
Chapter 4


The Time-Dependent Inverse 

Problem: State Estimation 

4.1 Background 

The discussion so far has treated models and data that most naturally represent a static world. 

Much data, however, describe systems that are changing in time to some degree. Many familiar 

di�erential equations represent phenomena that are intrinsically time-dependent; a good example 

is  the wave equation,  
1 C2{ (w) C2{(w) 
f2 Cw2 � 

Cu2 = 0= (4.1) {wave1} 

One may well wonder if the methods described in Chapter 2 have any use with data thought to 

be described by (4.1). An approach to answering the question is to recognize that w is simply 

another coordinate, and can be regarded e.g., as the counterpart of one of the space coordinates 

encountered in the previous discussion of two dimensional partial di�erential equations. From 

this point of view, time dependent systems are nothing but versions of the systems already 

developed. (The statement is even more obvious for the simpler equation, 

g2{ (w) 
gw2 = t (w) = (4.2) 

That the coordinate is labelled w is a detail.) 

On the other hand, time often has a somewhat di�erent flavor to it than does a spatial 

coordinate because it has an associated direction. The most obvious example occurs when one 

has data up to and including some particular time w> and one asks for a forecast of some elements 

of  the system at some future time  w0 A w. Even this role of time is not unique: one could imagine 

a completely equivalent spatial forecast problem, in which e.g., one required extrapolation of 
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190CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION 

the map of an ore body beyond some area in which measurements exist. In state estimation, 

time does not introduce truly novel problems. The main issue is really a computational one: 

problems in two or more spatial dimensions, when time-dependent, typically generate system 

dimensions which are too large for conventionally available computer systems. To deal with 

the computational load, one seeks state estimation algorithms that are computationally more 

e!cient than what can be achieved with the methods used so far. Consider as an example, 

CF 
{tracer1} = � 2F> (4.3) 

Cw 
u 

a two dimensional generalization of the Laplace equation (a di�usion equation). Using a one-

sided time di�erence, and the discrete form of the Laplacian in Eq. (1.13), one has 

Flm ((q + 1)�w)� Flm (q�w) 
= (4.4) 

�w 
� {Fl+1>m (q�w)� 2Fl>m (q�w) + Fl31>m (q�w) + Fl>m+1 (q�w)� 2Fl>m (q�w) + Fl>m31 (q�w)} 

If there are Q2 elements defining Flm at each time q�w> then the number of elements over the 

entire time span of W time steps, would be WQ2 and which grows rapidly as the number of time 

steps increases. Typically the relevant observation numbers also grow rapidly through time. On 

the other hand, the operation, 

x =vec (Flm (q�w)) > (4.5) 

renders Eq. (4.4) in the familiar form 

A1x = 0> (4.6) 

and with some boundary conditions, some initial conditions and/or observations, and a big 

enough computer, one could use without change any of the methods of Chapter 2. There  are  

however, many times when W>  Q  become so large, that even the largest available computer is 

inadquate. Methods are sought that can take advantage of special structures built into time 

evolving equations to reduce the computational load. (Note however, that A1 is very sparse.) 

This chapter is in no sense exhaustive; many entire books are devoted to the material and 

its extensions, which are important for understanding and practical use. The intention is to lay 

out the fundamental ideas, which are primarily algorithmic rearrangements of methods already 

described in Chapters 2 and 3 with the hope that they will permit the reader to penetrate the 

wider literature. Several very useful textbooks are available for readers who are not deterred 

by discussions in contexts di�ering from their own applications.101 Most of the methods now 

being used in fields involving large-scale fluid dynamics, such as oceanography and meteorology, 

have been known for years under the general headings of control theory and control engineering. 

The experience in these latter areas is very helpful; the main issues in applications to fluid 



4.2 BASIC IDEAS AND NOTATION 191 

problems concern the size of the models and data sets encountered: they are typically many 

orders of magnitude larger than anything contemplated by engineers. In meteorology, specialized 

techniques used for forecasting are commonly called “data assimilation.”102 The reader may find 

it helpful to keep in mind, through the details that follow, that almost all methods in actual use 

are, beneath the mathematical disguises, nothing but versions of least-squares fitting of models 

to data, but reorganized, so as to increase the e!ciency of solution, or to minimize storage 

requirements, or to accomodate continuing data streams. 

Several notation systems are in wide use. The one chosen here is taken directly from the 

conrol theory literature; it is simple and adequate.103 

4.2 Basic Ideas and Notation 

4.2.1 Models 

In the context of this chapter, by “models” is meant statements about the connections between 

the system variables in some place at some time, and those in all other places and times. 

Maxwell’s equations are a model of the behavior of time-dependent electromagnetic disturbances. 

These equations can be used to connect the magnetic and electric fields everywhere in space 

and time. Other physical systems are described by the Schrodinger, elastic, or fluid-dynamical 

equations. Static situations are special limiting cases, e.g., for an electrostatic field in a container 

with known boundary conditions. 

A useful concept is that of the system “state.” By that is meant the internal information at a 

single moment in time required to forecast the system one small time step into the future. So for 

example, the time evolution of a system described by the tracer di�usion equation (6.1), inside 

a closed container can be calculated with arbitrary accuracy at time w + �w> if one knows F (r>w) 

and the boundary conditions FE (w) > as �w $ 0=(external information). F (r> w) is the state 

variable (the “internal” information), with the boundary conditions being regarded as separate 

externally provided variables (but the distinction is, as we will see, to some degree an arbitrary 

one). In practice, such quantities as initial and boundary conditions, container shape, etc. are 

typically obtained from measurements, are thus always imperfectly known, and the problems 

are conceptually identical to those already considered. 

Consider any model, whether time dependent or steady, but rendered in discrete form. The 

“state vector” x (w) (w discrete) is defined as those elements of the model employed to describe 

fully the physical state of the system at any time and all places as required by the model in 

use. For the discrete Laplace/Poisson equation in Chapter  1,  x = vec (Flm ) is the state vector. 

In a fluid model, the state vector might consist of three components of velocity, pressure and 
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temperature at each of millions of grid points, and it would be a function of time, x(w), as well.  

(One might want to regard the complete description, 
h iW 

{xbig} xE = x (1�w)W > x (2�w)W > ==>  x (W�w)W > (4.7) 

as the state vector, but by convention, it refers to the subvectors, x (w = q�w) > each of which is 

su!cient to compute any future one, given the boundary conditions.) 

Consider a partial di�erential equation, 

C Cs 
(u 2{61002} ks) +  � = 0  > (4.8)

Cw C� 

subject to boundary conditions. For the moment, w is a continuous variable. Suppose it is solved 

by an expansion, 
Q@2 X 

{61003} s(�> �> w) =  dm (w) cos(km · r) +  em (w) sin(km · r)= (4.9) 
m=1 £ ¤W

[km = (n�> n�), r = (�> �)], then a(w) =  d1(w) e1 (w) · · · dm (w)> em (w) > = = = The km are chosen to be 

periodic in the domian. The dl> el are a partial-discretization, reducing the time-dependence to 

of a finite set of coe!cients. Substitute into Eq. (4.8), 

Xn ³ ´ o 
� |km |

2 ḋm cos(km · r) +  ėm sin (km · r) + �n1m [�dm sin (km ·r) +  em cos (km ·r)] = 0= 

The dot indicates a time-derivative, and n1m is the � component of km= Multiply this last equation 

through first by cos(km · r) and then by  sin(km · r) and integrate over the domain: 

� |km |
2 ḋm + �n1m em = 0  

|km |
2 ėm + �n1m dm = 0  

6565 ;
AA?


<
AA@ 

AA>


or 
2997

997


dm 0 �n1m @ |km | dm::8
=

::8


g

gw
 AA=
 �n1m @ |km |

2 0�em em 

Each pair of dm > em satisfies a system of ordinary di�erential equations in time, and each can be 

further discretized so that, 
6565 ;

AA?


< 
AA@ 

AA>


2997

997


dm (q�w) 1 �w�n1m @ |km | dm ((q � 1) �w)::8
=

::8
=
AA=
 �w�n1m @ |km |

2 � 1em (q�w) em ((q � 1) �w) 

The state vector is then the collection, 

x (q�w) =  [d1 (q�w) > e1 (q�w) > d2 (q�w) > e2 (q�w) ====]
W > 
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at time w = q�w= Any adequate discretization can provide the state vector; it is not unique, and 

careful choice can greatly simplify calculations. 

In the most general terms, we can write any discrete model as a set of functional relations, 

L [x(0)> = = = >x(w� �w)> x(w)> x(w+�w)> = = =x(wi ) = = = >  B(w)q(w) >B(w)q(w+�w)> = = = > w] = 0  (4.10) {61004} 

where B(w)q(w) represents a general, canonical, form for boundary and initial conditions/-

sources/sinks. A time-dependent model is a set of rules for computing the state vector at 

time w = q�w> from knowledge of its values at time w� �w and the externally imposed forces and 

boundary conditions. We almost always choose the time units so that �w = 1, and  w becomes 

an integer (the context will normally make clear whether w is continuous or discrete). The static 

system equation, 

Ax = b> (4.11) {61005} 

is a special case. In practice, the collection of relationships (4.10) always can be rewritten as a 

time-stepping rule–for example, 

x(w) = L
¡
x(w� 1)> B(w� 1)q(w� 1)> w� 1 

¢ 
> �w = 1> (4.12) {61006} 

or, if the  model is linear,  

x(w) = A(w� 1)x(w� 1) +B(w� 1)q(w� 1) = (4.13) {61007} 

If the model is time invariant, A(w) =  A, and  B (w) =  B= It is generally true that any linear 

discretized model can be put into this canonical form, although it may take some work. By the 

same historical conventions described in Chapter 1, solution of systems like (4.12), subject to 

appropriate initial and boundary conditions, constitutes the forward, or direct, problem. 

H{dpsoh. 

The straight-line model, discussed in Chapter 1 satisfies the rule, 

g2� 
gw2 = 0 > (4.14) {61009} 

which can be discretized as 

�(w+�w)� 2�(w) + �(w� �w) = 0 > (4.15) {61010} 

Define 

{1(w) = �(w) > {2(w) = �(w� �w) > 



194CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION 

and w $ q�w= One has 

x(w) = Ax(w � �w)> 

where ;
AA?
 1�

< 
AA@ 

AA> 

2 
> (4.16)A = {sl1}AA=
1 0 


which is of the standard form (4.13), with  B = 0. Let  x (0) = [1> 0]W . Then Ax (0) = x (1) = 

[2> 1]W > x (2) = [3> 2]W and the slope and intercept are both 1. 

emassspring} H{dpsoh. 

The elementary mass-spring oscillator satisfies the di�erential equation 

g2�(w) g�(w) 
p + u 
gw2 gw 

+ n�(w) = t(w) 

where u is a damping constant. A one-sided time discretization produces 

p
¡
�(w +�w)� 2�(w) + �(w � �w) 

¢ 
+ u�w

¡
�(w)� �(w � �w) 

¢ 
+ n(�w)2 �(w) 

= t(w) (�w)2 

or 

�(w) =

µ
2� 
u�w 
p 
� 
n(�w)2 

p 

¶ 

�(w � �w) 

+

µ 
u�w 
p 
� 1

¶ 

�(w � 2�w) + (�w)2 t(w � �w) 
p 

> 

which is 
65<

AA@ 

;
AA?


6
5 

2 1n u�wu �w p (�w)
2�(w) �(w �w)997


997 
::8 

::8

p� � p � � 

= A
A AA> 

5 

= �(w �w) 1 0 �(w 2�w)� �
6
 (4.17) 

w �w)
(�w)2 t( �

p 
+ 
997


::8
> 

0 

and is the canonical form with A independent of time where, 

£ ¤ £ ¤W 
x(w) =  �(w) �(w � �w) > B(w)q(w) =  (�w)2 t(w)@p 0 W 

= 

H{dpsoh 

A di�erence equation important in time-series analysis104 is, 

{61018} �(w) + d1�(w � 1) + d2�(w � 2) + · · ·+ dQ �(w � Q ) = �(w) (4.18) 
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where �(w) is a zero-mean, white-noise process (Equation (4.18) is an example of an autoregres-

sive process (AR)). To put this into the canonical form, write105 , 

{1(w) =  �(w� Q)>


{2(w) =  �(w� Q + 1)>


. . . 

{Q (w) =  �(w� 1)> 

{Q (w+ 1)  =  �d1 {Q (w) � d2 {Q 31(w) · · ·  � dQ {1(w) +  �(w) = 

It follows that {1(w+ 1)  =  {2(w), etc.,  or  

65<
AAAAAAAAAA

;
AAAAAAAAAA

0 1 0 · · ·  0 0
 ::::::::::8 

99999999997 

0 

0 

1 

?
 @
A
AAAAAAAAA

0 0 1 · · ·  0 0 
x(w) =  x(w� 1) + �(w� 1) = (4.19) {61020}A
AAAAAAAAA

·  ·  · · · · · ·  · 

>= · · ·  d2 d1�dQ �dQ 31 �dQ 32 � �

A is known as a “companion” matrix. Equation (4.19) connects this Chapter with the field of 

time-series analysis. Here, B(w) = [0  0  · 1]W , q(w) =  �(w). 

Given that most time-dependent models can be written as in (4.12) or (4.13), the forward 

model solution involves marching forward from known initial conditions at w = 0, subject to 

specified boundary values. So, for example, the linear model (4.13), with given initial conditions 

x(0) = x0, involves the sequence, 

x(1) = A(0) x0 + B(0) q(0)> 

x(2) = A(1) x(1) + B(1) q(1)> 

= A(1) A(0) x0 + A(1) B(0) q(0) + B(1) q(1)> 

. . . 

x(wi ) =  A(wi � 1) x(wi � 1) + B(wi � 1) q(wi � 1) 

= A(wi � 1) A(wi � 2) = = =A(0) x0 + = = = =  

Most of the basic ideas can be understood in the notationally simplest case of time-independent 

A> B, and that is usually the situation we will address with little loss of generality, so that 

A (w) A (w� 1) = A2 , etc. Figure 4.1 p depicts the time history for the harmonic oscillator, 
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Figure 4.1: Time history of {1 (w) for the linear oscillator with �w = 1> n  = 0=1>p  = 1> u  = 0  

driven by a random sequence of zero mean and unit variance. Note buildup in 

amplitude from the accumulating uncorrelated forcing increments. {linoscts.eps} 

with the parameter choice �w = 1, n = 0=1, p = 1, u = 0, so that,  
6
5
;

AA? 

