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4.4 Control and Estimation Problems 

4.4.1 Lagrange Multipliers and Adjoints 

The results of the last section are recursive schemes for computing first a filtered, and then a 

smoothed estimate. As with recursive least squares, the combination of two pieces of information 

to make an improved estimate demands knowledge of the uncertainty of the information. For 

static problems, the recursive methods of Chapter 2 may be required, either because all the data 

were not available initially or because one could not handle it all at once. But, in general, the 

computational load of the combined least-squares problem Ch. 2, Eq. (2.422) is less than the 

recursive one, if one chooses not to compute any of the covariance matrices. 

Because the covariance computation will usually dominate, and potentially overwhelm, the 

filter/smoother algorithms, it is at least superficially very attractive to find algorithms that 

do not require the covariances–that is, which employ the entire time domain of observations 

simultaneously–a “whole-domain” or “batch” method. The algorithms that emerge are best 

known in the context of “control theory.” Essentially, there is a more specific focus upon deter-

mining the u(w): the control variables making a system behave as desired. Conventional control 

engineering has been directed at finding the electrical or physical impulses to make e.g., a robotic 

machine tool assemble an automobile, to land an airplane at a specified airfield, or to shift the 

output of a chemical plant. The control literature refers to the “Pontryagin Principle.” Because 

the motion of an airplane is described by a set of dynamical equations, the solution to the prob-

lem can equally well be thought of as making a model behave as required instead of the actual 

physical system. Thus if one observes a fluid flow, one that di�ers from what one’s model said it 

should, we can seek those controls (e.g., boundary or initial conditions or internal parameters) 

that will force the model to be consistent with the observed behavior. It will help the reader 

who further explores these methods to recognize that we are still doing estimation, combining 

observations and models, but sometimes using algorithms best known under the control rubric. 

To see the possibilities, consider again the two-point objective function (4.61) where P, etc., 

are just weight matrices, not necessarily having a statistical significance. We wish to find the 

minimum of the objective function subject to (4.62). For variety, append the model equations 

as done in Chapter 2 (as in Eq. (2.148)), with a vector of Lagrange multipliers, µ(1), for  a new  
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objective function, ¡ ¢W ¡ ¢ 
M = x(0> +) � x(0) P(0)31 x(0> +) � x(0)˜ ˜ ˜ ˜¡ ¢W ¡ ¢ 

+ u(0> +) � u(0) Q(0)31 u(0> +) � u(0)˜ ˜ ˜ ˜
(4.85) {J5} ¡ ¢W ¡ ¢ 

+ y(1) � E(1)˜ x(1)x(1) R(1)31 y(1) � E(1)˜

2µ(1)W [˜ x(0> +) � Bq(0) � �˜� x(1) � A˜ u(0> +)] = 

As with the filter and smoother, the model is being imposed as a hard constraint, but with the 

control term permitting the model to be imperfect. The presence of the Lagrange multiplier 

now permits treating the di�erentials as independent; taking the derivatives of M with respect 

to ˜ x(1)> ˜x(0> +)> ˜ u(0> +)> µ(1) and setting them to zero, 

˜ ˜{63002} P(0)31 [x(0> +) � x(0)] + AW 
µ(1) = 0> (4.86) 

{63003} EW R(1)31 [y(1) � Ex̃(1)] + µ(1) = 0> (4.87) 

{63004} Q(0)31 [˜ ˜u(0> +) � u(0)] + � W 
µ(1) = 0> (4.88) 

˜ x(0> +) � Bq(0) � �˜{63005} x(1) � A˜ u(0> +) = 0 = (4.89) 

Equation (4.86) is the “adjoint model” for µ(1) involving AW . 

Because the objective function in (4.85) is identical with that used with the smoother for 

this problem, and because the identical dynamical model has been imposed, equations (4.86)— 

(4.89) must produce the same solution as that given by the smoother. A demonstration that 

equations (4.86)—(4.89) can be manipulated into the form (4.69-4.70) is an exercise in matrix 

identities.123 As with smoothing algorithms, finding the solution of (4.86)—(4.89)) can be done 

in a number of di�erent ways, trading computation against storage, coding ease, convenience, 

etc. 

