 

;
AAAAAAAAAA

0 0 �3 0> 

<
A
AAAAAAAAA

Alternatively, if P = 4, Q = 3 


�1 0 0  

0 �2 0?
 @
A
AAAAAAAAA

>
A
AAAAAAAAA

0 0 �3 

0 0  0=
 >


therefore extending the definition of a diagonal matrix to non-square ones. 

Precisely as with matrix G considered above, column orthonormality of U, V implies that 

these matrices are orthogonal, 

UUW = IP > UW U = IP > (2.273) {svd3} 

VVW = IQ > VW V = IQ = (2.274) {svd4} 

(It follows that U31 = UW , etc.) As with G above, should one or more columns of U, V be 

deleted, the matrices will become semi-orthogonal. 

The relations (2.250) to (2.253) can be written compactly as: 

WEV = U� > EW U = V� > (2.275) 

WEW EV = V� W � > EEW U = U�� = (2.276) 

Left multiply the first of (2.275) by UW and right multiply it by VW , and invoking Eq. (2.274), 

UW EV = � = (2.277) {34058} 

So U, V diagonalize E (with “diagonal” having the extended meaning for a rectangular matrix 

as defined above.) 
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Right multiplying the first of (2.275) by VW , 

E = U�VW = (2.278) {34059} 

This last equation represents a product, called the “singular value decomposition” (SVD), of an 

arbitrary matrix, of two orthogonal matrices, U, V, and a usually non-square diagonal matrix, 

�. 

There is one further step to take. Notice that for a rectangular �, as in the examples above, 

one or more rows or columns must be all zero, depending upon the shape of the matrix. In 

addition, if any of the �l = 0, l ?  min(P> Q), the corresponding rows or columns of � will be 

all zeros. Let N be the number of non-vanishing singular values (the “rank” of E). By inspection 

(multiplying it out), one finds that the last Q � N columns of V and the last P � N columns 

of U are multiplied by zeros only. If these columns are dropped entirely from U, V so that U 

becomes P × N and V becomes Q × N, and reducing � to a N × N square matrix, then the 

representation (2.278) remains exact, in the form, 

{34060} E = UN �N V
W 
N = �1u1v W 

1 +�2u2v W 
2 +===+�N uN v W 

N > (2.279) 

with the subscript indicating the number of columns, where UN , VN are then only semi-

orthogonal, and �N is now square. Eq. (2.279) should be compared to (2.225).44 

The SVD solution can be obtained by direct matrix manipulation, rather than vector by 

vector. Consider once again finding the solution to the simultaneous equations ((2.88)), but 

first write E in its reduced SVD, 

{34061} UN �N V
W 
N x + n = y = (2.280) 

Left multiplying by UW 
N and invoking the semi-orthogonality of UN produces 

{34062} �N V
W 
N x + UW 

N n = UW 
N y = (2.281) 

The inverse of  �N (square with all non-zero diagonal elements) is easily computed and, 

{34063} VW 
N x + �31 

N U
W 
N n = �31 

N U
W 
N y = (2.282) 

But VW 
N x is the dot product of the first N of the vl with the unknown x. Eq. (2.282) thus 

represents statements about the relationship between dot products of the unknown vector, x, 

with a set of orthonormal vectors, and therefore must represent the expansion coe!cients of the 

solution in those vectors. If we set, 

{34064} UW 
N n = 0  > (2.283) 
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then, 

VW 
N x = �31 

N U
W 
N y > (2.284) {34065} 

and hence, 

x̃ = VN �
31 
N U

W 
N y > (2.285) {34066} 

identical to the solution (2.269), which the reader is urged to confirm by writing it out explicitly. 

As with the square symmetric case, the contribution of any structure in y proportional to ul 

depends upon the ratio of the projection, uW 
l y to �l. Substituting solution (2.285) into (2.280), 

UN �N V
W 
N VN �

31 
N U

W 
N y + n = UN U

W 
N y + n = y 

or 

ñ = (I � UN U
W 
N )y = (2.286) {34067} 

Let the full U and V matrices be rewritten as 

U = {UN Qx} > V = {VN Qy } (2.287) {9697} 

where Qx, Qy are the matrices whose columns are the corresponding nullspace vectors. Then, 

Ex̃ + ñ = y> Ex̃ = ỹ (2.288) {34069a} 

ỹ = UN U
W 
N y> ñ = QxQ

W 
x y = 

Q X 

m=N+1 

¡
u W 
m y 
¢ 
um (2.289) {34069b} 

which is identical to (2.267). Note, 

QxQ
W 
x = (I � UN U

W 
N )> Qy Q

W 
y = (I � VN V

W 
N ) (2.290) {Q1} 

and which are idempotent. (VN V
W 
N is matrix H of Eq. (2.98)). The two vector sets Qx> Qy 

span the data and solution nullspaces respectively. The general solution is, 

x̃ = VN �
31 
N UN y +Qy �> (2.291) {34070} 

where � is now restricted to being the vector of coe!cients of the nullspace vectors. 

The solution uncertainty (2.271) is, 

P = VN �
31 
N U

W 
N hnn W i UN �

31 
N V

W 
N 

+Qy h�� W i QW 
J = C{{ +Qy h�� W i QW 

y 

(2.292) {34072} 

or, 

P = � 2 
qVN �

32 
N V

W 
N +Qy h�� W i QW 

y (2.293) 
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for white noise. 

Least-squares solution of simultaneous solutions by SVD has several important advantages. 

Among other features, we can write down within one algebraic formulation the solution to sys-

tems of equations which can be under-, over-, or just-determined. Unlike the eigenvalue/eigenvector 

solution for an arbitrary square system, the singular values (eigenvalues) are always non-negative 

< 
AA@ 

AA> 

and real, and the singular vectors (eigenvectors) can always be made a complete orthonormal set. 

Furthermore, the relations (2.250) or (2.275) provide a specific, quantitative statement of the 

connection between a set of orthonormal structures in the data, and the corresponding presence 

of orthonormal structures in the solution. These relations provide a very powerful diagnostic 

method for understanding precisely why the solution takes on the form it does. 

2.5.5 Some Simple Examples. Algebraic Equations. 

Example 

The simplest underdetermined system is 1 × 2= Suppose {1 � 2{2 = 3> so that 
;
AA?
 447 =894
½ ¾ = �

> U =E = 1 2� {1} > V =
 1 = 2=23>> � 
AA=
 =894 =447� � 

where the second colum of Y is the nullspace of H= The general solution is {̃ = [0=6> 1=2]W +�
�2y2= Because N = 1  is the only possible choice, this solution satisfies the equation exactly, and 

a data nullspace is not possible. 

Example 

The most elementary overdetermined problem is 2 × 1. Suppose  

{1 = 1  

{1 = 3  = 

The appearance of two such equations is possible if there is noise in the observations, and they 

are properly written as, 

{1 + q1 = 1  

{1 + q2 = 3  = 

E = {1> 1}W , EW E represents the eigenvalue problem of the smaller dimension, again 1 ×1 and, 
<
AA@ 

AA>

> V = {1} > �1 = 

s
2 

707 =707�
U = 

;
AA? 