AA= 

1

<
AA@ 

AA>

> Bq(w) =  

9 1� 997 
1 

0 

::8

=

A = x(w)> 

1 0 

£ ¤
where hx(w)2i = 1. The initial conditions were x(0) = �(0) �(�1) W 

. 

It is important to recognize that this time-stepping procedure cannot be used if some of 

the elements of the initial conditions, x (0) > are replaced e.g., with elements of x (wi ) > or more 

generally with elements of  x (w) for arbitrary w= That is, the amount of information may be 

the same, and fully adequate, but not useful in straightforward time-stepping. Many of the 

algorithms developed here are directed at these less-conventional cases. 

A is necessarily square. It is also often true that A31 exists, and a generalized inverse can 

be used if necessary. If A31 can be computed, one can contemplate the possibility (important 

later) of running a model backward in time, for example as, 

x(w� 1) = A31 x(w)� A31B(w� 1)q(w� 1) = 

Such a computation may be inaccurate if carried on for long times, but the same may well be 

true of the forward model. 

Some attention must be paid to the structure of B(w)q(w). The partitioning into these 

elements is not unique and can be done to suit one’s convenience. The dimension of B is that of 
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Figure 4.2: (a) Forward run (solid line) of a forced mass-spring oscillator with u = 0> n  = 0=1 

with initial condition x (0) = [1> 0]W = Dotted line is a Kalman filter estimate, started 

with x̃ (0) = [10> 10] > P (0) = diag ([100> 100]) = “Observations” were provided of 

{1 (w) at every time step, but corrupted with white noise of variance U = 50= Shaded 

band is the one-standard deviation error bar for {̃1(w) computed from 
p
S11 (w) in 

the Kalman filter. Rapid convergence toward the true value occurs despite the high 

noise level. (b) Dotted line now shows {̃1(w> +) from the RTS smoothing algorithm. 

Solid line is again the “truth”. Although only the first 50 points are shown, the 

Kalman filter was run out to w = 300> where the smoother was started. Band is the 

one standard deviation of the smoothed estimate from 
p
S11 (w> +) and is smaller 

than 
p
S11 (w)= The smoothed estimate is closer to the true value almost everywhere. 

As with the filter, the smoothed estimate is consistent with the true values within 

two standard deviations. (c) Estimated x̃ (w) (dashed) and its standard error from 

the smoother. Solid line is the “true” value (which is itself white noise. That x̃ (w) 

lacks the detailed structure of the true x (w) is a consequence of the inability of the 

mass-spring oscillator to respond instantaneously to a white noise forcing. Rather 

it responds to an integrated value, smoothing out the underlying rapid variations. 

(d) Solid line is S11 (w) > dashed is S11 (w> +) > and dotted curve  is  30T (w> +) with the 

scale factor used to make it visible. (Squares of values shown as bands in the other 

panels.) Note the rapid tendency towards a steady-state. Values are largest at w = 0  

as data are only available in the future, not the past. T is multiplied by a large 

{kfrts1.eps} factor to make it visible. 
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Figure 4.3: (a) Simple numerical grid for use of discrete form of model; × denote boundary grid 

points, and o are interior ones. Numbering is sequential down the columns, as shown. 

(b) Tomographic integral is assumed given between l1> l2, and the model values at 

{ocip6_2.tif} the grid points would be used to calculate its predicted value. 

the size of the state vector by the dimension of q, which typically would reflect the number of 

independent degrees of freedom in the forcing/boundary conditions. (“Forcing” is hereafter used 

to include boundary conditions, sources and sinks, and anything normally prescribed externally 

to the model.) Consider the model grid points displayed in Figure 4=3a= Suppose that the 

boundary grid points are numbered 1—5, 6, 10, 46—50, and all others are interior. If there are no 

interior forces, and all boundary values have a time history t(w), then we could  take,  

{61022} B = [1 1 1  1 1 1  0 0 0 · · ·  1 1]W > (4.20) 

where the ones occur at the boundary points, and the zeros at the interior ones. 

Suppose, instead, that boundary grid point 2 has values t1(w), all other boundary conditions 

are zero, interior point 7 has a forcing history t2(w) and all others are unforced; then 

Bq(w) = 


;
AA? 

AA= 

0 1 0 0 0 0 0 · 

0 0 0 0 0 0 1 · 

0


0


< 
AA@ 

AA>


6
5
W 

997 
t1(

t2(w) 

w)
::8
{61023} = (4.21) 

A time-dependent B would correspond to time-evolving positions at which forces were 

prescribed–a somewhat unusual situation. It would be useful, for example, if one were driving a 
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fluid model with a heat flux or stress in the presence of a prescribed moving ice cover. One could 

also impose initial conditions using a time-dependent B(w), which would vanish after w = 0. 

As with steady models, we need to be careful about understanding the propagation of errors 

in time and space. If we have some knowledge of the initial oceanic state, x̃(0), and are doing 

an experiment at a later time w, the prior information–the estimated initial conditions–carries 

information in addition to what we are currently measuring. We seek to combine the two sets 

of information. How does information propagate forward in time? Formally, the rule (4.12) 

tells us exactly what to do. But because there are always errors in ˜(0), we need to  be carefulx

about assuming that a model computation of x̃(w) is useful. Depending upon the details of 

the model, one can qualitatively distinguish the behavior of the errors through time. (1) The 

model has decaying components. If the amplitudes of these components are partially erroneous, 

then for large enough w, these elements will have diminished, perhaps to the point where they 

are negligible. (2) The model has neutral components. At time w, the erroneous elements have 

amplitudes the same as they were at w = 0. (3) The model has unstable components; at time w 

any erroneous parts may have grown to swamp everything else computed by the model. 

Realistic models, particularly fluid ones, can contain all three types of behavior simultane-

ously. It thus becomes necessary to determine which of the elements of the forecast x̃(w) can 

be used to help estimate the system state by combination with new data, and which elements 

should be suppressed as partially or completely erroneous. Simply assuming all components are 

equally accurate can be a disastrous recipe. 

Before proceeding, we reiterate the point that time need not be accorded a privileged position. 

Form the inclusive state vector, xE defined in Eq. (4.7). Then models of the form (4.13) can be 

written in the “whole-domain” form, 

AE xE = dE 

65<
AAAAAA

;
AAAAAA

E =


9999997


(0)
A I 0  · ·  0 0� Bq
 ::::::8


>

(4.22) {big1}?
 @


A > d= (1)0 A I 0 · 0 0  BqE A
AAAAA
AAAAAA>


�
. .=
 · · · · · A I� .


plus initial conditions, which is no di�erent, except for its possibly enormous size, from that of a 

static system and can be handled by any of the methods of earlier chapters if the computational 

capacity is su!cient. If time-stepping is impossible because the initial condition is replaced by 

x (w0) > w 60 = 0> the whole-domain form may be very attractive. Note the block-banded nature of 

AE and the sparse nature of AE = 
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4.2.2 How to Find the Matrix A (w) 

Most modern large-scale time-evolving models, even if completely linear, are written in com-

puter code, typically in languages such as Fortran90 or C/C++. The state transition matrix 

is not normally explicitly constructed; instead,the individual elements of {l (w) are time-stepped 

to produce {l (w + 1), usually using various vectorizations. A (w) is often neither required nor 

constructed, as all one cares about is the result of its operation on x (w), as generated from the 

model code. If one requires an explicit A (w) but has only the forward code, several methods 

can be used. For simplicity let Bq(w) =  0 (the more general approach is obvious). 

(1) Solve Eq. (4.13) Q -times, starting at time w = 0, subject to x(l)(0) = column l of I– 

that is, the model is stepped forward for Q -di�erent initial conditions corresponding to the 

Q -di�erent problems of unit initial condition at a single grid or boundary point, with zero 

initial conditions everywhere else. Let each column of G(w> 0) correspond to the appropriate 

value of x(w)–that is,


G(0> 0) = I


G(1> 0) = A(0)G(0> 0)


G(2> 0) = A(1)G(1> 0) = A(1)A(0)


. . . 

G(w> 0) = A(w � 1)A(w � 2) · · ·A(0) = 

We refer to G(w> 0) as a unit solution; it is closely related to the Green function discussed in 

Chapter 2. The solution for arbitrary initial conditions is then, 

{62021b}	 x(w) =  G(w> 0)x(0) > (4.23) 

= 0  is straightforward. A (w) can be readily reconstructed from {pageunitsol}	 and the modification for Bq 6

G (w> 0) > most simply if A is time-independent and if one time-step is numerically accurate 

enough to represent G= Otherwise, multiple time steps can be used until a su!ciently large 

change in G is produced. 

Several other methods exist to obtain A from an existing computer model, but consider now 

only the case of a steady model, with no time-dependence in the governing matrices (A> B)= We 

continue to simplify by setting B = 0= 

(2) Define Q �independent initial condition vectors x(l)> 1 � l � Q> and form a matrix, 0 n o 
X0 = x0

(l) 
= 

Time-step the model once, equivalent to, 

X1 = AX0> 
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and invert X0: 

{A11} A = X1X
31 
0 = (4.24) 

The inverse will exist by the assumption of independence (spanning set) in the initial condition 

vectors. One must again run the model Q �times in this approach. A special, useful, case would 

be when x(l) r = �lm (unit perturbation initial conditions), in which case the solution X1 = G. 

Again, the changes from X0 to X1 may be too small for adequate numerical accuracy, and 

one might use multiple time-steps, computing, 

Xq = AqX0> 

which would determine Aq, and  A itself can be found by one of the matrix root algorithms.106 

(3) Suppose the statistics of the solutions are known, e.g., 
D E D E 

R (0) = x (w) x (w)W > R (1) = x (w + 1)  x (w)W > 

perhaps because the model has been run many times from di�erent initial conditions–making 

it possible to estimate these from stored output. Then noting, 
D E D E 
x (w + 1)  x (w)W = A x (w) x (w)W > 

or 

R (1) = AR (0) > 

and, 

A = R (1) R (0)31 = (4.25) {A22} 

That is to say, knowledge of these covariances is equivalent to knowledge of the model itself (and 

vice-versa).107 Multiple time steps can again be used if necessary to infer Aq = R (q) R (0)31 = D E 
By writing x (w + 1)  x (w)W = R (1) > etc. stationarity is implied. More generally, one may D E 
have x (w + 1)  x (w)W = R (w> 1) = 

Note that determination of B can be done analogously–using a spanning set of q(l) as initial 

conditions, setting x (0) = 0= 

(4) Automatic di�erentiation (AD) tools exist108 which can take computer code (e.g., For-

tran, C, Matlab R° ) for the forward model, and produce by analysis of the code, equivalent 

computer code (e.g., Fortran) for construction of A= Some codes preferentially produce AW , but 

transposition then can be employed. An example is provided in the Chapter Appendix. {pagead1} 

If the model is fully time-dependent, then A (w) has to be deduced at each time-step, as 

above. For some purposes, one might seek temporal averages, so defining an Ā as, 

Āq= A (0) A (1) ==A (q � 2) A (q � 1) = 
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Reintroduction of B is easily accomodated. Generalization of Eq. (4.25) leads to 

Āq= R (q)R (0)31 = (4.26) {A33} 

4.2.3 Observations and Data 

Here, observations are introduced into the modeling discussion so that they stand on an equal 

footing with the set of model equations (4.12) or (4.13). Observations will be represented as a 

set of linear simultaneous equations at time w = q�w, 

{61025} E(w)x(w) + n(w) = y(w) > (4.27) 

a straightforward generalization of the previous static systems where w did not appear explicitly; 

here, E is sometimes called the “design” or “observation” matrix. The notation used in Chapter 

2 to discuss recursive estimation was chosen deliberately to be the same as used here. 

The requirement that the observations be linear combinations of the state-vector elements 

can be relaxed if necessary, but most common observations are of that form. An obvious ex-

ception would be the situation in which the state vector included fluid velocity components, 

x(w)> y(w), but an instrument measuring speed, 
p
(x(w)2 + y(w)2), would produce a nonlinear 

relation between |l(w) and the state vector. Such systems are usually handled by some form of 

linearization.109 

To be specific, the noise n(w) is supposed to have zero mean and known second-moment 

matrix, 

{61026} hn(w)i = 0> hn(w)n(w)W i = R(w) = (4.28) 

But 
0 0{61027} hn(w)n(w )W i = 0> w 6= w = (4.29) 

That is, the observational noise should not be correlated from one measurement time to another; 

there is a considerable literature on how to proceed when this crucial assumption fails (called 

the “colored-noise” problem110). Unless specifically stated otherwise, we will assume that (4.29) 

is valid. 

The matrix E(w) can accommodate almost any form of linear measurement. If, at some 

time, there are no measurements, then E(w) vanishes, along with R(w). If a single element {l(w) 

is measured, then E(w) is a row vector that is zero everywhere except in column i, where it is 

1. It is particularly important to recognize that many measurements are weighted averages of 

the state-vector elements. Some measurements–for example, tomographic ones111 as described 

in Chapter 1–are explicitly spatial averages (integrals) obtained by measuring some property 
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along a ray  travelling  between  two points;  see Fig.  4.3b.  Any such data representing spatially  

filtered versions of the state vector can be written, 
X 

{61028} |(w) =  �m {m (w) = (4.30) 

where the �m are the averaging weights. 

Point observations often occur at positions not coincident with model grid positions (al-

though many models, e.g., spectral ones, do not use grids). Then (4.27) is an interpolation 

rule, possibly either very simple or conceivably a full-objective mapping calculation, of the value 

of the state vector at the measurement point. Often the number of model grid points vastly 

exceeds the number of the data grid points; thus, it is convenient that the formulation (4.27) 

demands interpolation from the dense model grid to the sparse data positions; see Fig. 4.3b. 

(In the unusual situation where the data density is greater than the model grid density, one 

can restructure the problem so the interpolation goes the other way.) More complex filtered 

measurements exist. In particular, one may have measurements of a state vector only in specific 

wavenumber bands; but such “band-passed” observations are automatically in the form (4.27). 

As with the model, Eq. (4.22), the observations of the combined state vector can be con-

catenated into a single observational set, 

EE xE + nE = yE > (4.31) {61030} 

where 6565<
AAAAAAAAAA

;
AAAAAAAAAA

> nE =


99999999997


n (0)


n(1)


.
.
.


::::::::::8


> yE =


99999999997


x̃ (0) 

y(1)


.
.
.