Let us show explicitly the identity of smoother and Lagrange multiplier methods for a re-

stricted case–that for which the initial conditions are known exactly, so that x̃(0) is not modified 

by the later observations. For the one-term smoother, the result is obtained by dropping (4.86), 

as x(0) is no longer an adjustable parameter. Without further loss of generality, put ũ(0) = 0, 

and set R(1) = R, reducing the system to, 

˜ x(0) + Bq(0) + �˜{63006} x(1) = A˜ u(0> +) (4.90) 

ũ(0> +) = �Q(0)� W 
µ(1) £ ¤

{63006a} = Q(0)� W EW R31 y(1) � E(1)x̃(1) = (4.91) 

Eliminating ũ(0> +) from (4.90) produces 

˜ x(0) + Bq(0) + �Q(0)� W EW R31 [y(1) � E˜{63008} x(1) = A˜ x(1)] = (4.92) 
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With no initial error in x(0)> P(1> �) =  �Q(0)�W and with, 

˜{63009} x(1> �) � Ax(0) + Bq(0)> (4.93) 

(4.92) can be written 

£ ¤
I + P(1> �)EW R31E x(1) = ˜˜ x(1> �) +  P(1> �)EW R31 y(1) (4.94) {63010} 

or (factoring P(1> �)), 
£ ¤

˜ ˜x(1) = P(1> �)31 + EW R31E
31 
P(1> �)31x(1> �) £ ¤

+ P(1> �)31 + EW R31E
31 
EW R31 y(1) = 

Applying the matrix inversion lemma in the form (2.36 to the first term on the right, and in the 

form (2.37) to the second term on the right, 

£ ¤
˜ ˜x(1) = {P(1> �) � P(1> �)EW EP(1> �)EW + R 31 

EP(1> �)}P(1> �)31x(1> �) 
(4.95)£ ¤

+ PEW R + EP(1> �)EW 31 
y(1) 

or £ ¤
˜ x(1> �) +  P(1> �)EW EP(1> �)EW + R 31 

[y(1) � E˜x(1) = ˜ x(1> �)] = (4.96) {63013} 

This last result is the ordinary Kalman filter estimate, as it must be, but it results here from 

the Lagrange multiplier formalism. 

Now consider this approach for the entire interval 0 w � wi . Start with the objective � 

function (4.41) and append the model consistency demand using Lagrange multipliers, 

x(0> +) � x0]
W 
P(0)31 [x(0> +) � x0]M = [˜ ˜

wi X 
+ [y (w) � E(w)˜ x(w> +)]x(w> +)]W 

R(w)31 [y (w) � E(w)˜
w=1 

wi 31 (4.97) {J6} X 
˜ ˜+ u(w> +)W Q (w)31 

u (w> +) 
w=0

wi
X ¤

� ˜ x(w � 1> +) � Bq(w � 1> +) � �˜2 µ(w)W £ x(w> +) � A˜ u(w � 1> +) = 
w=1 

Note the di�ering lower limits of summation. 

Notational Note. Eq. (4.97) has been written with ˜ u (w> +) to make it clear that the x (w> +) > ̃

estimates will be based upon all data, past and future. But unlike the filter/smoother algorithm, 
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there will only be a single estimated value, instead of multiple estimates x̃ (w> �) (from the model 

x (w) (from the Kalman filter), and ˜forecast), ˜ x (w> +) from the smoother, and similarly for u (w) = 

Of necessity, ˜ ˜x (wi > +) = x (w) from the Kalman filter. x0 is any initial condition estimate with 

uncertainty P (0) obtained from any source. 