AA= 

=

=707 =707




2.5 THE SINGULAR VECTOR EXPANSION 95 

where the second column of U lies in the data nullspace, there being no solution nullspace. The 

general solution is x = {1 = 2, which if substituted back into the original equations produces, 
6
5


2 

2 

and hence there are residuals ˜ ˜n = y � y = [1>�1]W , and which are necessarily proportional to 

u2 and thus orthogonal to ỹ= No other solution can produce a smaller o2 norm residual than 

this one. The SVD produced a solution which compromised the contradiction between the two 

original equations. 

997 

Example 

The possibility of N ? P , N ? Q  simultaneously is also easily seen. Consider the system: 

::8
Ex̃ = = ỹ > 

65<
AAAAAA

;
AAAAAA 9999997 

1 

�

1 2 1 
 ::::::8


�

?
 @

A
AAAAA

>x =
3 2 1  1A
AAAAA >=4 0 2  2 

which appears superficially just-determined. But the singular values are �1 = 5=67, �2 = 2=80, 

�3 = 0. The vanishing of the third singular value means that the row and column vectors are 

not linearly independent sets (not spanning sets)–indeed the third row vector is just the sum of 

the first two (but the third element of y is not the sum of the first two–making the equations 

inconsistent). Thus there are both solution and data nullspaces, which the reader might wish to 

find. With a vanishing singular value, E can be written exactly using only two columns of U, 
WV and the linear dependence of the equations is given explicitly as u3 E = 0. 

Example 

Consider now the underdetermined system, 

{1 + {2 � 2{3 = 1  

{1 + {2 � 2{3 = 2 > 

which has no conventional solution at all, being a contradiction, and is thus simultaneously 

underdetermined and incompatible. If one of the coe!cients is modified by a very small quantity, 

|�| A 0, to  produce,  

{1 + {2 � (2 + �){3 = 1 > 
(2.294) {ex1} 

{1 + {2 � 2{3 = 2 > 
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not only is there a solution, there is an infinite number of them, which the reader should confirm 

by computing the particular SVD solution and the nullspace. Thus the slightest perturbation in 

the coe!cients has made the system jump from one having no solution to one having an infinite 

number, an obviously disconcerting situation. The label for such a system is “ill-conditioned.” 

How would we know the system is ill-conditioned? There are several indicators. First, the ratio 

of the two singular values is determined by �. If  we  set  � = 10310, the two singular values are 

�1 = 3=46, �2 = 4=1 × 10311, an immediate warning that the two equations are nearly linearly 

dependent. (In a mathematical problem, the non-vanishing of the second singular value is enough 

to assure a solution. It is the inevitable slight errors in | that suggest su!ciently small singular 

values should be treated as though they were actually zero.) 

Example 

A similar problem exists with the system, 

{1 + {2 � 2{3 = 1  

{1 + {2 � 2{3 = 1 > 

which has an infinite number of solutions. But the change to 

{1 + {2 � 2{3 = 1 > 

{1 + {2 � 2{3 = 1 + � 

for arbitrarily small � produces a system with no solutions in the conventional mathematical 

sense, although the SVD will handle the system in a sensible way, which the reader should 

confirm. 

Problems like these are simple examples of the practical issues that arise once one recognizes 

that unlike textbook problems, observational ones always contain inaccuracies; any discussion 

of how to handle data in the presence of mathematical relations must account for these inaccu-

racies as intrinsic–not as something to be regarded as an afterthought. But the SVD itself is 

su!ciently powerful that it always contains the information to warn of ill-conditioning, and by 

determination of N to cope with it–producing useful solutions. 

Example 

The Tomographic Problem from Chapter 1. A square box, is made up of 3×3 unit dimension 
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{tomog3.tif} Figure 2.10: Tomographic problem with 9-unknowns and only 6-integral constraints. 

sub-boxes (Fig. 2.10). All rays are in the u{ or u| directions. So the equations are, 

6565<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

9999999999999999997


::::::::::::::::::8


=


9999999999999999997


0


1


0


0


1


1 0 0 1 0 0 1 0 0 


0 1 0 0 1 0 0 1 0 


{
 ::::::::::::::::::8


>


1 

{
2 

?
 @
A
AAAAAAAAAAAAAAAAA

0 0 1 0 0 1 0 0 1 
 =


=


=


A
AAAAAAAAAAAAAAAAA

1 1 1 0 0 0 0 0 0 


0 0 0 1 1 1 0 0 0 


>= 0 0 0 0 0 0 1 1 1  {9 0 

that is, Ex = y. There are six integrals (rays) across the nine boxes in which one seeks the 

corresponding value of {l. y was calculated by assuming that the “true” value is {5 = 1> {l = 0> 
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l 6= 5. The SVD produces, 
<
AAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAA

>

@
AAAAAAAAAAAAAAAAAA

�0=408 0 0 0=816 0 0=408 

�0=408 0=703 �0=0543 �0=408 �0=0549 0=408 

�0=408 �0=703 0=0543 �0=408 0=0549 0=408? 

AAAAAAAAAAAAAAAAAA

U =


> 

�0=408 �0=0566 0=0858 0 �0=81 �0=408 

�0=408 �0=0313 �0=744 0 0=335 �0=408 

�0=408 0=0879 0=658 0 0=475 �0=408 = 

<
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAA

@
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA> 

�0=333 �0=0327 0=0495 0=471 �0=468 �0=38 �0=224 0=353 0=353 

�0=333 0=373 0=0182 �0=236 �0=499 0=432 0=302 �0=275 0=302 

�0=333 �0=438 0=0808 �0=236 �0=436 �0=0515 �0=0781 �0=0781 �0=655 

�0=333 �0=0181 �0=43 0=471 0=193 0=519 �0=361 �0=15 �0=15 

AAAAAAAAAAAAA? 
�0=333 0=388 �0=461 �0=236 0=162 �0=59 �0=0791 �0=29 �0=0791 

�0=333 �0=424 �0=398 �0=236 0=225 0=0704 0=44 0=44 0=229 

�0=333 0=0507 0=38 0=471 0=274 �0=139 0=585 �0=204 �0=204 

�0=333 0=457 0=349 �0=236 0=243 0=158 �0=223 0=566 �0=223 

�0=333 �0=355 0=411 �0=236 0=306 �0=0189 �0=362 �0=362 0=427 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= 

The zeros appearing in U> and in the last element of diag (�) are actually very small numbers ¡ ¢ 
(O 10316 or less). Rank N = 5  despite there being six equations–a consequence of redundancy 

in the integrals. Notice that there are four repeated �l, and  the lack of expected simple symme-

tries in the corresponding vl is a consequence of a random assignment in the eigenvectors. 

u1 just averages the right hand-side values, and the corresponding solution is completely 

uniform, proportional to v1. The average of y is usually the most robust piece of information. 