I
 0 0 · 0
 ::::::::::8 

?
AAAAAAAAAA

0 E(1) 0 · 0
 @
A
AAAAAAAAA

EE = = 

0 0 E(2) · · 

>= · · · 0 E(wi ) n(wi ) y(wi ) 

Here the initial conditions have been combined with the observations. EE is block-banded and 

often very sparse. If the size is no problem, the concatenated model and observations could be 

dealt with using any of the methods of Chapter 2. The rest of this chapter can be thought of 

as an attempt to produce from the model/data combination the same type of estimates as were 

found useful in Chapter 2, but exploiting the special structure of matrices AE and EE so as to 

avoid having to store them all at once in the computer. 

As one example of how the combined model and observation equations can be used together, 

consider the situation in which only the initial conditions x(0) are unknown. The unit solution 

formulation of P. 200 leads to a particularly simple reduced form. One has immediately, 

y(w) =  E(w)G(w> 0)x(0) + n(w) > 1 w (4.32) {green1}� � wi > 
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which are readily solved in whole-domain form for x (0) = If only a subset of the x(0) are thought 

to be nonzero, the columns of G need to be computed only for those elements.112 

4.3 Estimation 

4.3.1 Model and Data Consistency 

In many scientific fields, the central issue is to develop understanding from the combination 

of a skillful model with measurements. The model is intended to encompass all one’s theo-

retical knowledge about how the system behaves, and the data are the complete observational 

knowledge of the same system. Maxwell’s Equations are one example of a model appropriate 

to electromagnetic phenomena. If done properly, and in the absence of contradictions between 

theory and experiment, inferences from the model/data combination should be no worse, and 

may well be very much better, than those made from either alone. It is the latter possibility that 

motivates the development of state estimation procedures. “Best-estimates” made by combining 

models with observations are often used to forecast a system (e.g., to land an airplane), but this 

is by no means the major application. 

Such model/data problems are ones of statistical inference with a host of specific subtypes. 

Some powerful techniques are available, but like any powerful tools (a chain saw, for example), 

they can be dangerous to the user! In general, one is confronted one with a two-stage problem. 

Stage 1 involves developing a suitable model that is likely to be consistent with the data. “Con-

sistent” means that within the estimated data errors, the model is likely to be able to describe 

the features of interest. Obtaining the data errors is itself a serious modeling problem. Stage 2 

produces the actual estimate with its error estimates. 

One can go very badly wrong at stage 1, before any computation takes place. If elastic 

wave propagation is modelled using the equations of fluid dynamics, estimation methods will 

commonly produce some kind of “answer”, but one which would be nonsensical. Model failure 

can of course, be much more subtle, in which some omitted, supposed secondary element (e.g., a 

time-dependence), proves to be critical to a description of the data. Good technique alerts users 

to the presence of such failures, along with clues as to what should be changed in the model. 

But these issues do not however, apply only to the model. The assertion that a particular data 

set carries a signal of a particular kind, can prove to be false in a large number of ways. A 

temperature signal thought to represent the seasonal cycle might prove, on careful examination, 

to be dominated by higher or lower frequency structures, and thus its use with an excellent 

model of annual variation might prove disastrous. Whether this situation is to be regarded as a 

data or as a model issue is evidently somewhat arbitrary. 
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Thus stage 1 of any estimation problem has to involve understanding of whether the data 

and the model are physically and statistically consistent. If they are not, one should stop and 

reconsider. Often where they are believed to be generally consistent up to certain quantitative 

adjustments, one can combine the two stages. A model may have adjustable parameters (turbu-

lent mixing coe!cients; boundary condition errors; etc.) which could bring the model and the 

data into consistency, and then the estimation procedure becomes, in part, an attempt to find 

those parameters in addition to the state. Alternatively, the data error covariance, R (w), may  be  

regarded as incompletely known, and one might seek as part of the state estimation procedure 

to improve one’s estimate of it. (Problems like this one are taken up in the next Chapter under 

the subject of “adaptive filtering.”) 

Assuming for now that the model and data are likely to prove consistent, one can address 

what might be thought of as a form of interpolation: Given a set of observations in space 

and time as described by Equation (4.27), use the dynamics as described by the model (4.12) 

or (4.13) to estimate various state-vector elements at various times of interest. Yet another, less 

familiar, problem recognizes that some of the forcing terms B(w � 1)q(w � 1) are partially or 

wholly unknown (e.g., no one believes that the windstress boundary conditions over the ocean 

are perfectly known), and one might seek to estimate them from whatever ocean observations 

are available and from the known model dynamics. Many real problems contain both of these 

issues. 

The forcing terms–representing boundary conditions as well as interior sources/sinks and 

forces–almost always need to be divided into two elements: the known and the unknown parts. 

The latter will often be perturbations about the known values. Thus, rewrite (4.13) in the 

modified form 

x(w) =  A(w � 1) x(w � 1) + B(w � 1) q(w � 1) + �(w � 1) u(w � 1)> (4.33) {62001} 

where now B(w) q(w) represent the known forcing terms and �(w) u(w) the unknown ones, which 

we will generally refer to as the “controls,” or “control terms.” �(w) is known and plays the 

same role for u(w) as does B(w) for q(w). Usually  B(w)> �(w) will be treated as time independent, 

but this simplification is not necessary. Almost always, we can make some estimate of the size 

of the control terms, as for example, 

hu(w)i = 0> hu(w) u(w)W i = Q(w) = (4.34) {62002} 

The controls have a second, somewhat di�erent, role: They can also represent the model 

error. All models are inaccurate to a degree–approximations are always made to the equations 

describing any particular physical situation. One can expect that the person who constructed 
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the model has some idea of the size and structure of the physics or chemistry, or biology, ..., 

that have been omitted or distorted in the model construction. In this context, Q (w) represents 

the covariance of the model error, and the control terms represent the missing physics. The 

assumption hu(w)i = 0 must be critically examined in this case, and in the event of failure, 

some modification of the model must be made or the variance artificially modified to attempt to 

accommodate what is a model bias error. But the most serious problem is that models are rarely 

produced with any quantitative description of their accuracy beyond one or two examples of 

comparison with known solutions. One is left to determine Q(w) by guesswork. Getting beyond 

such guesses is again a problem of adaptive estimation. 

Collecting the standard equations of model and data: 

x (w)=  A (w� 1) x (w� 1) +Bq (w� 1) +�u (w� 1) > 1 � w � wi (4.35) 

E (w) x (w)+n (w)=  y (w) > 1 � w � wi > �w = 1  

n (w)=  0> 
D 
n (w) n (w)W 

E 
= R (w) > 

 
n (w) n 

¡
w 0 
¢® 
= 0> w 6= w 0 

hui = 0> hu (w) u (w)i = Q (w) 

(4.36) 

(4.37) 

(4.38) D E 
x̃ (0) = x0> (x̃ (0) �x (0)) (x̃ (0) �x (0))W = P (0) (4.39) 

where wi defines the endpoint of the interval of interest. The last equation, (4.39), treats the 

initial conditions of the model as a special case–the uncertain initialization problem, where 

x(0) is the true initial condition and x̃(0) = x0 is the value actually used but with uncertainty 

P(0). Alternatively, one could write, 

D E 
E(0)x (0) + n (0) = x0> E (0) = I> n (0) n (0)W = P (0) > (4.40) 

and include the initial conditions as a special case of the observations–recognizing explicitly 

that one often obtains initial conditions from observations. 

This general form permits one to grapple with reality. In the spirit of ordinary least squares 

and its intimate cousin, minimum-error variance estimation, consider the general problem of 
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finding state vectors and controls, u (w) > that minimize an objective function, 

M = [x(0) � x0]
W 
P(0)31 [x(0) � x0] 

wi X 
+ [E(w) x(w) � y(w)]W 

R(w)31 [E(w) x(w) � y(w)] 
{J1} (4.41)

w=1 

wi 31 X 
+ u(w)W Q(w)31 u(w) > 
w=0 

subject to the model, (4.35, 4.38, 4.39) As written here, this choice of an objective function 

is somewhat arbitrary but perhaps reasonable as the direct analogue to those used in Chapter 

2. It seeks a state vector x(w) > 0 w � wi , and a set of controls, u(w) > 0 w� � � wi � 1, 

that satisfy the model and that agree with the observations to an extent determined by the 

weight matrices R(w) and Q(w), respectively. From the previous discussions of least squares and 

minimum-error variance estimation, the minimum-square requirement Eq. (4.41) will produce 

a solution identical to that derived from minimum variance estimation by the specific choice of 

the weight matrices as the corresponding prior uncertainties, R(w), Q(w), P(0). In  a  Gaussian  

system, it also proves to be the maximum likelihood estimate. The introduction of the controls, 

u(w), into the objective function represents an acknowledgment that arbitrarily large controls 

(forces) would not usually be an acceptable solution; they should be consistent with Q (w) = 

Notation Note. As in Chapter 2, any values of x (w), u (w) minimizing M will be written x̃ (w), 

ũ (w) and these symbols could be substituted into Eq. (4.41) if that is regarded as clearer. 

Much of the rest of this chapter will be directed at solving the problem of finding the minimum 

of M subject to the solution satisfying the model. Notice that M involves the state vector, the 

controls, and the observations over the entire time period under consideration, 0 w� � wi . 

This type of objective function is the one usually of most interest to scientists attempting to 

understand their system–in which data are stored and employed over a finite time. In some 

other applications, most notably forecasting, and which is taken up immediately below, one has 

only the past measurements available; this situation proves to be a special case of the more 

general one. 

Although we will not keep repeating the warning each time an objective function such as Eq. 

(4.41) is encountered, the reader is reminded of a general message from Chapter 2: The as-

sumption that the model and observations are consistent and that the minimum of the objective 

function produces a meaningful and useful estimate must always be tested after the fact. That 

is, at the minimum of M , ˜ x(w) must produce residu-u(w) must prove consistent with Q(w), and  ̃

als consistent with R(w). Failure of these and other posterior tests should lead to rejection of 
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the model. As always, one can thus reject a model (which includes Q(w)> R(w)) on the basis 

of a failed consistency with observations. But a model is never “correct” or “valid”, merely 

“consistent.” (See Note 8, Chapter 1.) 

4.3.2 The Kalman Filter 

We begin with a special case. Suppose that by some means, at time w = 0> �w = 1> we have an 

unbiased estimate, x̃(0), of the state vector with uncertainty P(0). At  time  w = 1, observations  

from Eq. (4.36) are available. How would the information available best be used to estimate 

x(1)? 

The model permits a forecast of what x(1) should be, were x̃(0) known perfectly, 

{62009} x(1> �) =  A˜˜ x(0) + Bq(0)> (4.42) 

where the unknown control terms have been replaced by the best estimate we can make of 

them–their mean, which is zero, and A has been assumed to be time independent. A minus 

sign has been introduced into the argument of x̃(1> �) to show that no data at w = 1  have yet 

been used to make the estimate at w = 1, in a notation we will generally use. How good is this 

forecast? 

Suppose the erroneous components of x̃(0) are, 

{62010} �(0) = x̃(0) � x(0) > (4.43) 

then the erroneous components of the forecast are, 
¡ ¢ 

�(1) � x(1> x(1) = A˜˜ �) � x(0) + Bq(0) � Ax(0) + Bq(0) + �u(0) 
(4.44) 

= A�(0) � �u(0) > 

that is, composed of two distinct elements: the propagated erroneous portion of x̃(0)> and the 

unknown control term. Their second moments are ¡
h�(1) �(1)W i = h A�(0) � �u(0)

¢¡
A�(0) � �u(0) 

¢W 
i 

W = Ah�(0)P (0) �(0)W iAW + �hu(0) u(0)W i� 
{error1} (4.45)

W = AP (0) AW + �Q(0)� 

� P(1> �) 

by the definitions of P(0), Q(0) and the assumption that the unknown controls are not correlated 

with  the error in the  state estimate at  w = 0. We now have an estimate of x(1) with uncertainty 

P(1> �) and a set of observations, 

{62013} E(1) x(1) + n(1) = y(1) = (4.46) 
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To combine the two sets of information, we use the recursive least-squares solution Eqs. (2.432-

2.434). By assumption, the uncertainty in y(1) is uncorrelated with that in x̃(1> �). Making  

the appropriate substitutions into those equations, 

£ ¤
˜ x(1> �) +  K(1) y(1) � E(1) ̃x(1) = ˜ x(1> �) > 

(4.47) {average1} £ ¤
K(1) = P(1> �) E(1)W E(1) P(1> �) E(1)W + R(1) 31 

with new uncertainty, 

P(1) = P(1> �) � K(1) E(1) P(1> = (4.48) {62015} �) 

(Compare to the discussion on P. 143.) Eq. (4.47) is best interpreted as being the average of the 

model estimate with that obtained from the data alone, slightly disguised by rearrangement. 

Thus there are four steps: 

1. Make a forecast using the model (4.35) with the unknown control terms �u set to zero. 

2. Calculate the uncertainty of this forecast, Eq. (6.39), which is made up of two separate


terms.


3. Do a weighted average (4.47) of the forecast with the observations, the weighting being


chosen to reflect the relative uncertainties.


4. Compute the uncertainty of the final weighted average, Eq. (4.48). 

Such a computation is called a “Kalman filter.”113 , and it is conventionally given a more 

formal derivation. K is called the “Kalman gain.” At the stage where the forecast (4.42) has 

already been made, the problem was reduced to finding the minimum of the objective function, 

£ ¤ £ ¤W
M = x(1> �) � x(1) P(1> �)31 x(1> x(1)˜ ˜ ˜ �) � ˜

(4.49) {J3} £ ¤ £ ¤W 
x(1) R(1)31 y(1) � E(1) ̃+ y(1) � E(1) ̃ x(1) > 

which is a variation of the objective function used to define the recursive least-squares algorithm 

(Eq. 2.423). In this final stage, the explicit model has disappeared, being present only implicitly 

through the uncertainty P(1> �). After the averaging step, all of the information about the 

observations has been used too, and is included in x̃ (w) > P (w) and the data can be discarded. 