Setting all the derivatives to zero gives the normal equations, 

{63015} 1 
2 

CM 
Cũ (w> +) 

= Q (w)31 
ũ (w> +) + � W 

µ(w + 1)  =  0  > 0 � w � wi � 1 (4.98) 

1 
2 
CM 
Cµ(w) 

= x̃ (w> +) � Ax̃(w � 1> +) � Bq(w � 1) � �ũ(w � 1> +) = 0> 

0 � w � wi (4.99) 

{63017} 

{63018} 

1 
2 
CM 

Cx̃(0> +) 
= P(0)31

¡
x̃(0> +) � x0 

¢ 
+ AW 

µ(1) = 0 > 

1 
2 
CM 

Cx̃ (w> +) 
= �E (w) R (w)31 [y (w) � E (w) ̃x (w> +)] � µ (w) +  AW 

µ (w + 1)  =  0> 

(4.100) 

(4.101) 

1 � w � wi 

{63019} 1 
2 
CM 
Cx̃(wi ) 

= �E(wi )W R(wi )
31£ y (wi ) � E(wi )x̃(wi )

¤ 
� µ(wi ) = 0  (4.102) 

where the derivatives for x̃ (w> +), at  w = 0, w = wi , have been computed separately for clarity=


The so-called adjoint model is now given by (4.101). An equation count shows that the number


˜ u (w> +) > µ(w)]. With a large
of equations is exactly equal to the number of unknowns [x (w> +) > ˜

enough computer, we could contemplate solving them all at once. But for real fluid models with 

large time spans and large state vectors, even the biggest supercomputers are easily swamped, 

and one needs to find other methods. 

The adjoint model in Eq. (4.101) is, 

µ (w) =  AW 
µ (w + 1) +  E (w) R (w)31 [E (w) ̃x (w> +) �y (w)] > 

in which the model/data misfit appears as a “source term.” It is sometimes said that time runs 

backwards in this equation, with µ (w) being computed most naturally from µ (w + 1)  and the 

source term, with Eq. (4.102) providing an initial condition. But in fact, time has no particular 

direction here, as the equations govern a time interval, 1 w wi . Indeed if A31 exists, there � � 

is no problem in rewriting Eq. (4.101) so that µ (w + 1)  is  given in terms  of  A3W 
µ (w) = 
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The Lagrange multipliers–that is, the adjoint solution–have the same interpretation that 

they did for the steady models described in Chapter 2–that is, as a measure of the objective 

function sensitivity to the data, 
CM 0 

{63024} = 2µ(w + 1) = (4.103) 
CBq(w) 

The physics of the adjoint model, as in Chapter 2, are again represented by the matrix AW . 

For a forward model that is both linear and self-adjoint (AW = A), the adjoint solution would 

have the same physical behavior as the state vector. If the model is not self-adjoint (the usual 

situation), the evolution of the µ (w) may have a radically  di�erent interpretation than x(w). 

Insight into that physics is the road to understanding of information flow in the system. For 

example, if one employed a large numerical model to compute the flux of heat in a fluid, and 

wished to understand the extent to which the result was sensitive to the boundary conditions, 

or to a prescribed flux somewhere, the adjoint solution carries that information. In the future, 

one expects to see display and discussion of the results of the adjoint model on a nearly equal 

footing with that of the forward model. 

4.4.2 Terminal Constraint Problem: Open Loop Control 

Consider the adjoint approach in the context of the simple tracer box model already described 

and depicted in Figure  4.8. At  w = 0, the tracer concentrations in the boxes are known to 

vanish–that is, x(0) = x0 = 0 (the initial conditions are supposedly known exactly). At w = wi , 

a survey is made of the region, and the concentrations y(wi ) =  E(wi )x(wi ) + n(wi ), E(wi ) � I, 

hn(w)i = 0, hn(wi )n(wi )W i = R are known. No other observations are available. The question 

posed is: If the boundary conditions are all unknown a priori–that is Bq � 0> and all boundary 

conditions are control variables–what boundary conditions would produce the observed values 

at wi within the estimated error bars? 

The problem is an example of a “terminal constraint control problem”—it seeks controls 

(forces, etc.) able to drive the system from an observed initial state, here zero concentration, to 

within a given tolerance of a required terminal state124 . But in the present context, we interpret 

the result as an estimate of the actual boundary condition with uncertainty R (wi ) = For this 

special case, take the objective function, 

wi 31 X 
WM = [x(wi )� xg]

W 
R(wi )