The “right” answer is x = [0> 0> 0> 0> 1> 0> 0> 0> 0]W = The rank 5 answer by SVD  is  ̃x =[-0.1111, 

0.2222, -0.1111, 0.2222, 0.5556, 0.2222, -0.1111, 0.2222, -0.1111] W which exactly satisfies the 

2=45 1=73 1=73 1=73 1=73 0 

¸¶ 

>


�
µ
� = diag  

V = 
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x x = 0=556 ? xW x= When mapped into two dimensions, ˜same equations. ˜W ˜ x at rank 5 is, 

5
 6
u{< 

=11 =22 =11� � 

=22 =56 =22 

=11 =22 =11� � 

9999997


::::::8


u| % > (2.295) 

and is the minimum norm solution. The mapped v6, which belongs in the null space is, 

65 

9999997 

=38 =43 =05� � 

=52 =59 =07� 

=14 =16 =02� � 

::::::8


and along with any remaining null space vectors produces a zero sum along any of the ray paths. 

u6 is in the data nullspace. uW E = 0  shows that, 6 

d (|1 + |2 + |3) � d (|4 + |5 + |6) = 0> 

if there is to be a solution without a residual, or alternatively, that no solution would permit 

this sum to be non-zero. This requirement is physically sensible, as it says that the vertical and 

horizontal rays cover the same territory and must therefore produce the same sum travel times. 

It shows why the rank is 5, and not 6. 

There is no noise in the problem as stated. The correct solution and the SVD solution di�er 

by the null space vectors. One can easily confirm that x is column 5 of V5VW˜ 5 . Least-squares 

allows one to minimize (or maximize) anything one pleases. Suppose for some reason, we want 

the solution that minimizes the di�erences between the value in box 5 and its neighbors, perhaps 



100 CHAPTER 2 BASIC MACHINERY 

as a way of finding a "smooth" solution. Let 
<
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1 0 0 0 1 0 0 0 0�

0 1 0 0 1 0 0 0 0�

0 0 1 0 1 0 0 0 0�

0 0 0 1 1 0 0 0 0�
?
 @

A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

W = (2.296)0 0 0 0 1 1 0 0 0�

0 0 0 0 1 0 1 0  0�

0 0 0 0 1 0 0 1 0�

0 0 0 0 1 0 0 0 1�

0 0 0 0 1 0 0 0 0 

A
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA=
 >


The last row is included to render W a full-rank  matrix.  Then 

65 

Wx =


999999999999997


{5 � {1 

{5 � {2 

= 

{5 � {9 

{5 

::::::::::::::8


(2.297) 

and we can minimize 

M = x W WW Wx (2.298) 

subject to Ex = y by finding the stationary value of 

M 0 = M 2µ W (y � Ex) (2.299)� 

The normal equations are then 

WW Wx = EW 
µ (2.300) 

Ex = y (2.301) 

and ¡ ¢
x̃ = WW W 

31 
EW 
µ 
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and then, ¡ ¢31 
E WW W EW 

µ = y 

¡ ¢
The rank of  E WW W 

31 
EW is N = 5  ? P  = 6> and so we need a generalized  inverse,  

³ ¡ X vl y
µ̃ = E WW W 

¢31 
EW ́

+ 
y = 

5 

vl

W 

�l m=1 

¡ ¢
The null space of E WW W 

31 
EW is readily confirmed to be the vector, 

�
 ¸W 

(2.302) 0=408 0=408 0=408 0=408 0=408 0=408 > � � �

¡ ¢
which produces the solvability condition. Here, because E WW W 

31 
EW is symmetric, the SVD 

reduces to the symmetric decomposition. 

Finally, the mapped x̃ is 65 

9999997 

=20 =41 =20� � 

=41 =18 =41 

=20 =41 =21� � 

::::::8


and one cannot further decrease the sum-squared di�erences of the solution elements. One 

can confirm that this solution satisfies the equations. Evidently, it produces a minimum, not 

a maximum  (it su!ces to show that the eigenvalues of WW W are all non-negative). The 

addition of any of the nullspace vectors of E to x̃ will  necessarily increase the  value of  M and 

hence there is no bounded maximum. In real tomographic problems, the arc lengths making up 

matrix E are three dimensional curves and depend upon the background index of refraction in 

the medium, which is usually itself determined from observations.45 There are thus errors in E 

itself, rendering the problem one of non-linear estimation. Approaches to solving such problems 

are described in Chapter 3. 

Example 

Consider, the flow into a four-sided box with missing integration constant as described in 

Chapter 1. Total mass conservation and conservation of dye, Fl= Let the relative areas of 

each interface be 1, 2, 3, 1 units respectively. Let the corresponding velocities on each side 

be 1> 1@2>�2@3,0 respectively, with the minus sign indicating a flow out. That mass is conserved 

is confirmed by, {page:fourside µ ¶ µ
1 2 

1 (1)  +  2  + 3  
� ¶ 

+ 1  (0)  =  0= 
2 3 



102 CHAPTER 2 BASIC MACHINERY 

Now suppose that the total velocity is not in fact known, but an integration constant is missing 

on each interface, so that µ ¶ µ ¶
1 1 

1 + e1 + 2  (1  +  e2) + 3  + e3 + 1  (2  +  e4) = 0
2 3 

where the el = [1@2> 1@2> �1> �2], but are here treated as unknown. Then the above equation�
becomes 

e1 + 2e2 + 3e3 + e4 = 5=5�

or one equation in 4 unknowns. Evidently, one linear combination of the unknown el can be 

determined. We would like more information. Suppose that a tracer of concentration, Fl = 

[2> 1> 3@2> 0] is measured at each side, and is believed conserved. The governing equation is µ ¶ µ ¶
1 1 3 

1 + e1 2 + 2  (1  +  e2) 1  +  3  + 1  (2  +  e4) 0  =  0+ e3
2 3 2 

or 

2e1 + 2e2 + 4=5e3 + 0e4 = 4=5�

giving a system of 2 equations in four unknowns 

1  2 3 1 


2 2 4=5 0 


e4 

The SVD  of  the coe!cient matrix, E> is : 

6=50 0 0 0 

0 1=02 0 0 

0=582 0=813� �

0=813 0=582


E = 

and the remainder of the solution is left to the reader. 

2.5.6 Simple Examples. Di�erential and Partial Di�erential Equations 

Example 

<
AAAAAAAAAA

;
AAAAAAAAAA @

A
AAAAAAAAA

0=009 0=832 0=429 0=340


=801 0=179 0=454 0=347� �

6
5


6
5


=

::8


5=5�997
= 

4=5�

::::::::::8


e1 

e2 

e3 

99999999997 

< 
AA@ 

AA> 

;
AA? 

AA= 

>


0=116 0=479 0=243 0=835� � �

0=581 0=215 0=742 0=259�

? 