For clarity, tildes have been placed over all appearances of x (w) = 

A complete recursion can now be defined through the Equations (4.42)—(4.48), replacing all 

the w = 0  variables with w = 1  variables, the w = 1  variables becoming w = 2  variables, etc. In 

terms of arbitrary w, the  recursion is,  

, 
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x (w> �)=  A (w � 1) ̃˜ x (w � 1) +B (w � 1) q (w � 1) > (4.50) 

WP (w> �)=  A (w � 1) P (w � 1) A (w � 1)W +�Q (w � 1) � > (4.51) 

˜ x (w> �)+K (w) [y (w) � E (w) ̃x (w)=  ̃ x (w> �)] > (4.52) h i
K (w)=  P (w> �) E (w)W 

E (w) P (w> �) E (w)W +R (w) 
31 
> (4.53) 

P (w)=  P (w> �) �K (w) E (w) P (w> �) > 1 w (4.54)� � wi = 

These equations are those for the complete Kalman filter. Note that some authors prefer 

x (w + 1> �) in terms of ˜to write equations for ˜ x (w) > etc. Eq. (2.37) permits one to rewrite Eq. 

(4.54) as, h i 
{kalman6} P (w)31 = P (w> �)31 +E (w)W 

R (w)31 
E (w) > (4.55) 

and an alternate form for the gain is114 

K (w) =  P (w) E (w)W 
R (w)31 > (4.56) 

Other rearrangements are possible too. These re-written forms are often important for com-

putational e!ciency and accuracy. Note that in the special case where the observations are 

employed one-at-a-time, E (w) is a simple row vector, E (w) P (w> �) E (w)W +R (w) is a scalar, and 

no matrix inversion is required in Eqs. (4.50-4.54). The computation would then be dominated 

by matrix multiplications. Such a strategy demands that the noise be uncorrelated from one 

observation to another, or removed by “pre-whitening” which, however, itself often involves a 

matrix inversion. Various re-arrangements are worth examining in large problems.115 

Notice that the model is being satisfied exactly; in the terminology introduced in Chapter 2, 

it is a hard constraint. But again, as was true with the static models, the hard constraint 

description is somewhat misleading, as the presence of the terms in u (w) means that model 

errors are permitted. Notice too, that u (0) has not been estimated. 

H{dpsoh 

Consider again the mass-spring oscillator described earlier, with time history in Figure 4.2. 

It was supposed that the initial conditions were erroneously provided as x̃ (0) = [10> 10]W > P (0) = 

diag ([100> 100]), but that the forcing was completely unknown. Observations of {1(w) were pro-

vided at every time step with a noise variance U = 50. The Kalman filter was computed by (4.50-

4.54) and used to estimate the position at each time step. The result for part of the time history 

is in Figure 4.2a, showing the true value and the estimated value of component {1 (w). The  time  

history of the uncertainty of {1(w)> 
p
S11 (w)> is also depicted and rapidly reaches an symptote. 
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Overall, the filter manages to track the position of the oscillator everywhere within two standard 

deviations. 

If observations are not available at some time step, w> the best estimate reduces to that from 

the model forecast alone, K (w) =  0> P (w) =  P (w> �) and one simply proceeds. Typically in such 

situations, the error variances will grow from the accumulation of the unknown u (w), at  least,  

until such times as an observation does become available. If u (w) is purely random, the system 

will undergo a form of random walk 116 

H{dpsoh. 

Consider again the problem of fitting a straight line to data, as discussed in Chapter 2, but 

now in the context of a Kalman filter, using the canonical form derived from (4.50-4.54). “Data” 

were generated from the state transition matrix of Eq. (4.16) and an unforced model, as depicted 

in Figure 4.4. The observation equation is 

|(w) =  {1(w) +  q(w) > 

that is, E(w) =  {1 0}, U(w) = 50, but observations were available only every 25th time step. 

There were no unknown control disturbances–that is T(w) = 0, but the initial state estimate 

˜was set erroneously as x(0) = [30> 10]W fs with an uncertainty P(0) = diag([900> 900)] =The 

result of the computation for the fit is shown in Figure 4.4 for 100 time steps. Note that in the 

Kalman filter estimate, the estimate diverges rapidly from the true value (although well within the 

estimated error) and is brought discontinuously toward the true value when the first observations 

become available. 

If the state vector is redefined to consist of the two model parameters d, e, then  x = [d e]W 

and A = I. Now the observation matrix is E = [1  w]—that is, time-dependent. The state 

vector has changed from a time-varying one to a constant. The same grossly incorrect estimates 

x̃(0) = [10 10]W were used, with the same P(0) (the correct values are d = 1, e = 2) and  with  

the time histories of the estimates depicted in Figure 4.2. At the end of 100 time steps, we have 

d̃ = 1=85 ± 2=0, ẽ = 2=0 ± 0=03, both of which are consistent with the correct values. For reasons 

the reader might wish to think about, the uncertainty of the intercept is much greater than for 

the slope. 

H{dpsoh 

For the mass spring oscillator in Fig. 4.2, it was supposed that the same noisy observations 

were available, but only at every 25th time step. In general, the presence of the model error, 

or control uncertainty, accumulates over the 25 time steps as the model is run forward without 

observations. The expected error of such a system is shown for 150 time steps in Figure 4.6e. 

Notice (1) the growing envelope as uncertainty accumulates faster than the observations can 
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Figure 4.4: A straight line computed from the statespace model with A from Eq. (4.16) with no 

forcing. (a) Solid line shows the true values. Noisy observations were provided every 

25th point, and the initial condition was set erroneously to x̃ (0) = [30> 10]W with 

P (0) = diag([900> 900])= The estimation error grows rapidly away from the incorrect 

initial conditions until the first observations are obtained. Estimate is shown as the 

dashed line. (b) Result of applying the RTS smoother to the data and model in (a). 

Gray band is the one standard deviation error bar. {kfrts3.eps} 

Figure 4.5: (a) {1 (w) (solid) and ˜ d from the straight-line model and the Kalman filter {1 (w) =  ̃

estimate when the state vector was defined to be the intercept and slope, and E (w) =  

[1> w]= (b) Smoothed estimate, {̃1 (w> +) > and its uncertainty corresponding to (a). {kfrts4.eps} 
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reduce it; (2) the periodic nature of the error within the growing envelope; and (3) that the 

envelope appears to be asymptoting to a fixed upper bound for large w. The true and estimated 

time histories for a portion of the time history are shown in Figure 4.6d. As expected, with fewer 

available observations, , the misfit of the estimated and true values is larger than with data at 

every time step. At every 25th point, the error norm drops as observations become available, but 

with the estimated value of {1 (w) undergoing a jump when the observation is available. 

If the observation is that of the velocity {1(w) � {2(w) =  �(w) � �(w� 1), then  H = {1 � 1}. A  

portion of the time history of the Kalman filtered estimate with a velocity observation available 

only at every 25th point may be seen in Figure 4.7. Velocity observations are evidently useful 

for estimating position, owing to the connection between velocity and position provided by the 

model and is a simple example of how observations of almost anything can be used to improve a 

state estimate. 

A number of more general reformulations of the equations into algebraically equivalent forms 

are particularly important. In one form, one works not with the covariances, P(w>�)> = = = >  but 
with their inverses, the so-called information matrices, P(w>�)31, etc. (See Eq. (4.55).) This 
“information filter” form may be more e!cient if, for example, the information matrices are 

banded and sparse while the covariance matrices are not. Or, if the initial conditions are 

infinitely uncertain, P (0)31 can be set to the zero matrix. In another formulation, one uses 

the square roots (Cholesky decomposition) of the covariance matrices rather than the matrices 

themselves. This “square root filter” can be of great importance, as there is a tendency for the 

computation of the updated values of P in Eq. (4.54) to become nonpositive-definite owing to 

round-o� errors, and the square root formulation guarantees a positive definite result. 117 

The Kalman filter does not produce the minimum of the objective function Eq. (4.41) 

because the data from times later than w are not being used to make estimates of the earlier 

values of the state vector or of u(w). At each step, the Kalman filter is instead minimizing an 

objective function of the form Eq. (4.49). To obtain the needed minimum, we have to consider 

what is called the “smoothing problem,” to which we will turn in a moment. Note too, that the 

time history of x (w) does not satisfy a known equation at the time observations are introduced. 

When no observation is available, the time evolution obeys the known model equation with zero 

control term; the averaging step of the filter, however, leads to a change between w and w 1� 

that compensates for the accumulated error. The evolution equation is no longer satisfied in 

this interval. 

The Kalman filter is, nonetheless, extremely important in practice for many problems. In 

particular, if one must literally make a forecast (e.g., such filters are used to help land airplanes 
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Figure 4.6: For the same model as in Fig. 4.2, except that noisy observations were available only 

every 25th point (U = 50)= (a) Shows the correct trajectory of {1(w) for 100 time 

steps, the dotted line shows the filter estimate and the shaded band is the standard 

error of the estimate. (b) Displays the correct value of {1(w) compared (dotted) to the 

RTS smoother value with its standard error. (c) Is the estimated control (dotted) 

with its standard error, and the true value applied to mass spring oscillator. (d) 

Shows the behavior of S11 (w) for the Kalman filter with very large values (oscillating 

with twice the frequency of the oscillator) and which become markedly reduced as 

soon as the first observations become available at the 25th point. {kfrts2.eps} 
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Figure 4.7: (a) {1 (w) and Kalman filter estimate (dotted) when the noisy observations (U = 50) 

are of the velocity (E = [1> �1]) every 25th point for the mass-spring oscillator. (b) 

RTS smoother estimate (dotted) and its uncertainty corresponding to (a). (c) shows 

the estimated control (dotted) and the correct value (solid). As seen previously, 

the high frequency variability in x (w) is not detected by the moving mass, but only 

an integrated version. (d) S11 (w) corresponding to the standard error in (a), and 

S11(w> +) corresponding to that in (b). {kfrts5.eps} 
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or, in a primitive way, to forecast the weather), then the future data are simply unavailable, and 

the state estimate made at time w, using data up to and including time w, is the best one can 

do.118 

For estimation, the Kalman filter is only a first step–owing to its failure to use data from 

the formal future. It also raises questions about computational feasibility. As with all recursive 

estimators, the uncertainties P(w> � )> P(w) must  be  available so as to form the  weighted  averages.  

If the state vector contains Q elements, then the model, (4.50), requires multiplying an Q -

dimensional vector by an Q × Q matrix at each time step. The covariance update (4.51) 

requires updating each of Q columns of P(w) in the same way, and then doing it again (i.e., in ¡ ¢W
practice, one forms A(w)P (w), transposes  it,  and  forms  A (w) A(w)P (w) , equivalent to running 

the model 2Q times at each time step). In many applications, particularly in geophysical fluids, 

this covariance update step dominates the calculation, renders it impractical, and leads to some 

of the approximate methods taken up presently. 

The Kalman filter was derived heuristically as a simple generalization of the ideas used 

in Chapter 2. Unsurprisingly, the static inverse results are readily recovered from the filter 

in various limits. As one example, consider the nearly noise-free case in which both process 

and observation noise are very small, i.e. kQk> kRk $ 0. Then  if  P(w> � ) is nearly diagonal, 

P(w> � ) � � 2I, and  ¡ ¢31 
EEW >K(w) �$ EW 

assuming existence of the inverse and, 

x(w) � A˜˜ x(w � 1) + Bq(w � 1) £ ¤
+ EW (EEW )31{y(w) � E Ax̃(w � 1) + Bq(w � 1) } 

{limit1} (4.57) 
= EW (EEW )31 y(w) h i ¡ ¢
+ I EW EEW 31 

E [A˜� x(w � 1) + Bq(w � 1)] = 

¡ ¢
EW EEW 31 

y(w) is just the expression in Eq. (2.96) for the direct estimate of x(w) from a set of 

underdetermined full-rank, noise-free observations. It is the static estimate we would use at time ¡ ¢
w if no dynamics were available. The columns of I EW EEW 31 

E are the nullspace of E (recall � 

the definition of H in Eq. (2.98)) and (4.57) thus employs only those elements of the forecast 

lying in the nullspace of the observations–a sensible result given that the observations here 

produce perfect estimates of components of x(w + 1)  in the range of E. Thus, in this particular 

limit, the Kalman filter computes from the noise-free observations those elements of x(w+1)  that 

it can, and for those which cannot it cannot, it forecasts them from the dynamics. The reader 

ought to examine other limiting cases—retaining process and/or observational noise—including 

the behavior of the error covariance propagation. 
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H{dpsoh. 

It is interesting to apply some of these expressions to the simple problem of finding the mean 

of a set of observations, considered before on P. 137. The model is of an unchanging scalar 

mean, 

{(w) =  {(w � 1) 

observed in the presence of noise, 

|(w) =  {(w) +  q(w) 

where hq(w)2i = U, so  H = 1, D = 1> T  = 0. In contrast to the situation on P. 137, the 

machinery we have developed here requires that the noise be uncorrelated: hq(w)q(w0)i = 0, 

w 6= w0, although as already mentioned, methods exist to overcome this restriction. Suppose that 

the initial estimate of the mean is 0–that is, {̃(0) = 0, with  uncertainty  S (0). Eq. (4.51) is 

S (w> �) =  S (w � 1), and the Kalman filter uncertainty, in the form (4.55), is 

1 1 1 
S (w) S (w � 1) U 

= + > 

a di�erence equation, with known initial condition, whose solution by inspection is, 

1 w 1 
= + = 

S (w) U S (0) 

H = 1> 
;
?S 

< 
@ 

(4.52) with and successively stepping forward produces,119 

(0) 

Using 

w
U X 

{̃(w) =  |(m) > (4.58) {P1} >
U + wS (0)
=
 U 
m=1 

whose limit as w $4  is 
w X1 

˜ |(m) >{(w) �$ 
w 
m=1 

the simple average, with uncertainty S (w) $ 0, as  w $4. If there is no useful estimate available 

of S (0) > rewrite Eq. (4=58) as,

;
?


<
@ 

>


w
U 1 X 

{̃(w) =  |(m) > (4.59)
U@S (0) + w =
U 

m=1 

and take the agnostic limit, 1@S (0) $ 0> or 
;
?


<
@ 

>


w
1 X 

{̃(w) =  |(m) > (4.60)=
w 
m=1 

which is wholly conventional. (Compare these results to those on P. 138. The problem and result 

here are necessarily identical to that on P. 137, except that now we explicitly identified { (w) as 

a statevector rather than as a constant. Kalman filters with static models are just recursive 

least-squares solutions.) 
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4.3.3 The Smoothing Problem 

The Kalman filter permits one to make an optimal forecast from a linear model, subject to the 

accuracy of the various assumptions being made. Between observation times, the state estimate 

evolves smoothly according to the model dynamics. But when observations become available, 

the averaging can draw the combined state estimate abruptly towards the observations, and in 

the interval between the last unobserved state and the new one, model evolution is not followed. 