31 [x(wi )� xg] +  u (w)Q (w)31 
u(w) 

w=0 
(4.104) {J2} 

wi X ¤
2 µ(w)W £ x(w)� Ax(w � 1)� Bq(w � 1)� �˜� u(w � 1) = 

1 
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From here on, the notation ˜ u (w> +) in objective functions is suppressed, reverting to x (w> +) > ̃

the understanding that any solution is an estimate, from whatever data are available, past or 

future. The governing normal equations are, 

{63028} µ(w � 1) = AW 
µ(w)> 1 w (4.105) � � wi ¡ ¢ 

{63029} µ(wi ) =  R31 x(wi ) � xg > (4.106) 

˜ W{63030} Q (w)31 
u(w) =  �� µ(w + 1)> (4.107) 

plus the model. Eliminating,


{63031} u(w) =  �Q� W =µ(w + 1)> (4.108)


and substituting into the model, the system to be solved is 

{63032} x(w) =  Ax(w � 1) � �Q� W 
µ(w) > x(0) = x0 0 > (4.109) � 

{63033} µ(w � 1) = AW 
µ(w) > 1 w (4.110) � � wi � 1 > ¡ ¢ 

{63034} µ(wi ) =  R31 x(wi ) � xg = (4.111) 

As written, this coupled problem has natural initial conditions for the state vector, x(w)> at w = 0> 

and for µ(w) at w = wi , but with the latter in terms of the still unknown x(wi )–recognizing that 

the estimated terminal state and the desired one will almost always di�er, that is, x (wi ) 6= xg = 

By exploiting its special structure, this problem can be solved in straightforward fashion 

without having to deal with the giant set of simultaneous equations. Using (4.111), step back-

ward in time from wi via (4.110) to produce, ¡ ¢ 
µ(wi ) =  AW R31 x(wi ) � xg > 

.
{6.3.35} . (4.112) . ¡ ¢ 

µ(1) = A(wi )W R31 x(wi ) � xg 

so µ(w) is given in terms of the known xg and the still unknown x(wi ). Substituting into (4.109) 

generates ¡ ¢ 
x(1) = Ax(0) � �Q� W A(wi 31)W R31 x(wi ) � xg ¡ ¢ 
x(2) = Ax(1) � �Q� W A(wi 32)W R31 x(wi ) � xg ¡ ¢

W A(wi 31)W R31 x(wi ) � xg = A2 x(0) � AQ� ¡ ¢ 
� �Q� W A(wi 32)W R31 x(wi ) � xg 

(4.113) {adjoint3} . . . ¡ ¢ 
A(wi 31)�Q� W A(wi 31)W R31 x(wi ) � xgx(wi ) =  Awi x(0) � ¡ ¢ 

A(wi 32)�Q� W A(wi 32)W R31 x(wi ) � xg� ¡ ¢ 
� · · ·  � �Q� W =R31 x(wi ) � xg = 
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The last equation permits us to bring the terms in x(wi ) over to the left-hand side and solve for 

x(wi ) in terms of xg and x(0): 
n 
I + A(wi 31)�Q� W A(wi 31)W R31 

o 
+ A(wi 32)�Q� W A(wi 32)W W R31R31 + · · ·+ �Q� x(wi ) n (4.114) {adjoint4} 

A(wi 31)�Q� W A(wi 31)W = Awi x(0) + R31 

o 
+ A(wi 32)�Q� W A(wi 32)W R31 + · · ·+ �Q� W R31 xg = 

With x(w) now known, µ(w) can be computed for all w from (4.110, 4.111). Then the control 

u(w) is also known from (4.107) and the state vector can be found from (4.109). The resulting 

solution for ũ(w) is in terms of the externally prescribed x0> xg and is usually known as “open-

loop” control. 

The canonical form for a terminal constraint problem usually used in the control literature 

di�ers slightly; it is specified in terms of a given, nonzero, initial condition x(0), and  the  controls  

are determined so as to come close to a desired zero terminal state. By linearity, the solution 

to this so-called deadbeat control (driving the system to rest) problem can be used to solve the 

problem for an arbitrary desired terminal state. 

Example 

Consider the tracer forward problem in Fig. 4.8 where boundary box 2 now has a non-zero 

concentration, fixed at F = 1= starting at w = 1= A concentration is readily imposed by zeroing the 

corresponding row of A> so that Bq (w) or �u (w) set the concentration. (An alternative is to put 

the imposed concentration into the initial conditions and use the corresponding row of A to force 

the concentration to be exactly that in the previous time step.) The initial conditions were taken 

as zero and the forward solution is in Fig. 4.13. Then the same figure shows the solution to the 

terminal time control problem for the concentration in box 2 giving rise to the terminal values. 