< 
AA@ 

AA>A
AAAAAAAAA=


;
AA? 

< 
AA@ 

AA>AA= 

;
AA? 

AA= 
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As an example of the use of this machinery with di�erential equations, consider, 

g2{ (u) 2{exponen10} 
gu2 � n { (u) = 0> (2.303) 

subject to initial and/or boundary condition. Using the simple one-sided, uniform discretization, ³ ´ 
discexponen1} { ((p+ 1)�u)� 2 + n 2 (�u)2 { (p�u) + { ((p� 1)�u) = 0> (2.304) 

at all interior points. Take the specific case, with two-end conditions, { (�u) = 10> { (51�u) =  

1>�u = 0=1> the numerical solution is depicted in Fig. 2.11 from the direct (conventional) 

solution to Ax = y= The first two rows of A were used to impose the boundary conditions on 

{ (�u) > { (51�u) = The singular values of A are also plotted in Fig. 2.11. The range is over 

about two orders of magnitude, and there is no reason to suspect numerical di!culties. The first 

and last singular vectors u1> v1> u51> v51, are plotted too. One infers (by plotting additional 

such vectors), that the large singular values correspond to singular vectors showing a great deal of 

small-scale structure, and the smallest singular values correspond to the least structured (largest 

spatial scales) in both the solution and in the specific corresponding weighted averages of the 

equations. This result may be counterintuitive. But note that in this problem, all elements of | 

vanish except the first two, which are being used to set the boundary conditions. We know from 

the analytical solution that the true solution is large-scale; most of the information contained 

in the di�erential equation (2.303) or its numerical counterpart, (2.304) is an assertion that 

all small scales are absent; this information is the most robust and corresponds to the largest 

singular values. The remaining information, on the exact nature of the largest scales, is contained 

in only two of the 51 equations–given by the boundary conditions, is extremely important, but 

less robust than that concerning the absence of small scales. (Less “robust” is being used in the 

sense that small changes in the boundary conditions will lead to relatively large changes in the 

largescale structures in the solution because of the division by relatively small �l=)= 

Example 

Consider now the classical Neumann problem described in Chapter 1. The problem is to 

be solved on a 10 × 10 grid as in Eq. (1.17), Ax = b. The singular values of A are plotted 

in figure 2.12; the largest one is �1 = 7=8, and the smallest non-zero one is �99 = 0=08. As  

expected, �100 = 0. The singular vector y100 corresponding to the zero singular value is a 

constant; x100>also shown in Fig. 2.12 is not a constant, it has considerable structure–which 

provides the solvability condition for the Neumann problem, xW . The physical origin of 100| = 0

the solvability condition is readily understood: Neumann boundary conditions prescribe boundary 

flux rates, and the sum of the interior source strengths plus the boundary flux rates must sum to 
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Figure 2.11: Upper left is x̃ Eq. (2.303) by brute force from the simultaneous equations. Upper 

right panel displays the corresponding singular values; all are finite (there is no 

nullspace). Lower left panel displays u1 (solid curve), and u51(dashed). Lower right 

panel shows the corresponding v1> v51. The most robust information corresponds 

to the absence of small scales in the solution. {exponensvd.ep 
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zero, otherwise no steady state is possible. If the boundary conditions are homogeneous, then no 

flow takes place through the boundary, and the interior sources must sum to zero. In particular, 

the value of x100 on the interior grid points is a constant. The Neumann problem is thus a 

forward one requiring coping with both a solution nullspace and a solvability condition. 

2.5.7 Relation of Least-Squares to the SVD 

What is the relationship of the SVD solution to the least-squares solutions? To some extent, 

the answer is already obvious from the orthonormality of the two sets of singular vectors: they 

are the least-squares solution, where it exists. When does the simple least-squares solution will 

exist? Consider first the formally overdetermined problem, P A Q . The solution (2.96) exists 

if and only if the matrix inverse exists. Substituting the SVD for E, one finds 

(EW E)31 = (VQ � W 
Q U

W 
Q UQ �Q V

W 
Q )
31 = (VQ � 2 

Q V
W 
Q )
31> (2.305) {34074} 

where the semi-orthogonality of UQ has been used. Suppose that N = Q , its maximum possible 

value; then �2 
Q is Q × Q with all non-zero diagonal elements � 2 

l . The inverse in (2.305) may 

be found by inspection, using VW 
Q VQ = IQ , 

(EW E)31 = VQ �
32 
Q V

W 
Q = (2.306) {34075} 

Then the solution (2.96) becomes 

x̃ = (VQ �
32 
Q V

W 
Q )VQ �Q U

W 
Q y = VQ �

31 
Q U

W 
Q y > (2.307) {34076} 

which is identical to the SVD solution (2.285). If N ? Q , �2 
Q has at least one zero on the 

diagonal, no matrix inverse exists and the conventional least-squares solution is not defined. 

The condition for its existence is thus N = Q , the so-called “full rank overdetermined” case. 

The condition N ? Q  is called “rank deficient.” The dependence of the least-squares solu-

tion magnitude upon the possible presence of very small, but non-vanishing, singular values is 

obvious. 

1. That the full-rank overdetermined case is unbiased, as previously asserted (45), can now 

be seen from 

hx̃ � xi = 
Q X 

l=1 

(uW 
l hyi) 
�l 

vl � x = 
Q X 

l=1 

uW 
l y0 

�l 
vl � x = 0 > 

with y = y0 + n> if hni = 0, assuming that the correct E (model) is being used. {pagemeanbias2 
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Figure 2.12: Color. (Upper left) Singular values of the coe!cient matrix A of the numerical Neu-

mann problem on a 10×10 grid. All �l are non-zero except the last one. (Upper 

right) u100> the nullspace vector of EW defining the solvability or consistency condi-

tion for a solution through uW Plotted as mapped onto the two-dimensional 100y =0= 

spatial grid (u{> u| ) with �{ = �| = 1= The interpretation is that the sum of the 

influx through the boundaries and from interior sources must vanish. Note that 

corner derivatives di�er from other boundary derivatives by 1/
s
2= Corresponding 

v100 is a constant, indeterminate with the information available, and not shown.. 

(lower left) A source b (a numerical delta function) is present, not satisfying the 
Wsolvability condition u100b =0> because all boundary fluxes were set to vanishing. 