To obtain a state trajectory that is both consistent with model evolution and the data at all 

times, we need to eliminate the state estimate jumps at the observation times, and solve the 

problem as originally stated. Minimization of M in Eq. (4.41) subject to the model is still the 

goal. Begin the discussion by again considering a one-step process120 . Consider the problem Eqs. 

(4.35-4.39), but where there are only two times involved, w = 0> 1. There is an initial estimate 

x(0)> ˜˜ u(0) � 0 with uncertainties P(0)> Q(0) for the initial state and control vectors respectively, 

a set of measurements at time-step 1, and the model. The objective function is, 

M = [˜ ˜ x(0> +) � x(0)]x(0> +) � x(0)]W 
P(0)31 [˜ ˜


{J4} + [˜ ˜ u(0> +) � u(0)] (4.61)
u(0> +) � u(0)]W 
Q(0)31 [˜ ˜

x(1)]W 
R(1)31 [y(1) � E(1) ̃+ [y(1) � E(1) ̃ x(1)] > 

subject to the model, 

˜ x(0> +) + B(0)q(0) + �˜{62028} x(1) = A(0) ̃ u(0> +) > (4.62) 

with the weight matrices again chosen as the inverses of the prior covariances. A minimizing 

solution to this objective function would produce a new estimate of x(0), denoted x̃(0> +), with  

error covariance P(0> +); the  + denotes use of future observations, y(1), in the estimate. On the 

other hand, we would still denote the estimate at w = 1  as x̃(1), coinciding with the Kalman filter 

estimate, because only data prior to and at the same time would have been used. The estimate 

˜ u(0)> ˜x(1) must be given by Eq. (4.47), but it remains to improve ˜ x(0), while simultaneously 

eliminating the problem of the estimated statevector jump at the filter averaging (observation) 

time. 

The basic issue can be understood by observing that the initial estimates ˜ x(0) lead u(0) = 0> ˜

to a model forecast that disagrees with the final best estimate ˜ u(0)> or ˜x(1). If  either  of  ̃ x(0) 

were known perfectly, the forecast discrepancy could be ascribed to the other one, permitting 

ready computation of the new required value. In practice, both are somewhat uncertain, and 

the modification must be partitioned between them; one would not be surprised to find that the 

partitioning proves to be proportional to their initial uncertainties. 
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To find the stationary point (we will not trouble to prove it a minimum rather than a 

maximum), set the di�erential of M with respect to ˜ x(1), ˜x(0> +), ˜ u(0> +) to zero, 

gM £ ¤
= g˜ ˜ ˜x(0> +)W P(0)31 x(0> +) � x(0)

2 £ ¤
+ g˜ ˜ ˜u(0> +)W Q(0)31 u(0> +) � u(0) (4.63) 

£ ¤
x(1)W E(1)W R(1)31 y(1) � E(1)˜� g˜ x(1) = 0  = 

The coe!cients of the di�erentials cannot be set to zero separately because they are connected 

via the model, Eq. (4.62), which provides a relationship 

g˜ x(0> +) + �(0) g˜x(1) = A(0) g˜ u(0> +)= (4.64) {62030} 

Eliminating gx̃(1), 

gM 
x(0> +)W {P(0)31 [˜ ˜= g˜ x(0> +) � x(0)]

2 

A(0)W E(1)W R(1)31 [y(1) � E(1)˜� x(1)]} 
(4.65) 

u(0> +)W {Q(0)31 [˜ ˜+ g˜ u(0> +) � u(0)] 

+ � W (0)E(1)W R(1)31 [y(1) � E(1)x̃(1)]} = 

gM vanishes, producing a stationary value of M> only if the coe!cients of g˜ u(0> +)x(0> +)> g˜

separately vanish yielding, 

˜ x(0) + P(0)A(0)W E(1)W R(1)31 [y(1) � E(1)˜x(0> +) = ˜ x(1)] > (4.66) {62032} 

˜ u(0) + Q(0)�(0)W E(1)W R(1)31 [y(1) � E(1)˜u(0> +) = ˜ x(1)] > (4.67) {62033} 

and 

x(1) = ˜˜ x(1> �) 
(4.68) {kalman7} £ ¤

+ P(1> �)E(1)W E(1)P(1> �)E(1)W + R(1) 31 
[y(1) � E(1)x̃(1> �)] > 

using the previous definitions of x̃(1> �), P(1> �)= As anticipated, Eq. (4.68) is recognizable as 
the Kalman filter estimate. At this point we are essentially done: An estimate has been produced 

not only of x(1), but an improvement has been made in the prior estimate of x(0) using the 

future measurements, and we have estimated the control term. Notice the corrections to ũ(0), 

x̃(0) are proportional to Q(0)> P(0), respectively, as anticipated. We still need to examine the 

uncertainties of these latter quantities. 

First rewrite the estimates (4.66)—(4.67) as 

˜ ˜ x(1) � x(1> �)] > L(1) = P(0)A(0)W P(1> �)31> (4.69)x(0> +) = x(0) + L(1) [˜ ˜

˜ ˜ ˜ ˜u(0> +) = u(0) + M(1) [x(1) � x(1> �)] > M(1) = Q(0)�(0)W P(1> �)31> 
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which can be done by extended, but uninteresting, algebraic manipulation. The importance of 

these latter two expressions is that both ˜ u(0> +)are expressed in terms of their prior x(0> +)> ˜

estimates in a weighted average with the di�erence between the prediction of the state at w = 

x(1> �) and what was actually estimated there following the data use, ˜1> ˜ x(1). (But the data 

do not appear explicitly in (4.69).) It is also possible to show that, 

P(0> +) = P(0) + L(1) [P(1) � P(1> �)] L(1)W > 
{kalman7b} (4.70) 

Q(0> +) = Q(0) + M(1) [P(1) � P(1> �)] M(1)W = 

Based upon this one-step derivation, a complete recursion for any time interval can be 

inferred. Suppose the Kalman filter has been run all the way to a terminal time, wi . The  result  

x(wi ) and its variance P(wi ). With no future data available, ˜is ˜ x(wi ) cannot be further improved. 

At time wi �1, we  have  an  estimate  ̃x(wi �1) with uncertainty P(wi �1), which could be improved 

by knowledge of the future observations at wi . But this situation is precisely the one addressed 

by the objective function Eq. (4.61) with w = 1  $ wi , and  w = 0  $ wi � 1. Now having improved 

the estimate at wi � 1 and calling it x̃(wi � 1> +) with uncertainty P(wi � 1> +), this new estimate 

is used to improve the prior estimate x̃(wi � 2), and we step all the way back to w = 0. The  

complete recursion is, 

£ ¤
˜ x(w) +  L(w + 1)  x(w + 1> +) � x(w + 1> >x(w> +) = ˜ ˜ ˜ �)

(4.71) 
L(w + 1)  =  P(w)A(w)W P(w + 1> �)31 

£ ¤
˜ u(w) +  M(w + 1)  x(w + 1> +) � x(w + 1> >u(w> +) = ˜ ˜ ˜ �)

(4.72) 
M(w + 1)  =  Q(w)�(w)W P(w + 1> �)31 > £ ¤

P(w> +)= P(w)+L(w+1) P(w+1> +)�P(w+1> �) L(w+1)W > (4.73) £ ¤
Q(w> +)= Q(w)+M(w+1) P(w+1> +)�P(w+1> �) M(w+1)W > (4.74) 

˜ ˜with x(wi > +) � x(wi )> P(wi > +) � P(wi ) = 

This recipe, which uses the Kalman filter on a first forward sweep to the end of the available 

data, and which then successively improves the prior estimates by sweeping backwards, is called 

the “RTS algorithm” or smoother.121 The particular form has the advantage that the data are 
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not involved in the backward sweep, because all of the available information has been used in 

the filter calculation. It does have the potential disadvantage of requiring the storage at each 

time step of P(w). (P(w> � ) is readily recomputed, without y (w) > from (4.51) and need not be 

stored.) By direct analogy with the one-step objective function, the recursion (4.71)—(4.74) is 

seen to be the solution to the minimization of the objective function (4.61) subject to the model. 

Most important, assuming consistency of all assumptions, the resulting state vector trajectory 

x̃ (w> +) now satisfies the model and no longer displays the jump discontinuities at observation 

times of the Kalman filter estimate. 

As with the Kalman filter, it is possible to examine limiting cases of the RTS smoother. For 

example, suppose again that Q vanishes, and A31 exists. Then, 

L(w + 1)  �$ P(w)AW ¡AP(w)AW ¢31 
= A31> (4.75) {62041} 

and Equation (4.71) becomes 

x̃(w> +) �$ A31 £ x̃(w + 1> +) � Bq(w)
¤ 
> (4.76) {62042} 

a sensible backward estimate obtained by simply solving, 

x̃(w + 1)  =  Ax̃(w) +  Bq(w)> (4.77) {62043} 

for x̃(w). Other limits are also illuminating but are left to the reader. 

H{dpsoh. 

The smoother result for the straight-line model (4.15) is shown in Figures 4.4, 4.5 for both 

forms of state vector. The time-evolving estimate is now a nearly perfect straight line, whose 

uncertainty has a terminal value equal to that for the Kalman filter estimate, as it must, and 

reaches a minimum near the middle of the estimation period, before growing again toward w = 0, 

where the initial uncertainty was very large. In the case where the state vector consisted of the 

constant intercept and slope of the line, both smoothed estimates are seen, in contrast to the 

filter estimate, to conform very well to the known true behavior. It should be apparent that the 

best-fitting, straight-line solution of Chapter 2 is also the solution to the smoothing problem, but 

with the data and model handled all at once, a whole-domain method, rather than sequentially. 

Figures 4.2, 4.6, 4.7 shows the state estimate for the mass-spring oscillator made from a 

smoothing computation run backward from w = 300, and its variance. On average, the smoothed 

estimate is closer to the correct value than is the filtered estimate, as expected. The standard 

error is also smaller for the smoothed estimate. The figures display the variance, T11(w> +), 

of the estimate one can make of the scalar control variable x(w). x̃ (w) does not show the high 

frequency variability present in practice, because the mass-spring oscillator integrates the one 
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Figure 4.8: Tracer box model where Mlm represent fluxes between boxes and are chosen to be 

mass conserving. Boxes with shaded corners are boundary boxes with externally 

prescribed concentrations. Numbers in upper right corner are used to identify the 

{ocip_6a.tif} boxes. Stippled boxes are unconnected and completely passive here. 

time-step variability in such a way that only an integrated value a�ects the state vector. But the 

estimated value nonetheless always within two standard errors of the correct value. 

H{dpsoh. 

Consider a problem stimulated by the need to extract information from transient tracers, F, 

in a fluid, which are assumed to satisfy an equation„ 

CF 
{62044} + v · uF � �u 2F = ��F + t(r> w)> (4.78)

Cw 

where t represents sources/sinks and � is a decay rate if the tracer is radioactive. To have a 

simple model that will capture the structure of this problem, the fluid is divided into a set of 

boxes as depicted in Figure 4.8. The flow field, as depicted there, is represented by exchanges 

between boxes given by the Mlm � 0. That is, the Mlm are a simplified representation of the 

e�ects of advection and mixing on a dye F= (A relationship can be obtained between such simple 

parameterizations and more formal and elaborate finite-di�erence schemes. Here, it will only be 

remarked that Mlm are chosen to be mass conserving so that the sum over all Mlm entering and 
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Figure 4.9: Time histories of the forward computation in which boundary concentrations shown 

were prescribed, and values computed from the forward model for boxes 6,7,10,11. 

ocip6_6b.tif} These represent the “truth”. 

leaving a box vanishes.) The discrete analogue of (4.78) is taken to be, 

Fl(w + 1) = Fl(w)� ��wFl(w) 

�w X �w X (4.79) � 
Y

Fl(w)Mlm + Fm (w)Mml
Y 

mMQ (l) mMQ (l) 

where the notation m 5 Q (l) denotes an index sum over the neighboring boxes to box l, Y is a 

volume for the boxes, and �w is the time step. This model can easily be put into the canonical 

form, 

x(w) = Ax(w � 1) +Bq(w � 1) + �u(w � 1) > Q = 0 > (4.80) {62046} 

with the state vector being the vector of box concentrations Fl(w), Fl(w � 1). 

A forward computation was run with initial concentrations everywhere of 0, using  the  bound-

ary conditions depicted in Figure 4.9, resulting in interior box values as shown. Based upon 

these correct values, noisy “observations” of the interior boxes only were constructed at times 

w = 5> 9> 12. 

An initial estimate of tracer concentrations at w = 0  was taken (correctly) to be zero, but 

this estimate was given a large variance (diagonal P(0) with large norm). The boundary box 

concentrations were set erroneously to F = 2  for all w and held at that value. A Kalman 

filter computation was run as shown in Figure 4.10. Initially, the interior box concentration 

estimates rise erroneously (owing to the dye leaking in from the high nonzero concentrations in 

the boundary boxes). At w = 5, the first set of observations becomes available, and the combined 
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Figure 4.10: The left two panels show the correct values for boundary boxes (upper panel) and 

interior ones (lower panel). The right panels show the results of the Kalman filter for 

boundary (upper panel) and interior boxes (lower panel) when noisy observations 

were provided at w = 5> 9> 12= At the observation times, estimates are pulled abruptly 

toward the observations. By the time the last observations are used, estimated and 

correct values are quite close. Although not displayed here, there is an uncertainty 

ocip6_6c.tif} estimate at all times. 
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Figure 4.11: Smoothed estimates of boundary (upper panel) and interior (lower panel) values of 

tracers. The unphysical negative values for small w are indistinguishable from zero 

ocip6_6d.tif} within the error estimates. 
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estimate is driven much closer to the true values. By the time the last set of observations is 

used, the estimated and correct concentrations are quite close, although the time history of the 

interior is somewhat in error. The RTS algorithm was then applied to generate the smoothed 

histories shown in Figure 4.11 and to estimate the boundary concentrations (the controls). As 

expected, the smoothed estimates are closer to the true time history than are the filtered ones 

(the uncertainty estimates are not shown, but the results are consistent with the “truth” within 

statistical expectation). Unless further information is provided, no other estimation procedure 

could do better, given that the model is the correct one. 