A misfit was permitted between the desired (observed) and calculated terminal time—with rms 

value of 2 ×1034 . Clearly the “true” solution is underdetermined by the provision of initial and 

terminal time tracer concentrations alone. Also shown in the figure are the Lagrange multipliers 

(adjoint solution) corresponding to the model equations for each box.125 

In the above formulation, the boundary boxes were contained in the A matrix , but the 

corresponding rows were all zero, permitting the B matrix (here a vector) to control the boundary 

box concentrations. A variation on this problem is obtained by setting column element m0 

corresponding to boundary box m0, in  A to unity. B would then control the time rate of change 

of the boundary box concentrations. Suppose then that B is a column vector, vanishing in all 

elements except with unity in all active boundary boxes (the corner boxes are passive here). 
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Figure 4.13: Box model example of terminal control. Here the “forward” calculation fixes the 

concentration in boundary box number 2 as F = 1> and all other boundary box 

concentrations are fixed at zero. (a) Displays the box 2 and interior box concen-

trations for 50 timesteps with initial condition of zero concentration everywhere. 

(b) Is the estimated concentration from the terminal control calculation, in which 

R =1034I> Q =1> where the only control value was the box 2 concentration. Thus a 

slight misfit is permitted to the terminal values C (50�w) > �w = 0=05= (c) Shows the 

Lagrange multipliers (adjoint solution) corresponding to the interior boxes. Hav-

ing the largest values near the termination point is characteristic, and shows the 

sensitivity to the near terminal times of the constraints. {boxterminal1. 
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Figure 4.14: Same box model as in Fig. 4.13, except that now �u(w) controls the rate of change 

of concentration rather than concentration itself, and all boundary boxes have a 

constant rate of change of 0.1. The “true” solution is shown in panel (a). Panel (b) 

shows that deduced from the terminal state control, with a near-perfect requirement 

on the terminal values, and Q= (d) Displays the estimated control ũ (w) = Note the 

highly compressed amplitude scale. 

Then Fig. 4.14 shows the concentration and the result of the terminal control problem in this 

case. 

The smoothing problem has been solved without having to compute the uncertainties, and 

is the major advantage of the Lagrange multiplier methods over the sequential estimators. La-

grange multiplier methods solve for the entire time domain at once; consequently, there is no 

weighted averaging of intermediate solutions and no need for the uncertainties. On the other 

hand, the utility of solutions without uncertainty estimates must be questioned. 

In the context of Chapter 1, problems of arbitrary posedness are being solved. The vari-

ous methods using objective functions, prior statistics, etc., whether in time-evolving or static 

situations, permit stable, useful estimates to be made under almost any circumstances, using 

almost any sort of available information. But the reader will by now appreciate that the use of 

{boxterminal2. 
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such methods can produce structures in the solution, pleasing or otherwise, that may be present 

because they are required by (1) the observations, (2) the model, (3) the prior statistics, (4) 

some norm or smoothness demand on elements of the solution, or (5) all of the preceding in 

concert. A solution produced in ignorance of these di�ering sources of structure can hardly be 

thought very useful, and it is the uncertainty matrices that are usually the key to understanding. 

Consequently, we will later briefly examine the problem of obtaining the missing covariances. In 

the meantime, one should note that the covariances of the filter/smoother will also describe the 

uncertainty of the Lagrange multiplier method solution, because they are the same solution to 

the same set of equations deriving from the same objective function. 

There is one situation where a solution without uncertainty estimates is plainly useful–it is 

where one simply inquires, “Is there a solution at all?”–that is, when one wants to know if the 

observations actually contradict the model. In that situation, mere existence of an acceptable 

solution may be of greatest importance, suggesting, for example, that a model of adequate 

complexity is already available. 

4.4.3 Representers and Boundary Green Functions 

The particular structure of Eqs. (4.105-4.107) permits several di�erent methods of solution and 

the version just given is an example. To generalize this problem, assume observations at a set 

of arbitrary times (not just the terminal time), 

y (w)=  E (w) x (w)+n (w) > 

and seek a solution in “representers.”