(Lower right) Particular SVD solution, x̃> at rank N = 99= One confirms that 

Ax̃ � b is proportional to u100 as the source is otherwise inconsistent with no flux 

boundary conditions. With b a Kronecker delta function at one grid point, this 

solution is a numerical Green function for the Neumann problem and insulating 

boundary conditions. {neumann1.eps} 
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Now consider another problem, the conventional purely underdetermined least-squares one, 

whose solution is (2=166). When does that exist? Substituting the SVD, 

W x = VP �P U
W

P VP �P U
W˜ P (UP �P V

W
P )
31 y 

(2.308) {34078a} 
2 = VP �P U

W
P )
31 y = P (UP �P U

W 

Again, the matrix inverse exists if and only if �2 has all non-zero diagonal elements, which P 

occurs only when N = P . Under that specific condition, the inverse is obtained by inspection 

and, 

˜ P (UP �
32UW 

P )y = VP �
31UW (2.309) {34078b} x = VP �P U

W
P P P y 

ñ = 0  > (2.310) {34078c} 

which is once again the particular-SVD solution (2.285)–with the nullspace coe!cients set 

to zero. This situation is usually referred to as the “full-rank underdetermined case.” Again, 

the possible influence of small singular values is apparent and an arbitrary sum of nullspace 

vectors can be added to (2.309). The bias of (2.308) is given by the nullspace elements, and its 

uncertainty arises only from the nullspace contribution, because with ñ = 0, thenoise variance 

vanishes, and the particular-SVD solution covariance C{{ would be zero. 

The particular-SVD solution thus coincides with the two simplest forms of least-squares 

solution, and generalizes both of them to the case where the matrix inverses do not exist. All 

of the structure imposed by the SVD, in particular the restriction on the residuals in (2.263), 

is present in the least-squares solution. If the system is not of full rank, then the simple least-

squares solutions do not exist. The SVD generalizes these results by determining what it can: 

the elements of the solution lying in the range of E> and an explicit structure for the resulting 

nullspace vectors. 

The SVD provides a lot of flexibility. For example, it permits one to modify the simplest 

underdetermined solution (2=166) to remove its greatest shortcoming, the necessity that ñ = 0. 

One simply truncates the solution (2.269) at N = N 0 ? P , thus assigning all vectors vl, 

N 0 + 1  l N, to an “e�ective nullspace” (or substitutes N 0 for N everywhere). The residual � � 

is then, 
P X 

˜ W n = (ul y)ul > (2.311) {34079} 
l=N0+1 

with an uncertainty for x̃ given by (2.292), but with the upper limit being N 0 rather than N. 

Such truncation has the e�ect of reducing the solution covariance contribution to the uncertainty, 

but increasing the contribution owing to the nullspace (and increasing the bias). In the presence 
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of singular values small compared to �q, the resulting overall reduction in uncertainty may be 

very great–at the expense of a possibly very small bias. 

The solution now consists of three parts, 

N0 N Q X W X Xul yx̃ = vl + �l vl + �lvl > (2.312) {34080} 
�ll=1 l=N0 +1 l=N+1 

where the middle sum contains the terms appearing with singular values too small to be 

employed–for the given noise–and the third sum is the strict nullspace. Usually, one lumps 

the two nullspace sums together. The first sum, by itself, represents the particular-SVD solution 

in the presence of noise. Resolution and covariance matrices are modified by the substitution of 

N 0 for N= 

This consideration is extremely important–it says that despite the mathematical condition 

�l 6= 0, some structures in the solution cannot be estimated with su!cient reliability to be 

useful. The “e�ective rank” is then not the same as the mathematical rank. 

It was already noticed that the simplest form of least-squares does not provide a method to 

control the ratios of the solution and noise norms. Evidently, truncation of the SVD o�ers a 

simple way to do so–by reducing N 0 . It follows that the solution norm necessarily is reduced, 

and that the residuals must grow, along with the size of the solution nullspace. The issue of 

how to choose N 0, that is, “rank determination,” in practice is an interesting one to which we 

will return (P. 117). 

2.5.8 Pseudo-Inverses 

Consider an arbitrary P × Q matrix E = UN �N V
W and,N 

Ex + n = y 

Then if E is full-rank underdetermined, the minimum norm solution is, ¡ ¢
x = EW EEW 31 

y = VN �
31UW 

N y> N  =P>˜ N 

and if it is full-rank overdetermined, the minimum noise solution is, ¡ ¢
˜

31 
EW N y> N  = Q=x = EW E y = VN �

31UW 
N 

31 
The first of these, the Moore-Penrose, or pseudo-inverse, E+ = EW EEW is sometimes also 1 

¡ ¢
¡ ¢
EW E 

31 
EWknown as a “right-inverse,” as EE+ = IP = The second pseudo-inverse, E+ = is a 1 2 

“left-inverse” as E+E = IQ = They can both be represented as VN �
31UW 

N , but with di�ering2 N 

values of N= If N ?  P>  Q  neither of the pseudo-inverses exists, but VN �
31UW 

N y still provides N 

the particular SVD solution. When N = P = Q> one has a demonstration that the left and 

right inverses are identical; they are then written as E31= 
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2.5.9 Row and Column Scaling 

The e�ects on the least-squares solutions of the row and column scaling can now be understood. 

We discuss them in the context of noise covariances, but as always in least-squares, the weight 

matrices need no statistical interpretation, and can be chosen by the investigator to suit her 

convenience or taste. 

Suppose we have two  equations  

6
5

6565;

AA?


< 
AA@ 

AA>


{1 

{2 

9999997 

::::::8


+

997 

997 
q1 |1 

q2 |2 

1 1 1 
 ::8

::8
>
=
AA=
1 1=01 1 

{3 

and there is no information about the noise covariance and so no row scaling is reasonable: 

W = I. The SVD of E is 

<
AAAAAA

;
AAAAAA

;
AA? 

<
AA@ 

AA>


0=5764 0=4096 0=7071�
?
 @

A
AAAAA

0=7059 0=7083�
U = AAAAAA= 

> V = 0=5793 

0=5764 

>0=8151 0=0000A
A=
0=7083 0=7059

>
0=4096 0=7071� �

�1 = 2=4536> �2 = =0058 = 

The SVD solutions, choosing ranks N 0 = 1> 2 in succession, are very nearly (the numbers having 

been rounded), 

�

�


Wµ ¶
|1 + |2 

2=45 

¸
(2.313)x̃ >0=58 0=58 0=58� 

�
W Wµ 
|1 + |2 

2=45


¶ µ 
|1 � |2 

0=0058


¶
¸
0=41 0=82 0=41�

¸
x̃ +0=58 0=58 0=58� 

respectively, so that the first term simply averages the two measurements, |l, and  the  di�erence 

between them contributes–with great uncertainty–in the second term of the rank 2 solution 

owing to the very small singular value. The uncertainty is 

(EEW )31 = 

;
AA?
1=51 × 104 1=50 × 104 �

<
AA@ 

AA>

=
AA=
 1=50 × 104 1=51 × 104 �
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Now suppose that the covariance matrix of the noise is known to be 
;
AA?
 1 0=999999


< 
AA@ 

AA>

Rqq = 

0=999999 
AA= 1 

(an extreme case, chosen for illustrative purposes). Then, put W = Rqq, 

1=0000 1=0000 

;
AA? 

AA

<
AA@ 

AA>


;
AA?