Other versions of smoother algorithms exist. Consider one other approach. Suppose the 

Kalman filter has been run forward to some time wf, producing an estimate x̃(wf) with uncertainty 

P(wf). Now suppose, perhaps on the basis of some further observations, that at a later time 

wi > an independent estimate x̃(wi ) has been made, with uncertainty P(wi ). The independence is 

crucial–we suppose this latter estimate is made without using any observations at time wf or 

earlier so that any errors in ˜ x(wi ) are uncorrelated. x(wf) and ˜


Let us run the model backward in time from wi to wi � 1:


{62047} xe(wi � 1) = A31˜˜ x(wi ) � A31Bq(wi � 1) (4.81) 

where the subscript e denotes a backward-in-time estimate. The reader may object that run-

ning a model backward in time will often be an unstable operation; this objection needs to be 

addressed, but ignore it for the moment. The uncertainty of x̃(wi � 1) is, 

W A3W >{62048} Pe(wi � 1) = A31P(wi )A
3W + A31 �Q(wi � 1)� (4.82) 

as in the forward model computation. This backward computation can be continued to time wf, 

at which point we will have an estimate, x̃e(wf), with uncertainty Pe(wf). 

The two independent estimates of x(wf) can be combined to make an improved estimate  

using the relations Chapter 2, Eq. (2.442), 

¡ ¢ ¡ ¢ 
˜ x(wf) +  P(wf) P(wf) +  Pe(wf) 

31
˜ ˜{62049} x(wf> +) = ˜ xe(wf) � x(wf) (4.83) 

and (Eq. 2.444), 

D E 
x(wf> +) � x(wf)] ˜P(wf) =  [˜ x [(wf> +) � x(wf)]

W 

{P2} (4.84) £ ¤31 
= P(wf)31 + Pe(wf)

31 = 

This estimate is the same as would be obtained from the RTS algorithm run back to time wf– 

because the same objective function, model, and data have been employed. The computation has 
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been organized di�erently in the two cases. This backwards running computation can be used 

at all points of the interval, as long as the data used in the forward and backward computations 

are kept disjoint so that the two estimates are uncorrelated. 

Running a model backward in time may indeed be unstable if it contains any dissipative 

terms. A forward model may be unstable too, if there are unstable elements, either real ones 

or numerical artifacts. But the expressions in (4.83-4.84) are stable, because the computation 

of Pe(w) and its use in the updating expression (4.83) automatically downweights unstable el-

ements whose errors will be very large, and which will not carry useful information from the 

later state concerning the earlier one. The same situation would occur if the forward model had 

unstable elements–these instabilities would amplify slight errors in the statement of their initial 

conditions, rendering them di!cult to estimate from observations at later times. Examination 

of the covariance propagation equation and the filter gain matrix shows that these elements 

are suppressed in the Kalman filter estimate, with correspondingly large uncertainties. The fil-

ter/smoother formalism properly accounts for unstable, and hence di!cult-to-calculate param-

eters, by estimating their uncertainty as very large, thus handling very general ill-conditioning. 

In practice, one needs to be careful, for numerical reasons, of the pitfalls in computing and using 

matrices that may have norms growing exponentially in time. But the conceptual problem is 

solved. As with the Kalman filter, it is possible to rewrite the RTS smoother expressions (4.71)— 

(4.74) in various ways for computational e!ciency, storage reduction, and improved accuracy. 122 

The dominant computational load in the smoother is again the calculation of the updated co-

variance matrices, whose size is square of the state-vector dimension, at every time step, leading 

to e�orts to construct simplified algorithms that retain most of the virtues of the filter/smoother 

combination but with reduced load. For example, it may have already occurred to the reader 

that in some of the examples displayed, the state vector uncertainties, P,  in both the  filter  

and the smoother appear to rapidly approach a steady state. This asymptotic behavior in turn 

means that the gain matrices, K> L> M will also achieve a steady state, implying that one no 

longer needs to undertake the updating steps—fixed gains can be used. Such steady-state opera-

tors are known as “Wiener filters” and “smoothers” and they represent a potentially very large 

computational savings. One needs to understand the circumstances under which such steady 

states can be expected to appear, and we will examine the problem on P. 246. {pagesteadysta 

4.3.4 Other Smoothers 

The RTS algorithm is an example of what is usually called a “fixed-interval” smoother because 

it assumed that the results are required for a particular stored interval 0 w wi = Other forms � � 

for other purposes are described in the literature, including “fixed-lag” smoothers in which one 



228CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION


Figure 4.12: Mass-spring oscillator model with friction (u = 0=01) run backwards in time from 

conditions specified at w = 1000= The system is unstable, and small uncertainties 

in the starting conditions would amplify. but the Kalman filter run backwards 

remains stable because its error estimate also grows–systematically downweighting 

the model forecast relative to any data that become available at earlier times. A 

model with unstable elements in the forward direction would behave analogously 

when integrated in time with growing estimated model forecast error. {ocip6_8.tif} 
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is interested in an estimate at a fixed time wi � w1 as wi advances, usually in realtime. A “fixed 

point” smoother addresses the problem of finding a best estimate x̃ (w1) with w1 fixed and wi 

continually increasing. When w1 = 0> as data accumulates, the problem of estimating the initial 

conditions is a special case of the fixed point smoother problem. 

4.4 Control and Estimation Problems 

4.4.1 Lagrange Multipliers and Adjoints 

The results of the last section are recursive schemes for computing first a filtered, and then a 

smoothed estimate. As with recursive least squares, the combination of two pieces of information 

to make an improved estimate demands knowledge of the uncertainty of the information. For 

static problems, the recursive methods of Chapter 2 may be required, either because all the data 

were not available initially or because one could not handle it all at once. But, in general, the 

computational load of the combined least-squares problem Ch. 2, Eq. (2.422) is less than the 

recursive one, if one chooses not to compute any of the covariance matrices. 

Because the covariance computation will usually dominate, and potentially overwhelm, the 

filter/smoother algorithms, it is at least superficially very attractive to find algorithms that 

do not require the covariances–that is, which employ the entire time domain of observations 

simultaneously–a “whole-domain” or “batch” method. The algorithms that emerge are best 

known in the context of “control theory.” Essentially, there is a more specific focus upon deter-

mining the u(w): the control variables making a system behave as desired. Conventional control 

engineering has been directed at finding the electrical or physical impulses to make e.g., a robotic 

machine tool assemble an automobile, to land an airplane at a specified airfield, or to shift the 

output of a chemical plant. The control literature refers to the “Pontryagin Principle.” Because 

the motion of an airplane is described by a set of dynamical equations, the solution to the prob-

lem can equally well be thought of as making a model behave as required instead of the actual 

physical system. Thus if one observes a fluid flow, one that di�ers from what one’s model said it 

should, we can seek those controls (e.g., boundary or initial conditions or internal parameters) 

that will force the model to be consistent with the observed behavior. It will help the reader 

who further explores these methods to recognize that we are still doing estimation, combining 

observations and models, but sometimes using algorithms best known under the control rubric. 

To see the possibilities, consider again the two-point objective function (4.61) where P, etc., 

are just weight matrices, not necessarily having a statistical significance. We wish to find the 

minimum of the objective function subject to (4.62). For variety, append the model equations 

as done in Chapter 2 (as in Eq. (2.148)), with a vector of Lagrange multipliers, µ(1), for  a new  



230CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION 

objective function, ¡ ¢W ¡ ¢ 
M = x(0> +) � x(0) P(0)31 x(0> +) � x(0)˜ ˜ ˜ ˜¡ ¢W ¡ ¢ 

+ u(0> +) � u(0) Q(0)31 u(0> +) � u(0)˜ ˜ ˜ ˜
(4.85) {J5} ¡ ¢W ¡ ¢ 

+ y(1) � E(1)˜ x(1)x(1) R(1)31 y(1) � E(1)˜

2µ(1)W [˜ x(0> +) � Bq(0) � �˜� x(1) � A˜ u(0> +)] = 

As with the filter and smoother, the model is being imposed as a hard constraint, but with the 

control term permitting the model to be imperfect. The presence of the Lagrange multiplier 

now permits treating the di�erentials as independent; taking the derivatives of M with respect 

to ˜ x(1)> ˜x(0> +)> ˜ u(0> +)> µ(1) and setting them to zero, 

˜ ˜{63002} P(0)31 [x(0> +) � x(0)] + AW 
µ(1) = 0> (4.86) 

{63003} EW R(1)31 [y(1) � Ex̃(1)] + µ(1) = 0> (4.87) 

{63004} Q(0)31 [˜ ˜u(0> +) � u(0)] + � W 
µ(1) = 0> (4.88) 

˜ x(0> +) � Bq(0) � �˜{63005} x(1) � A˜ u(0> +) = 0 = (4.89) 

Equation (4.86) is the “adjoint model” for µ(1) involving AW . 

Because the objective function in (4.85) is identical with that used with the smoother for 

this problem, and because the identical dynamical model has been imposed, equations (4.86)— 

(4.89) must produce the same solution as that given by the smoother. A demonstration that 

equations (4.86)—(4.89) can be manipulated into the form (4.69-4.70) is an exercise in matrix 

identities.123 As with smoothing algorithms, finding the solution of (4.86)—(4.89)) can be done 

in a number of di�erent ways, trading computation against storage, coding ease, convenience, 

etc. 

Let us show explicitly the identity of smoother and Lagrange multiplier methods for a re-

stricted case–that for which the initial conditions are known exactly, so that x̃(0) is not modified 

by the later observations. For the one-term smoother, the result is obtained by dropping (4.86), 

as x(0) is no longer an adjustable parameter. Without further loss of generality, put ũ(0) = 0, 

and set R(1) = R, reducing the system to, 

˜ x(0) + Bq(0) + �˜{63006} x(1) = A˜ u(0> +) (4.90) 

ũ(0> +) = �Q(0)� W 
µ(1) £ ¤

{63006a} = Q(0)� W EW R31 y(1) � E(1)x̃(1) = (4.91) 

Eliminating ũ(0> +) from (4.90) produces 

˜ x(0) + Bq(0) + �Q(0)� W EW R31 [y(1) � E˜{63008} x(1) = A˜ x(1)] = (4.92) 
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With no initial error in x(0)> P(1> �) =  �Q(0)�W and with, 

˜{63009} x(1> �) � Ax(0) + Bq(0)> (4.93) 

(4.92) can be written 

£ ¤
I + P(1> �)EW R31E x(1) = ˜˜ x(1> �) +  P(1> �)EW R31 y(1) (4.94) {63010} 

or (factoring P(1> �)), 
£ ¤

˜ ˜x(1) = P(1> �)31 + EW R31E
31 
P(1> �)31x(1> �) £ ¤

+ P(1> �)31 + EW R31E
31 
EW R31 y(1) = 

Applying the matrix inversion lemma in the form (2.36 to the first term on the right, and in the 

form (2.37) to the second term on the right, 

£ ¤
˜ ˜x(1) = {P(1> �) � P(1> �)EW EP(1> �)EW + R 31 

EP(1> �)}P(1> �)31x(1> �) 
(4.95)£ ¤

+ PEW R + EP(1> �)EW 31 
y(1) 

or £ ¤
˜ x(1> �) +  P(1> �)EW EP(1> �)EW + R 31 

[y(1) � E˜x(1) = ˜ x(1> �)] = (4.96) {63013} 

This last result is the ordinary Kalman filter estimate, as it must be, but it results here from 

the Lagrange multiplier formalism. 

Now consider this approach for the entire interval 0 w � wi . Start with the objective � 

function (4.41) and append the model consistency demand using Lagrange multipliers, 

x(0> +) � x0]
W 
P(0)31 [x(0> +) � x0]M = [˜ ˜

wi X 
+ [y (w) � E(w)˜ x(w> +)]x(w> +)]W 

R(w)31 [y (w) � E(w)˜
w=1 

wi 31 (4.97) {J6} X 
˜ ˜+ u(w> +)W Q (w)31 

u (w> +) 
w=0

wi
X ¤

� ˜ x(w � 1> +) � Bq(w � 1> +) � �˜2 µ(w)W £ x(w> +) � A˜ u(w � 1> +) = 
w=1 

Note the di�ering lower limits of summation. 

Notational Note. Eq. (4.97) has been written with ˜ u (w> +) to make it clear that the x (w> +) > ̃

estimates will be based upon all data, past and future. But unlike the filter/smoother algorithm, 
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there will only be a single estimated value, instead of multiple estimates x̃ (w> �) (from the model 

x (w) (from the Kalman filter), and ˜forecast), ˜ x (w> +) from the smoother, and similarly for u (w) = 

Of necessity, ˜ ˜x (wi > +) = x (w) from the Kalman filter. x0 is any initial condition estimate with 

uncertainty P (0) obtained from any source. 

Setting all the derivatives to zero gives the normal equations, 

{63015} 1 
2 

CM 
Cũ (w> +) 

= Q (w)31 
ũ (w> +) + � W 

µ(w + 1)  =  0  > 0 � w � wi � 1 (4.98) 

1 
2 
CM 
Cµ(w) 

= x̃ (w> +) � Ax̃(w � 1> +) � Bq(w � 1) � �ũ(w � 1> +) = 0> 

0 � w � wi (4.99) 

{63017} 

{63018} 

1 
2 
CM 

Cx̃(0> +) 
= P(0)31

¡
x̃(0> +) � x0 

¢ 
+ AW 

µ(1) = 0 > 

1 
2 
CM 

Cx̃ (w> +) 
= �E (w) R (w)31 [y (w) � E (w) ̃x (w> +)] � µ (w) +  AW 

µ (w + 1)  =  0> 

(4.100) 

(4.101) 

1 � w � wi 

{63019} 1 
2 
CM 
Cx̃(wi ) 

= �E(wi )W R(wi )
31£ y (wi ) � E(wi )x̃(wi )

¤ 
� µ(wi ) = 0  (4.102) 

where the derivatives for x̃ (w> +), at  w = 0, w = wi , have been computed separately for clarity=


The so-called adjoint model is now given by (4.101). An equation count shows that the number


˜ u (w> +) > µ(w)]. With a large
of equations is exactly equal to the number of unknowns [x (w> +) > ˜

enough computer, we could contemplate solving them all at once. But for real fluid models with 

large time spans and large state vectors, even the biggest supercomputers are easily swamped, 

and one needs to find other methods. 