Take the objective function to be,


wi wi 31 X X 
{J7} M = [y (w) � E (w) x (w)]W 

R (w)31 [y (w) � E (w) x (w)] + u (w)W 
Q (w)31 

u (w) (4.115) 
w=1 w=0

wi
X 

2 µ (w)W [x (w) �Ax (w � 1) �Bq (w � 1) �� (w � 1) u (w � 1)] >� 
w=1 

so that the terminal state estimate is subsumed into the first term with E (wi ) =  I> R (wi ) =  

P (wi ) = Let xd (w) be the solution to the pure, unconstrained, forward problem, 

xd (w) =  Axd (w � 1) + Bq (w � 1) > xd (0) = x0> (4.116) 

and which is known. Redefine x (w) to be the di�erence, x (w) $ x (w) �xd (w) > that is the 

deviation from what can be regarded as the a priori  solution. The purpose of this redefinition 
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is to remove any inhomogeneous initial or boundary conditions from the problem–exploiting 

the system linearity. The normal equations are then, 

2 Cu (w) 
1 CM W = Q (w)31 

u (w) + � µ (w+ 1) = 0> 0 w� � wi � 1 

1 CM 
2 Cx (w) 

= E (w)W 
R (w)31 [E (w)x (w)� y (w)] +AW 

µ (w+ 1)� µ (w) = 0> 

1 w� � wi 
1 CM 
2 Cµ (w) 

= x (w)�Ax (w� 1)�� (w� 1)u (w� 1) = 0> x (0) = 0> 1 w� � wi 

Eliminating the u (w) in favor of µ (w) > we have as before, 

x (w) = Ax (w� 1)��Q (w� 1)� W 
µ (w) > (4.117) {representer1} 

µ (w) = AW 
µ (w+ 1) +E (w)W 

R (w)31 [E (w)x (w)�y (w)] = (4.118) {representer2} 

The system is linear, so we can examine the solution forced by the inhomogeneous term in 

(4.118) at one time, w = wp = This inhomogeneous term, E (w)W 
R (w)31 [E (w)x (w)�y (w)] > in Eq. 

(4.118) is, however, unknown until x (w) has been determined. So to proceed, first solve the 

di�erent problem, 

M (w> wp) = AW M (w+ 1> wp) + I�w>wp > w  � wp (4.119) {representer4} 

M (w> wp) = 0> w  A  wp> (4.120) 

where the second argument, wp> denotes the time of one set of observations (notice that M is a 

matrix). Time step Eq. (4.119) backwards from w = wp. There is then a corresponding solution 

to (4=117) with these values of µ (w) > 

G (w+ 1> wp) = AG (w> wp)��Q� W M (w+ 1> wp) > (4.121) 

which is stepped-forward in time. Both G>M are computable independent of the actual data 

values. Now put, n o 
m (w> wp) =M (w> wp) E (wp)

W 
R (wp)

31 [E (wp)x (wp)�y (wp)] > (4.122) 

a vector, which, by linearity, is the solution to (4.118) once x (wp) is known. Let, n o 
� (w> wp) = G (w> wp) E (wp)

W 
R (wp)

31 [E (wp) � (wp> wp)�y (wp)] > (4.123) {representer6} 

another vector, such that x̃ (w) =  � (w> wp) would be the solution sought. Setting w = wp in Eq. 

(4.123) and solving, 

� (wp> wp) =  (4.124) 

� � 
h i h i 
I G (wp> wp)E (wp)

W 
R (wp)

31 
E (wp) 

31 
G (wp> wp)E (wp)

W 
R (wp)

31 
y (wp) = 
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Figure 4.15: Representer (Green function) J for interior box 7, with the columns corresponding 

to boxes 6> 7 displayed through time. The Green function used numerically is the 

sum of these two, and displaying an near-discontinuity (typical of Green functions) 

esenter1.eps} at the data points which are available at w = 20> 30= 

With � (wp> wp) known, Eq. (4.123) produces a fully determined x̃ (w) =  � (w> wp) in representer 

form. This solution is evidently just a variant of Eqs. (4.113-4.114). One can then sum the 

results from all observation times: 

wi X 
˜representer3} x (w) =  � (w> wp) = (4.125) 

wp=1 

and after adding xd (w) to the result, the entire problem is solved. 