<
AA@ 

AA>


1=0000 0 
W1@2 = > W3W@2 = = AA= = 

65 

0 0=0014 707=1063 707=1070�

The new system to be solved is 

65 

1=0000 1=0000 1=0000 

;
AA? 

AA

9999997 

<
AA@ 

AA> 

{1 

{2 

::::::8


=

997


|1 ::8
= 

0=0007 7=0718 0=0007 
{3 

The SVD is 

= 707=1(�|1 + |2) 

<
AAAAAA

;
AAAAAA0=0205 0=7068 0=7071


@? 
U =


;
AA? 

AA= 

0=1456 

0=9893 

<
AA@
0=9893 
> V = 0=9996 0=0290 0=0000�AA>


A
AAAAA
A
AAAAA0=1456�
>=0=0205 0=7068 0=7071�

�1 = 7=1450 > �2 = 1=3996 = 

The second singular value is now much larger relative to the first one, and the two solutions are, 
�

�


¸W|2 � |1 

7=1 
(2.314)
x̃ 0 1  0� 

�
¸W 

0=71 0 0=71 

¸W|2 � |1 

7=1 
|1 � 103 (|2 � |1)

x̃ +0 1  0 
� 
1=4 

and the rank 1 solution is given by the di�erence of the observations, in contrast to the unscaled 

solution. The result is quite sensible–the noise in the two equations is so nearly perfectly 

correlated, that it can be removed by subtraction; the di�erence |2 � |1 is a nearly noise-

free piece of information and accurately defines the appropriate structure in x̃= In e�ect, the 

information provided in the row scaling with R permits the SVD to nearly eliminate the noise 

at rank 1 by an e�ective subtraction, whereas without that information, the noise is reduced in 

the solution (2.313) at rank 1 only by averaging. 
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At full rank, that is, N = 2, it can be confirmed that the solutions (2.313) and (2.314) are 

identical, as they must be. But the error covariances are quite di�erent: 
;
AA?


(E0E0W )31 = 
0=5001 0=707�

< 
AA@ 

AA>

=
AA=
 0=707 0=5001�

because the imposed covariance permits a large degree of noise suppression. 

It was previously asserted (P. 66) that in a full-rank formally underdetermined system, row 

scaling is irrelevant to ˜ n, as may be seen as follows,x, ˜

˜	 0 x = E0W (E0E0W )31 y 

(W3W@2 W31@2)31W3W@2 = EW W31@2 EEW	 y 
(2.316) 

= EW W31@2W1@2 WW@2W3W@2(EEW )31 y 

= EW (EEW )31 y > 

but which is true only in the full rank situation. {pagerowscale2 

There is a subtlety in row-weighting. Suppose we have two equations of form, 

10{1 + 5{2 + {3 = 1  > 
(2.317) {34086} 

100{1 + 50{2 + 10{3 = 2  > 

after row scaling to make the	 expected noise variance in each the same. A rank 1 solution 

x = [=0165> =0083> =0017]W , which produces residuals ˜ =to these equations by SVD is ˜ y � y 

0=79> 0=079]W –much smaller  in  the second  equation than in the  first  one.[�
Consider that the second equation is 10 times the first one–in e�ect saying that a measure-

ment of 10 times the values of 10{1 + 5{2 + {3 has the same noise in it as a measurement of 

one times this same linear combination. The second equation represents a much more accurate 

determination of this linear combination and the equation should be given much more weight in 

determining the unknowns–and both the SVD and ordinary least-squares does precisely that. 

To the extent that one finds this result undesirable (one should be careful about why it is so ³P ´1@2 
found), there is an easy remedy–divide the equations by their row norms H2 . But  m lm 

there will be a contradiction with any assertion that the noise in all equations was the same to 

begin with. Such row-scaling is best regarded as non-statistical in nature. 

An example of this situation is readily apparent in the box balances discussed in Chapter 1. 

Equations such as (1.32) could have row norms much larger than those (1.31) for the corre-

sponding mass balance, simply because the tracer is measured by convention in its own units. 



112 CHAPTER 2 BASIC MACHINERY 

If the tracer is e.g., oceanic salt, values are, by convention, measured on the Practical Salinity 

Scale, and are near 35 (but are dimensionless). Because there is nothing fundamental about 

the choice of units, it seems unreasonable to infer that the requirement of tracer balance has 

an expected error 35 times smaller than for mass. One usually proceeds in the obvious way by 

dividing the tracer equations by their row norms as the first step. (This approach need have no 

underlying statistical validity, but is often done simply on the assumption that salt equations are 

unlikely to be 35 times more accurate than the mass ones.) The second step is to ask whether 

anything further can be said about the relative errors of mass and salt balance, which would 

introduce a second, purely statistical row weight. 

Column Scaling 

In the least-squares problem, we formally introduced a “column scaling” matrix S. Column  

scaling operates on the SVD solution exactly as it does in the least-squares solution, to which 

it reduces in the two special cases already described. That is, we should apply the SVD to sets 

of equations only where any knowledge of the solution element size has been removed first. If 

the SVD has been computed for such a column-scaled (and row-scaled) system, the solution is 

for the scaled unknown x 0, and  the physical solution is,  

x = SW@2 ̃ 0{34088} ˜ x = (2.318) 

But there are occasions, with underdetermined systems, where a non-statistical scaling may also 

be called for, the analogue to the situation considered above where a row-scaling was introduced 

on the basis of possible non-statistical considerations. 

Example 

Suppose we have one equation in two unknowns, 

{34089} 10{1 + 1{2 = 3  = (2.319) 

˜The particular-SVD solution produces x = [0=2970> 0=0297]W in which the magnitude of {1 is 

much larger than that of {2 and the result is readily understood. As we have seen, the SVD 

automatically finds the exact solution, subject to making the solution norm as small as possible. 

Because the coe!cient of {1 in (2.319) is 10 times that of {2, it is obviously  more  e!cient in 

minimizing the norm to give {1 a larger value than {2–because it contributes more e!ciently 

in producing |. Although we have demonstrated this dependence for a trivial example, similar 

behavior occurs for underdetermined systems in general. In many cases, this distribution of the 

elements of the solution vector x is desirable, the numerical value 10 appearing for good physical 

reasons. In other problems–the numerical values appearing in the coe!cient matrix E are an 
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“accident.” In the box-balance example of Chapter 1, the distances defining the interfaces of the 

boxes are a consequence of the spatial distance between measurements. Unless one believed that 

velocities should be larger where the distances are greater or the fluid depth was greater, then 

the solutions may behave unphysically.46 Indeed, in some situations the velocities are expected 

to be inverse to the fluid depth and such a prior statistical hypothesis is best imposed after one 

has removed the structural accidents from the system. (The tendency for the solutions to be 

proportional to the column norms is not rigid. In particular, the equations themselves may 

preclude the proportionality.) 