The adjoint model in Eq. (4.101) is, 

µ (w) =  AW 
µ (w + 1) +  E (w) R (w)31 [E (w) ̃x (w> +) �y (w)] > 

in which the model/data misfit appears as a “source term.” It is sometimes said that time runs 

backwards in this equation, with µ (w) being computed most naturally from µ (w + 1)  and the 

source term, with Eq. (4.102) providing an initial condition. But in fact, time has no particular 

direction here, as the equations govern a time interval, 1 w wi . Indeed if A31 exists, there � � 

is no problem in rewriting Eq. (4.101) so that µ (w + 1)  is  given in terms  of  A3W 
µ (w) = 
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The Lagrange multipliers–that is, the adjoint solution–have the same interpretation that 

they did for the steady models described in Chapter 2–that is, as a measure of the objective 

function sensitivity to the data, 
CM 0 

{63024} = 2µ(w + 1) = (4.103) 
CBq(w) 

The physics of the adjoint model, as in Chapter 2, are again represented by the matrix AW . 

For a forward model that is both linear and self-adjoint (AW = A), the adjoint solution would 

have the same physical behavior as the state vector. If the model is not self-adjoint (the usual 

situation), the evolution of the µ (w) may have a radically  di�erent interpretation than x(w). 

Insight into that physics is the road to understanding of information flow in the system. For 

example, if one employed a large numerical model to compute the flux of heat in a fluid, and 

wished to understand the extent to which the result was sensitive to the boundary conditions, 

or to a prescribed flux somewhere, the adjoint solution carries that information. In the future, 

one expects to see display and discussion of the results of the adjoint model on a nearly equal 

footing with that of the forward model. 

4.4.2 Terminal Constraint Problem: Open Loop Control 

Consider the adjoint approach in the context of the simple tracer box model already described 

and depicted in Figure  4.8. At  w = 0, the tracer concentrations in the boxes are known to 

vanish–that is, x(0) = x0 = 0 (the initial conditions are supposedly known exactly). At w = wi , 

a survey is made of the region, and the concentrations y(wi ) =  E(wi )x(wi ) + n(wi ), E(wi ) � I, 

hn(w)i = 0, hn(wi )n(wi )W i = R are known. No other observations are available. The question 

posed is: If the boundary conditions are all unknown a priori–that is Bq � 0> and all boundary 

conditions are control variables–what boundary conditions would produce the observed values 

at wi within the estimated error bars? 

The problem is an example of a “terminal constraint control problem”—it seeks controls 

(forces, etc.) able to drive the system from an observed initial state, here zero concentration, to 

within a given tolerance of a required terminal state124 . But in the present context, we interpret 

the result as an estimate of the actual boundary condition with uncertainty R (wi ) = For this 

special case, take the objective function, 

wi 31 X 
WM = [x(wi )� xg]

W 
R(wi )

31 [x(wi )� xg] +  u (w)Q (w)31 
u(w) 

w=0 
(4.104) {J2} 

wi X ¤
2 µ(w)W £ x(w)� Ax(w � 1)� Bq(w � 1)� �˜� u(w � 1) = 

1 
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From here on, the notation ˜ u (w> +) in objective functions is suppressed, reverting to x (w> +) > ̃

the understanding that any solution is an estimate, from whatever data are available, past or 

future. The governing normal equations are, 

{63028} µ(w � 1) = AW 
µ(w)> 1 w (4.105) � � wi ¡ ¢ 

{63029} µ(wi ) =  R31 x(wi ) � xg > (4.106) 

˜ W{63030} Q (w)31 
u(w) =  �� µ(w + 1)> (4.107) 

plus the model. Eliminating,


{63031} u(w) =  �Q� W =µ(w + 1)> (4.108)


and substituting into the model, the system to be solved is 

{63032} x(w) =  Ax(w � 1) � �Q� W 
µ(w) > x(0) = x0 0 > (4.109) � 

{63033} µ(w � 1) = AW 
µ(w) > 1 w (4.110) � � wi � 1 > ¡ ¢ 

{63034} µ(wi ) =  R31 x(wi ) � xg = (4.111) 

As written, this coupled problem has natural initial conditions for the state vector, x(w)> at w = 0> 

and for µ(w) at w = wi , but with the latter in terms of the still unknown x(wi )–recognizing that 

the estimated terminal state and the desired one will almost always di�er, that is, x (wi ) 6= xg = 

By exploiting its special structure, this problem can be solved in straightforward fashion 

without having to deal with the giant set of simultaneous equations. Using (4.111), step back-

ward in time from wi via (4.110) to produce, ¡ ¢ 
µ(wi ) =  AW R31 x(wi ) � xg > 

.
{6.3.35} . (4.112) . ¡ ¢ 

µ(1) = A(wi )W R31 x(wi ) � xg 

so µ(w) is given in terms of the known xg and the still unknown x(wi ). Substituting into (4.109) 

generates ¡ ¢ 
x(1) = Ax(0) � �Q� W A(wi 31)W R31 x(wi ) � xg ¡ ¢ 
x(2) = Ax(1) � �Q� W A(wi 32)W R31 x(wi ) � xg ¡ ¢

W A(wi 31)W R31 x(wi ) � xg = A2 x(0) � AQ� ¡ ¢ 
� �Q� W A(wi 32)W R31 x(wi ) � xg 

(4.113) {adjoint3} . . . ¡ ¢ 
A(wi 31)�Q� W A(wi 31)W R31 x(wi ) � xgx(wi ) =  Awi x(0) � ¡ ¢ 

A(wi 32)�Q� W A(wi 32)W R31 x(wi ) � xg� ¡ ¢ 
� · · ·  � �Q� W =R31 x(wi ) � xg = 
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The last equation permits us to bring the terms in x(wi ) over to the left-hand side and solve for 

x(wi ) in terms of xg and x(0): 
n 
I + A(wi 31)�Q� W A(wi 31)W R31 

o 
+ A(wi 32)�Q� W A(wi 32)W W R31R31 + · · ·+ �Q� x(wi ) n (4.114) {adjoint4} 

A(wi 31)�Q� W A(wi 31)W = Awi x(0) + R31 

o 
+ A(wi 32)�Q� W A(wi 32)W R31 + · · ·+ �Q� W R31 xg = 

With x(w) now known, µ(w) can be computed for all w from (4.110, 4.111). Then the control 

u(w) is also known from (4.107) and the state vector can be found from (4.109). The resulting 

solution for ũ(w) is in terms of the externally prescribed x0> xg and is usually known as “open-

loop” control. 

The canonical form for a terminal constraint problem usually used in the control literature 

di�ers slightly; it is specified in terms of a given, nonzero, initial condition x(0), and  the  controls  

are determined so as to come close to a desired zero terminal state. By linearity, the solution 

to this so-called deadbeat control (driving the system to rest) problem can be used to solve the 

problem for an arbitrary desired terminal state. 

Example 

Consider the tracer forward problem in Fig. 4.8 where boundary box 2 now has a non-zero 

concentration, fixed at F = 1= starting at w = 1= A concentration is readily imposed by zeroing the 

corresponding row of A> so that Bq (w) or �u (w) set the concentration. (An alternative is to put 

the imposed concentration into the initial conditions and use the corresponding row of A to force 

the concentration to be exactly that in the previous time step.) The initial conditions were taken 

as zero and the forward solution is in Fig. 4.13. Then the same figure shows the solution to the 

terminal time control problem for the concentration in box 2 giving rise to the terminal values. 

A misfit was permitted between the desired (observed) and calculated terminal time—with rms 

value of 2 ×1034 . Clearly the “true” solution is underdetermined by the provision of initial and 

terminal time tracer concentrations alone. Also shown in the figure are the Lagrange multipliers 

(adjoint solution) corresponding to the model equations for each box.125 

In the above formulation, the boundary boxes were contained in the A matrix , but the 

corresponding rows were all zero, permitting the B matrix (here a vector) to control the boundary 

box concentrations. A variation on this problem is obtained by setting column element m0 

corresponding to boundary box m0, in  A to unity. B would then control the time rate of change 

of the boundary box concentrations. Suppose then that B is a column vector, vanishing in all 

elements except with unity in all active boundary boxes (the corner boxes are passive here). 
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Figure 4.13: Box model example of terminal control. Here the “forward” calculation fixes the 

concentration in boundary box number 2 as F = 1> and all other boundary box 

concentrations are fixed at zero. (a) Displays the box 2 and interior box concen-

trations for 50 timesteps with initial condition of zero concentration everywhere. 

(b) Is the estimated concentration from the terminal control calculation, in which 

R =1034I> Q =1> where the only control value was the box 2 concentration. Thus a 

slight misfit is permitted to the terminal values C (50�w) > �w = 0=05= (c) Shows the 

Lagrange multipliers (adjoint solution) corresponding to the interior boxes. Hav-

ing the largest values near the termination point is characteristic, and shows the 

sensitivity to the near terminal times of the constraints. {boxterminal1. 
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Figure 4.14: Same box model as in Fig. 4.13, except that now �u(w) controls the rate of change 

of concentration rather than concentration itself, and all boundary boxes have a 

constant rate of change of 0.1. The “true” solution is shown in panel (a). Panel (b) 

shows that deduced from the terminal state control, with a near-perfect requirement 

on the terminal values, and Q= (d) Displays the estimated control ũ (w) = Note the 

highly compressed amplitude scale. 

Then Fig. 4.14 shows the concentration and the result of the terminal control problem in this 

case. 

The smoothing problem has been solved without having to compute the uncertainties, and 

is the major advantage of the Lagrange multiplier methods over the sequential estimators. La-

grange multiplier methods solve for the entire time domain at once; consequently, there is no 

weighted averaging of intermediate solutions and no need for the uncertainties. On the other 

hand, the utility of solutions without uncertainty estimates must be questioned. 

In the context of Chapter 1, problems of arbitrary posedness are being solved. The vari-

ous methods using objective functions, prior statistics, etc., whether in time-evolving or static 

situations, permit stable, useful estimates to be made under almost any circumstances, using 

almost any sort of available information. But the reader will by now appreciate that the use of 

{boxterminal2. 
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such methods can produce structures in the solution, pleasing or otherwise, that may be present 

because they are required by (1) the observations, (2) the model, (3) the prior statistics, (4) 

some norm or smoothness demand on elements of the solution, or (5) all of the preceding in 

concert. A solution produced in ignorance of these di�ering sources of structure can hardly be 

thought very useful, and it is the uncertainty matrices that are usually the key to understanding. 

Consequently, we will later briefly examine the problem of obtaining the missing covariances. In 

the meantime, one should note that the covariances of the filter/smoother will also describe the 

uncertainty of the Lagrange multiplier method solution, because they are the same solution to 

the same set of equations deriving from the same objective function. 

There is one situation where a solution without uncertainty estimates is plainly useful–it is 

where one simply inquires, “Is there a solution at all?”–that is, when one wants to know if the 

observations actually contradict the model. In that situation, mere existence of an acceptable 

solution may be of greatest importance, suggesting, for example, that a model of adequate 

complexity is already available. 

4.4.3 Representers and Boundary Green Functions 

The particular structure of Eqs. (4.105-4.107) permits several di�erent methods of solution and 

the version just given is an example. To generalize this problem, assume observations at a set 

of arbitrary times (not just the terminal time), 

y (w)=  E (w) x (w)+n (w) > 

and seek a solution in “representers.”


Take the objective function to be,


wi wi 31 X X 
{J7} M = [y (w) � E (w) x (w)]W 

R (w)31 [y (w) � E (w) x (w)] + u (w)W 
Q (w)31 

u (w) (4.115) 
w=1 w=0

wi
X 

2 µ (w)W [x (w) �Ax (w � 1) �Bq (w � 1) �� (w � 1) u (w � 1)] >� 
w=1 

so that the terminal state estimate is subsumed into the first term with E (wi ) =  I> R (wi ) =  

P (wi ) = Let xd (w) be the solution to the pure, unconstrained, forward problem, 

xd (w) =  Axd (w � 1) + Bq (w � 1) > xd (0) = x0> (4.116) 

and which is known. Redefine x (w) to be the di�erence, x (w) $ x (w) �xd (w) > that is the 

deviation from what can be regarded as the a priori  solution. The purpose of this redefinition 
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is to remove any inhomogeneous initial or boundary conditions from the problem–exploiting 

the system linearity. The normal equations are then, 

2 Cu (w) 
1 CM W = Q (w)31 

u (w) + � µ (w+ 1) = 0> 0 w� � wi � 1 

1 CM 
2 Cx (w) 

= E (w)W 
R (w)31 [E (w)x (w)� y (w)] +AW 

µ (w+ 1)� µ (w) = 0> 

1 w� � wi 
1 CM 
2 Cµ (w) 

= x (w)�Ax (w� 1)�� (w� 1)u (w� 1) = 0> x (0) = 0> 1 w� � wi 

Eliminating the u (w) in favor of µ (w) > we have as before, 

x (w) = Ax (w� 1)��Q (w� 1)� W 
µ (w) > (4.117) {representer1} 

µ (w) = AW 
µ (w+ 1) +E (w)W 

R (w)31 [E (w)x (w)�y (w)] = (4.118) {representer2} 

The system is linear, so we can examine the solution forced by the inhomogeneous term in 

(4.118) at one time, w = wp = This inhomogeneous term, E (w)W 
R (w)31 [E (w)x (w)�y (w)] > in Eq. 

(4.118) is, however, unknown until x (w) has been determined. So to proceed, first solve the 

di�erent problem, 

M (w> wp) = AW M (w+ 1> wp) + I�w>wp > w  � wp (4.119) {representer4} 

M (w> wp) = 0> w  A  wp> (4.120) 

where the second argument, wp> denotes the time of one set of observations (notice that M is a 

matrix). Time step Eq. (4.119) backwards from w = wp. There is then a corresponding solution 

to (4=117) with these values of µ (w) > 

G (w+ 1> wp) = AG (w> wp)��Q� W M (w+ 1> wp) > (4.121) 

which is stepped-forward in time. Both G>M are computable independent of the actual data 

values. Now put, n o 
m (w> wp) =M (w> wp) E (wp)

W 
R (wp)

31 [E (wp)x (wp)�y (wp)] > (4.122) 

a vector, which, by linearity, is the solution to (4.118) once x (wp) is known. Let, n o 
� (w> wp) = G (w> wp) E (wp)

W 
R (wp)

31 [E (wp) � (wp> wp)�y (wp)] > (4.123) {representer6} 

another vector, such that x̃ (w) =  � (w> wp) would be the solution sought. Setting w = wp in Eq. 