The solutions M (w> wp) are the Green function for the adjoint model equation, and the 

G (w> wp) are “representers.”126 and exist independent of the data. If the data distribution is 

spatially sparse, one need only compute the subsets of the columns or rows of M> G that corre-

spond to measured elements of  x (w). That is, in Eq. (4=119) any zero columns in E, representing  

elements of the state vector not involved in the measurements, multiply the corresponding 

columns of M> G> and hence one need not ever compute those columns. 

H{dpsoh. 

Consider again the 4 ×4 box model of Fig. 4.8, in the same configuration as used above, with 

all the boundary boxes having a fixed tracer concentration of F = 1> and zero initial condition. 

Now, it is assumed that observations are available in all interior boxes (6,7,10,11) at time w = 

20> 30= The representer J is shown in Fig. 4.15. 

The representer emerged naturally from the Lagrange multiplier formulation. Let us re-

derive the solution without the use of Lagrange multipliers to demonstrate how the adjoint 

model appears in unconstrained o2 norm problems (soft constraints). Introduce the model into 

the same objective function as above, except we do it by substitution for the control terms; let 
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Figure 4.16: Upper panel shows the forward “truth” in the box model and the lower panel the 

estimated values from the representer displayed in Fig. 4.15. Data were treated as 

esenter2.eps} nearly perfect at the two observation times. 

� = I> making it possible to solve for u (w) explicitly and producing the simplest results. The 

objective function then is, 

wi X 
M = [y (w) � E (w) x (w)]W 

R (w)31 [y (w) � E (w) x (w)] (4.126) 
w=0


wi 31
X 
+ [x (w + 1)  �Ax (w)]W 

Q (w)31 [x (w + 1)  �Ax (w)] > (4.127) 
w=0 

again assume that x (w) is the anomaly relative to the known xd (w) =


The normal equations are:


1 CM 
= E (w)W 

R (w)31 [E (w) x (w) � y (w)] �AW Q (w)31 [x (w + 1)  �Ax (w)] (4.128) {normal2} 
2 Cx (w)


+Q (w)31 [x (w) �Ax (w � 1)] = 0


Define, 

� (w + 1)  =  �Q (w)31 [x (w + 1)  �Ax (w)] (4.129) {nu1} 

so that the system (4.128) can be written as 

� (w) =  AW � (w + 1) +  E (w)W 
R (w)31 [E (w) x (w) � y (w)] (4.130) {adjoint2} 

which along with (4.129) is precisely the same system of equations (4.117, 4.118) that emerged 

from the Lagrange multiplier approach, if we let µ $ �> � = I= Representers are again defined 
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as the unit disturbance solution to the system. As a by-product, we see once again, that o2 norm�
least-squares and the adjoint method are simply di�erent algorithmic approaches to the same 

problem.127 

4.4.4 The Control Riccati Equation 

Consider yet another solution of the problem. (If the reader is wondering why such a fuss is 

being made about these equations, the answer, among others, is that it will turn out to be an 

important route to reducing the computational load required for the Kalman filter and various 

smoothing algorithms.) We look at the same special case of the objective function, (4.104), and 

the equations that follow from it ((4.105))—(4.107) plus the model). Let xf = 0> the deadbeat 

requirement defined above. For this case, the adjoint equation is, 

{63055} �(w) = AW 
µ(w + 1) +R(w)31 x(w) > 1 � w � wi > (4.131) 

stipulating that R(w)31 = 0, w 6= wi , if the only requirement is at the terminal time. For 

simplicity, let Q (w) = Q= 

Take a trial solution, an “ansatz”, in the form, 

{63056} µ(w) = S(w)x(w)> (4.132) 

where S(w) is unknown. Then Eq. (4.107) becomes 

W{63057} Q31 u(w � 1) + � S(w)x(w) = 0 (4.133) 

or, using the model, ¡ ¢
W{63058} Q31 u(w) + � S(w + 1) Ax(w) + �u(w) = 0 = (4.134) 