Take a positive definite, diagonal matrix S, and  rewrite  (2.88) as 

ESW@2S3W@2 x + n = y= 

Then, 
0 0 = S3W@2E0 x + n = y> E0 = ESW@2> x x = 

Solving 

˜0 = E0W (E0E0W x = SW@2 ̃ 0 x )31 y > ˜ x = (2.320) {34090} 

How should S be chosen? Apply the recipe (2.320) for the simple one equation example of (2.319), 

with ;
AA?


< 
AA@ 

AA>


1@d2 0 
S = AA=
 0 1@e2 

< 
AA@ 

AA> 

;
AA? 

: ½ ¾ 

E0 
1 

+ (2.321)= 10@d 1@e > E
0E0W =

100 
2d2 e

2 

E0E0W ¢31 d2e
= 
100e2 + d2

¡
(2.322) 

10@d d2 2e0x̃ 3> (2.323)=
AA=
 100e2 + d2 

1@e 
;
AA?


< 
AA@ 

AA>


10@d2 2d2e
SW@2 ˜0 xx̃ = 3= (2.324)=
AA=
 100e2 + d2 

1@e2 

˜The relative magnitudes of the elements of x are proportional to 10@d2 , 1@e2 . To make the 

numerical values identical, choose d2 = 10, e2 = 1, that is, divide the elements of the first 

column of E by 
s
10 and the second column by 

s
1. The apparent rule (which is correct and 
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general) is to divide each column of E by the square root of its length. The square root of the 

length may be surprising, but arises because of the second multiplication by the elements of SW@2 

in (2.320). This form of column scaling should be regarded as “non-statistical,” in that it is 

based upon inferences about the numerical magnitudes of the columns of E and does not employ 

information about the statistics of the solution. Indeed, its purpose is to prevent the imposition 

of structure on the solution for which no statistical basis has been anticipated. In general, the 

elements of x will not prove to be equal–because the equations themselves do not permit it. ˜

If the system is full-rank overdetermined, the column weights drop out, as claimed for least-

squares above. To see this result, consider that in the full-rank case, 

˜0 x = (E0W E0)31E0W y 

x = SW@2(S1@2EW ESW@2)31S1@2EW˜ y (2.325) 

= SW@2S3W@2(EW E)31S31@2S1@2EW y = (EW E)31EW y = 

Usually row-scaling is done prior to column scaling so that the row norms have a simple physical 

interpretation. 

2.5.10 Solution and Observation Resolution. Data Ranking 

Typically, either or both of the set of vectors vl, ul used to present x, y will be deficient 

in the sense of the expansions in (2.186). It follows immediately from Eqs. (2.187) that the 

particular-SVD solution is, 

˜ Nx = Tyx> (2.326) {34093a} x = VNV
W 

and the data vector with which both it and the general solution are consistent is, 

{34093b} y = UNU
W˜ Ny = Txy= (2.327) 

It is convenient therefore, to define the solution and observation resolution matrices, 

{resol1} Ty = VNV
W

NN > Tx = UNU
W = (2.328) 

The interpretation of the solution resolution matrix is identical to that in the square-symmetric 

case (P. 77). 

Interpretation of the data resolution matrix is slightly subtle. Suppose an element of y was 

fully resolved, that is, some row, m0, of  UNUW were all zeros except for diagonal element m0,N 

which is one. Then a change of unity in |m0 would produce a change in x̃ which would leave 

unchanged all other elements of ỹ. If  element  m0 is not fully resolved, then a change of unity 

in observation |m0 produces a solution which leads to changes in other elements of ỹ. Stated 



115 2.5 THE SINGULAR VECTOR EXPANSION 

slightly di�erently, if |l is not fully resolved, the system lacks adequate information to distinguish 

equation l from a linear dependence on one or more other equations. 

One can use these ideas to construct quantitative statements of which observations are the 

most important (“data ranking”). From (2.189), trace(Tx) =  N and the relative contribution 

to the solution of any particular constraint is given by the corresponding diagonal element of 

Tx. 

Consider the example (2.317) without row weighting. At rank 1, 

0=099 
Tx =


0=0099 

;
AA? 

AA= 

< 
AA@ 

AA>

> 

0=099 0=9901


showing that the second equation has played a much more important role in the solution than 

the  first  one–despite the  fact  that  we  asserted  the expected  noise in both to be the  same.  The  

reason is that described above, the second equation in e�ect asserts that the measurement is 

10 times more accurate than in the first equation–and the data resolution matrix informs us 

of that explicitly. The elements of Tx can be used to rank the data in order of importance to 

the final solution. All of the statements about the properties of resolution matrices made above 

apply to both Tx, Ty. 

If row and column scaling have been applied to the equations prior to application of the 

SVD, the covariance, uncertainty, and resolution expressions apply in those new, scaled spaces. 

The resolution in the original spaces is, 

Ty = SW@2Ty0 S
3W@2 > (2.329) {34095a} 

Tx = WW@2Tx0 W
3W@2 > (2.330) {34095b} 

so that 

x̃ = Tyx> ỹ = Txy (2.331) {34096} 

where Ty0 , Tx0 are the expressions Eq. (2.328) in the scaled space. The uncertainty in the new 

space is P = S1@2P0SW@2 where P0 is the uncertainty in the scaled space. 

We have seen an interpretation of three matrices obtained from the SVD: VNVW 
N , UNU

W 
N , 

VN�
32 
N V

W 
N . The reader may well wonder, on the basis of the symmetries between solution and 

data spaces, whether there is an interpretation of the remaining matrix UN�
32 
N U

W 
N? 

To understand its use, recall the normal equations (2.162, 2.163) that emerged from the 

constrained objective function (2.148). They become, using the SVD for E> 

V�UW 
µ = x > (2.332) {35018a} 

U�VW x = y = (2.333) {35018b} 
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No matter what the rank of E> the pair of equations is always square, of dimension P + Q . 

These equations show that U� 2UW 
µ = y= The particular SVD solution is, 

{35019} µ = UN �
32UW˜ N N y > (2.334) 

involving the “missing” fourth matrix. Thus, 

CM 
= 2UN �

32UW 
N N y > 

Cy 

and taking the second derivative, 

C2M 
= 2UN �

32UW{35020} 
Cy2 N N (2.335) 

is the Hessian of M with respect to the data. If any of the �l become very small, the objec-

tive function will be extremely sensitive to small perturbations in y–producing an e�ective 

nullspace of the problem. Eq. (2.335) supports the suggestion that perfect constraints can lead 

to di!culties. 

2.5.11 Relation to Tapered and Weighted Least-Squares 

In using least-squares, a shift was made from the simple objective functions (2.90) and (2.148) 

to the more complicated ones in (2.115) or (2.126). The change was made to permit a degree of 

control of the relative norms of ˜ n, and through the use of W, S of the individual elements and x, ˜

the resulting uncertainties, and covariances. Application of the weight matrices W, S through 

their Cholesky decompositions to the equations prior to the use of the SVD is equally valid– 

thus providing the same amount of influence over the solution elements. The SVD provides its 

control over the solution norms, uncertainties and covariances through choice of the e�ective 

rank N 0 . This approach is di�erent from the use of the extended objective functions (2.115), 

but the SVD is actually useful in understanding the e�ect of such functions. 

Assume any necessary W, S have been applied. Then, the full SVD, including zero singular 

values and corresponding singular vectors, is substituted into (2.117), 

x̃ = (� 2IQ + V� W �VW )31V� W UW y > 

we have 

2I)31VW V� W UWx̃ = V(� W � + � y (2.336) ¡ ¢
2 31 

= V diag �l + � 2 � W UW y> 

or, 
Q WX �l(ul y)˜{34097b} x = 2 vl = (2.337) 
�l + �2 

l=1 
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It is now apparent what the e�ect of “tapering” has done in least-squares. The word refers to the 

tapering down of the coe!cients of the vl by  the presence of  �2 from the values they would have 

in the “pure” SVD . In particular, the guarantee that matrices like (EW E + �2I) always have an 

inverse despite vanishing singular values, is seen to follow because the presence of �2 A 0 assures 

the inverse of the sum always exists, irrespective of the rank of E. The simple addition of a 

positive constant to the diagonal of a singular matrix is a well-known ad hoc method for giving it 

an approximate inverse. Such methods are a form of what is usually known as “regularization,” 

and are procedures for suppressing nullspaces. Note that the coe!cients of vl vanish with �l 

and a solution nullspace still exists. 

The residuals of the tapered least-squares solution can be written in various forms. Eqs. (2.118) 

are, 

W )31UWñ = � 2U(� 2I + �� y (2.338) 
P WX (ul y)�

2 

= ul >2 �l + �2 
l=1 

that is, the projection of the noise onto the range vectors ul no longer vanishes. Some of the 

structure of the range of EW is being attributed to noise and it is no longer true that the residuals 

are subject to the rigid requirement (2.263) of having zero contribution from the range vectors. 

An increased noise norm is also deemed acceptable, as the price of keeping the solution norm 

small, by assuring that none of the coe!cients in the sum (2.337) becomes overly large–values 

we can control by varying �2 . The covariance of this solution about its mean (Eq. 2.119) is 

readily rewritten as 

Q Q W W XX �l�m ul Rqqum 
2C{{ =

(�l + �2)(� 2 + �2) 
vlvm

W 

ml=1 m=1 

Q 2 
2 
X �l W 

(2.339) 
= � vlvq 2(�l + �2)2 l 

l=1 

2 2IQ )
31VW = � 2 V(� W � + � IQ )

31 � W �(� W � + �q

where the second and third lines are again the special case of white noise. The role of �2 in 

controlling the solution variance, as well as the solution size, should be plain. The tapered 

least-squares solution is biassed –but the presence of the bias can greatly reduce the solution 

variance. Study of the solution as a function of �2 is known as “ridge regression”. Elaborate 

techniques have been developed for determining the “right” value of �2=47 
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The uncertainty, P> is readily found as, 

Q Q X W X 2 W 
2 �l vlvlP=� 

¡
2 ¡ vlvl + �q ¡ (2.340) 

2 2 �l + �2 
¢2 

�l + �2 
¢2 

l=1 l=1 ¢ ¡ ¢31 ¡ ¢
2 2 32 

VW 2 W W W 2 31 
VW = � V � W �+� I +� V � �+� 2I � � � �+� Iq

showing the variance reduction possible for finite �2 (reduction of the second term), and the 

bias error incurred in compensation in the first term. 

The truncated SVD and the tapered SVD-tapered least-squares solutions produce the same 

qualitative e�ect–it is possible to increase the noise norm while decreasing the solution norm. 

Although the solutions di�er somewhat, they both achieve a purpose stated above–to extend 

ordinary least-squares in such a way that one can control the relative noise and solution norms. 

The quantitative di�erence between them is readily stated–the truncated form makes a clear 

separation between range and nullspace in both solution and residual spaces: The basic SVD so-

lution contains only range vectors and no nullspace vectors. The residual contains only nullspace 

vectors and no range vectors. The tapered form permits a merger of the two di�erent sets of 

vectors: Then both solution and residuals contain some contribution from both formal range 
2and e�ective nullspaces (for 0 �l ?? �2).� 

We have already seen several times that preventing ñ from having any contribution from the 

range of EW introduces covariances into the residuals, with a consequent inability to produce 

values which are strictly white noise in character (although it is only a real issue as the number 

of degrees of freedom, P � N> goes toward zero). In the tapered form of least-squares, or the 

equivalent tapered SVD, contributions from the range vectors ul> l  � N> is permitted, and a 

potentially more realistic residual estimate is obtained. (There is usually no good reason why ñ 

should be expected to be orthogonal to the range vectors.) 

2.5.12 Resolution and Variance of Tapered Solutions 

The tapered least-squares solutions have an implicit nullspace, arising both from the terms 

corresponding to zero singular values, or from values small compared to �2 . To obtain a measure 

of solution resolution when the vl vectors have not been computed, consider a situation in which 

the true solution were xm0 � �m>m0 , that is, unity in the m0 element and zero elsewhere. Then, in 

the absence of noise, the correct value of y would be 

{34099} Exm0 = ym0 > (2.341) 

defining ym0 . Suppose we actually knew (had measured) ym0 , what solution xm0 would be ob-

tained? 
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Assuming all covariance matrices have been applied and suppressing any primes, tapered 

least-squares (Eqs. 2.121) produces, 

{34100} x̃m0 = EW (EEW + � 2I)31 ym0 = EW (EEW + � 2I)31Exm0 > (2.342) 

which is row (or column) m0 of 

Ty = EW (EEW + � 2I)31E = (2.343) {34101} 

Thus we can interpret any row or column of Ty as the solution for one in which a Kronecker delta 

was the underlying correct one. It is an easy matter, using the SVD of E and letting �2 $ 0 

to show that (2.343) reduces to VVW . These expressions apply in the row- and column-scaled 

space and are suitably modified to take account of any W> S which may have been applied, as 

in Eqs. (2.329), (2.330). An obvious variant of (2.343) follows from the alternative least-squares 

solution (2.128), with W =�2I> S = I> 

Ty = 
¡
EW E+� 2I 

¢31 
EW E (2.344) 

Data resolution matrices are obtained similarly. Let |m = �mm1 = Eq. (2.136) produces 

{34142} 

x̃m1 = EW ¡EEW +� 2I 
¢31 

ym1 > 

which if substituted into the original equations is, 

(2.345) 

Thus, 

Ex̃m1 = EEW ¡EEW +� 2I 
¢31 

ym1 = (2.346) 

The alternate form is, 

Tx = EEW ¡EEW +� 2I 
¢31 

(2.347) 

Tx = E 
¡
EW E+� 2I 

¢31 
EW = 

All of the resolution matrices reduce properly to either UUW > VVW 

(2.348) 

as �2 $ 0 when the SVD 

for E is substituted. 