So, 

© 
W u(w) = � � W S(w + 1)� +Q31

ª31 
� S(w + 1)Ax(w) 

W = L31 � S(w + 1)Ax(w)�

L = � W S(w + 1)� +Q31 = 

Substituting this last expression, and (4.132) for µ(w), into the adjoint model (4.131), 

© 
WAW S(w + 1)A AW S(w + 1)�L(w + 1)31 � S(w + 1)A� 

(4.135) 
S(w) +R(w)31} x(w) = 0 = � 

Unless x(w) is to vanish identically, 

{63061} S(w) = AW S(w + 1)A AW S(w + 1)�L31 � W S(w + 1)A +R(w)31 > (4.136) � 
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a nonlinear di�erence equation, known as the matrix “Riccati equation,” which produces a 

backward recursion for S(w). Start the recursion with 

{63062} S(wi )x(wi ) =  R(wi )
31 x(wi ) or S(wi ) =  R(wi )

31 > (4.137) 

and step backward to w = 0. The problem has now been solved—by what is called the “sweep 

method.”128 Notice that with S(w) known, the control is in the form 

�u(w) =  Kf(w)x(w) > (4.138) {63063} 

known as “feedback control” because the values to be applied are determined by the value of 

the state vector at that time. It contrasts with the open-loop control form derived above, but 

necessarily produces the identical answer. 

With feedback control, the computation of the model update step would now be, 

x(w) = (A � Kf)x(w � 1) + Bq(w � 1) = (4.139) {63064} 

The structure of the matrix, 

A0 = A � Kf> (4.140) {63065} 

is the center of a discussion of the stability of the scheme, which we will not pursue here. 

4.4.5 The Initialization Problem 

Another special case of wide interest is determination of the initial conditions, x̃(0), from later  

observations. For notational simplicity and without loss of generality, assume that the known 

controls vanish so that the model is, 

x(w) =  Ax(w � 1) + �u(w � 1) > (4.141) {63067} 

that there is an existing estimate of the initial conditions, x̃0(0), with estimated uncertainty 

P(0), and that there is a single terminal observation of the complete state, 

y(wi ) =  Ex(wi ) +  n(wi ) > E = I> (4.142) {63068} 

where the observational noise covariance is again R(wi ). This problem can now be solved in five 

di�erent ways: 

1. The terminal observations can be written explicitly in terms of the initial conditions as 

y(wi ) =  Awi x(0) + Awi 31 �u(0) + Awi 32 �u(1) + · · ·  
(4.143) 

+ �u(wi � 1) + n(wi ) > 
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which is in canonical observation equation form, 

y(wi ) =  Esx(0) + ns(wi ) > Es = Awi > 

ns = Awi 31 �u(0) + · · ·+ �u(wi � 1) + n(wi ) > 

and where the covariance of this combined error is 

 ®
W	 W A(wi 31)WRs	 nsns = Awi 31 �Q� + · · ·+ �Q� W = + R(wi ) = (4.144) {63071} � 

Then the least-squares recursive solution leads to 

¤ £	 ¤
{63072} x(0) = ˜	 ˜˜	 x0(0) + P(0)EW £ EsP(0)EW + Rs

31 
y(wi ) � Esx0(0) > (4.145) s s 

and the uncertainty estimate follows immediately. 

2. A second method (which the reader should confirm produces the same answer) is to run 

the Kalman filter forward to wi and then run the smoother backward to w = 0. There  is  

more computation here, but a byproduct is an estimate of the intermediate values of the 

state vectors, of the controls, and their uncertainty. 

3. Write the model in backward form, 

{63073}	 x(w) =  A31 x(w + 1)  � A31 �u > (4.146) 

and use the Kalman filter on this model, with time running backward. The observation 

equation (4.142) provides the initial estimate of x(wi ), and its error covariance becomes 

the initial estimate covariance P(wi ). At  w = 0, the original estimate of x̃0(0) is treated as 

an observation, with uncertainty P(0) taking the place of the usual R. The reader should 

again confirm that the answer is the same as in (1). 

4. The problem has already been solved using the Lagrange multiplier formalism. 

5. The Green function representation (Eq. 4.32) is immediately solvable for x (0) 