(4.123) and solving, 

� (wp> wp) =  (4.124) 

� � 
h i h i 
I G (wp> wp)E (wp)

W 
R (wp)

31 
E (wp) 

31 
G (wp> wp)E (wp)

W 
R (wp)

31 
y (wp) = 
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Figure 4.15: Representer (Green function) J for interior box 7, with the columns corresponding 

to boxes 6> 7 displayed through time. The Green function used numerically is the 

sum of these two, and displaying an near-discontinuity (typical of Green functions) 

esenter1.eps} at the data points which are available at w = 20> 30= 

With � (wp> wp) known, Eq. (4.123) produces a fully determined x̃ (w) =  � (w> wp) in representer 

form. This solution is evidently just a variant of Eqs. (4.113-4.114). One can then sum the 

results from all observation times: 

wi X 
˜representer3} x (w) =  � (w> wp) = (4.125) 

wp=1 

and after adding xd (w) to the result, the entire problem is solved. 

The solutions M (w> wp) are the Green function for the adjoint model equation, and the 

G (w> wp) are “representers.”126 and exist independent of the data. If the data distribution is 

spatially sparse, one need only compute the subsets of the columns or rows of M> G that corre-

spond to measured elements of  x (w). That is, in Eq. (4=119) any zero columns in E, representing  

elements of the state vector not involved in the measurements, multiply the corresponding 

columns of M> G> and hence one need not ever compute those columns. 

H{dpsoh. 

Consider again the 4 ×4 box model of Fig. 4.8, in the same configuration as used above, with 

all the boundary boxes having a fixed tracer concentration of F = 1> and zero initial condition. 

Now, it is assumed that observations are available in all interior boxes (6,7,10,11) at time w = 

20> 30= The representer J is shown in Fig. 4.15. 

The representer emerged naturally from the Lagrange multiplier formulation. Let us re-

derive the solution without the use of Lagrange multipliers to demonstrate how the adjoint 

model appears in unconstrained o2 norm problems (soft constraints). Introduce the model into 

the same objective function as above, except we do it by substitution for the control terms; let 
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Figure 4.16: Upper panel shows the forward “truth” in the box model and the lower panel the 

estimated values from the representer displayed in Fig. 4.15. Data were treated as 

esenter2.eps} nearly perfect at the two observation times. 

� = I> making it possible to solve for u (w) explicitly and producing the simplest results. The 

objective function then is, 

wi X 
M = [y (w) � E (w) x (w)]W 

R (w)31 [y (w) � E (w) x (w)] (4.126) 
w=0


wi 31
X 
+ [x (w + 1)  �Ax (w)]W 

Q (w)31 [x (w + 1)  �Ax (w)] > (4.127) 
w=0 

again assume that x (w) is the anomaly relative to the known xd (w) =


The normal equations are:


1 CM 
= E (w)W 

R (w)31 [E (w) x (w) � y (w)] �AW Q (w)31 [x (w + 1)  �Ax (w)] (4.128) {normal2} 
2 Cx (w)


+Q (w)31 [x (w) �Ax (w � 1)] = 0


Define, 

� (w + 1)  =  �Q (w)31 [x (w + 1)  �Ax (w)] (4.129) {nu1} 

so that the system (4.128) can be written as 

� (w) =  AW � (w + 1) +  E (w)W 
R (w)31 [E (w) x (w) � y (w)] (4.130) {adjoint2} 

which along with (4.129) is precisely the same system of equations (4.117, 4.118) that emerged 

from the Lagrange multiplier approach, if we let µ $ �> � = I= Representers are again defined 
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as the unit disturbance solution to the system. As a by-product, we see once again, that o2 norm�
least-squares and the adjoint method are simply di�erent algorithmic approaches to the same 

problem.127 

4.4.4 The Control Riccati Equation 

Consider yet another solution of the problem. (If the reader is wondering why such a fuss is 

being made about these equations, the answer, among others, is that it will turn out to be an 

important route to reducing the computational load required for the Kalman filter and various 

smoothing algorithms.) We look at the same special case of the objective function, (4.104), and 

the equations that follow from it ((4.105))—(4.107) plus the model). Let xf = 0> the deadbeat 

requirement defined above. For this case, the adjoint equation is, 

{63055} �(w) = AW 
µ(w + 1) +R(w)31 x(w) > 1 � w � wi > (4.131) 

stipulating that R(w)31 = 0, w 6= wi , if the only requirement is at the terminal time. For 

simplicity, let Q (w) = Q= 

Take a trial solution, an “ansatz”, in the form, 

{63056} µ(w) = S(w)x(w)> (4.132) 

where S(w) is unknown. Then Eq. (4.107) becomes 

W{63057} Q31 u(w � 1) + � S(w)x(w) = 0 (4.133) 

or, using the model, ¡ ¢
W{63058} Q31 u(w) + � S(w + 1) Ax(w) + �u(w) = 0 = (4.134) 

So, 

© 
W u(w) = � � W S(w + 1)� +Q31

ª31 
� S(w + 1)Ax(w) 

W = L31 � S(w + 1)Ax(w)�

L = � W S(w + 1)� +Q31 = 

Substituting this last expression, and (4.132) for µ(w), into the adjoint model (4.131), 

© 
WAW S(w + 1)A AW S(w + 1)�L(w + 1)31 � S(w + 1)A� 

(4.135) 
S(w) +R(w)31} x(w) = 0 = � 

Unless x(w) is to vanish identically, 

{63061} S(w) = AW S(w + 1)A AW S(w + 1)�L31 � W S(w + 1)A +R(w)31 > (4.136) � 
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a nonlinear di�erence equation, known as the matrix “Riccati equation,” which produces a 

backward recursion for S(w). Start the recursion with 

{63062} S(wi )x(wi ) =  R(wi )
31 x(wi ) or S(wi ) =  R(wi )

31 > (4.137) 

and step backward to w = 0. The problem has now been solved—by what is called the “sweep 

method.”128 Notice that with S(w) known, the control is in the form 

�u(w) =  Kf(w)x(w) > (4.138) {63063} 

known as “feedback control” because the values to be applied are determined by the value of 

the state vector at that time. It contrasts with the open-loop control form derived above, but 

necessarily produces the identical answer. 

With feedback control, the computation of the model update step would now be, 

x(w) = (A � Kf)x(w � 1) + Bq(w � 1) = (4.139) {63064} 

The structure of the matrix, 

A0 = A � Kf> (4.140) {63065} 

is the center of a discussion of the stability of the scheme, which we will not pursue here. 

4.4.5 The Initialization Problem 

Another special case of wide interest is determination of the initial conditions, x̃(0), from later  

observations. For notational simplicity and without loss of generality, assume that the known 

controls vanish so that the model is, 

x(w) =  Ax(w � 1) + �u(w � 1) > (4.141) {63067} 

that there is an existing estimate of the initial conditions, x̃0(0), with estimated uncertainty 

P(0), and that there is a single terminal observation of the complete state, 

y(wi ) =  Ex(wi ) +  n(wi ) > E = I> (4.142) {63068} 

where the observational noise covariance is again R(wi ). This problem can now be solved in five 

di�erent ways: 

1. The terminal observations can be written explicitly in terms of the initial conditions as 

y(wi ) =  Awi x(0) + Awi 31 �u(0) + Awi 32 �u(1) + · · ·  
(4.143) 

+ �u(wi � 1) + n(wi ) > 
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which is in canonical observation equation form, 

y(wi ) =  Esx(0) + ns(wi ) > Es = Awi > 

ns = Awi 31 �u(0) + · · ·+ �u(wi � 1) + n(wi ) > 

and where the covariance of this combined error is 

 ®
W	 W A(wi 31)WRs	 nsns = Awi 31 �Q� + · · ·+ �Q� W = + R(wi ) = (4.144) {63071} � 

Then the least-squares recursive solution leads to 

¤ £	 ¤
{63072} x(0) = ˜	 ˜˜	 x0(0) + P(0)EW £ EsP(0)EW + Rs

31 
y(wi ) � Esx0(0) > (4.145) s s 

and the uncertainty estimate follows immediately. 

2. A second method (which the reader should confirm produces the same answer) is to run 

the Kalman filter forward to wi and then run the smoother backward to w = 0. There  is  

more computation here, but a byproduct is an estimate of the intermediate values of the 

state vectors, of the controls, and their uncertainty. 

3. Write the model in backward form, 

{63073}	 x(w) =  A31 x(w + 1)  � A31 �u > (4.146) 

and use the Kalman filter on this model, with time running backward. The observation 

equation (4.142) provides the initial estimate of x(wi ), and its error covariance becomes 

the initial estimate covariance P(wi ). At  w = 0, the original estimate of x̃0(0) is treated as 

an observation, with uncertainty P(0) taking the place of the usual R. The reader should 

again confirm that the answer is the same as in (1). 

4. The problem has already been solved using the Lagrange multiplier formalism. 

5. The Green function representation (Eq. 4.32) is immediately solvable for x (0) 

4.5	 Duality and Simplification: The Steady-State Filter and Ad-

joint 

For linear models, the Lagrange multiplier method and the filter/smoother algorithms produce 

identical solutions. In both cases, the computation of the uncertainty remains an issue–in the 

former case because it is not part of the solution, and in the latter because it can overwhelm the 

computation. However, if the uncertainty is computed for the sequential estimator solutions, 
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it must also represent the uncertainty derived from the Lagrange multiplier principle. In the 

interests of gaining insight into both methods, and of ultimately finding uncertainty estimates, 

consider again the covariance propagation equations for the Kalman filter: 

P(w> �) =  A(w � 1)P(w � 1)A(w � 1)W + �(w � 1)Q(w � 1)� (w � 1)W > (4.147) {64001} 

P(w) =  P(w> �)� £ ¤
P(w> �)E(w)W E(w)P(w> �)E(w)W + R(w) 31 

E(w)P(w> �) (4.148) {64002} 

where K(w) has been written out. Make the substitutions shown in Table 4.1; the equations for 

evolution of the uncertainty of the Kalman filter are identical to those for the control matrix 

S(w), given in Equation (4.136); hence, the Kalman filter covariance also satisfies a matrix Riccati 

equation. To see that in Eq. (4.136)129 put, 

£ ¤
WS(w> �) � S(w + 1)  � S(w + 1)� � W S(w + 1)� + Q31 31 
� S(w + 1)  (4.149) 

and then, 

S(w) =  AW S(w> �)A + R(w)31> (4.150) 

which correspond to Eq. (4.147, 4.148). Time runs backward in the control formulation and 

forward in the estimation problem, but this di�erence is not fundamental. The significance of 

this result is that simplifications and insights obtained from one problem can be employed on 

the other (some software literally makes the substitutions of Table 4.1 to compute the Kalman 

filter solution from the algorithm for solving the control Riccati equation). {pagericcati} 

This feature–that both problems produce a matrix Riccati equation–is referred to as the 

“duality” of estimation and control. It does not mean that they are the same problem; in 

particular, recall that the control problem is equivalent not to filtering, but to smoothing. 

Covariances usually dominate the Kalman filter (and smoother) calculations and sometimes 

lead to the conclusion that the procedures are impractical. But as with all linear least-square– 

like estimation problems, the state vector uncertainty does not depend upon the actual data 

values, only upon the prior error covariances. Thus, the filter and smoother uncertainties (and 

the filter and smoother gains) can be computed in advance of the actual application to data, and 

stored. The computation can be done e.g., by stepping through the recursion in (4.147)—(4.148) 

starting from w = 0. 

Furthermore, it was pointed out that in Kalman filter problems, the covariances and Kalman 

gain can approach a steady state, in which P(w), P(w> �), K(w) eventually do not depend upon 
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Table 4.1: Correspondences between the variables of the control formulation and that of the 

Kalman filter, which lead to the Riccati equation. Note that time runs backward for 

control cases and forward for the filter. {table1} 

Adjoint/Control Kalman Filter 

A AW 

S(w> �) P(w + 1)  

S(w + 1)  P(w + 1> �) 

R31 �T� W 

� EW 

Q31 R 

time. Physically, the growth in error from the propagation Equation (4.147) is then just balanced 

by the reduction in uncertainty from the incoming data stream (4.148). This simple description 

supposes the data come in at every time step; often the data appear only intermittently, but 

periodically, and the steady-state solution is periodic–errors displaying a characteristic saw-

tooth structure between observation times.130 

If these steady-state values can be found, then the necessity to update the covariances and 

gain matrix disappears, and the computational load is much reduced, potentially by many 

orders of magnitude (see also Chapter 5). The equivalent steady state for the control problem 

is best interpreted in terms of the feedback gain control matrix Kf, which can also become time 

independent, meaning that the value of the control to be applied depends only upon the state 

esteadystate} observed at time w and need not be recomputed at each time step. 

The great importance of steady-state estimation and control has led to a large number of 

methods for obtaining the solution of the various steady-state Riccati equations requiring one ¡ ¢ 
of, S(w) =  S(w � 1), S(w> �) =  S(w � 1> �), P(w) =  P(w � 1), or  P(w> �) =  P(w � 1> �) . 131 The 

steady-state equation is often known as the “algebraic Riccati equation.”132 

A steady-state solution to the Riccati equation corresponds not only to a determination of 

the steady-state filter and smoother covariances but also to the steady-state solution of the 

Lagrange multiplier normal equations–a so-called steady-state control. Generalizations to the 

steady-state problem exist; an important one is the possibility of a periodic steady state.133 
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Before seeking a steady-state solution, one must determine whether one exists. That no such 

solution will exist in general is readily seen by considering a physical system in which certain 

components (elements of the flow) are not readily observed. If these components are initialized 

with partially erroneous values, then if they are unstable, they will grow without bound, and 

there will be no limiting asymptotic value for the uncertainty, which will also have to grow 

without bound. Alternatively, suppose there are elements of the state vector whose values 

cannot be modified by the available control variables. Then no observations of the state vector 

produce information about the control variables; if the control vector uncertainty is described 

by Q, then this uncertainty will accumulate from one time step to another, growing without 

bound with the number of time steps. 

4.6 Controllability and Observability 

In addition to determining whether there exists a steady-state solution either to the control or 

estimation Riccati equations, there are many reasons for examining in some detail the existence 

of many of the matrix operations that have been employed routinely. Matrix inverses occur 

throughout the developments above, and the issue of whether they exist has been ignored. 

Ultimately, however, one must face up to questions of whether the computations are actually 

possible. The questions are intimately connected to some very useful structural descriptions of 

models and data that we will now examine briefly. 

Controllability 

Consider the question of whether controls can be found to drive a system from a given initial 

state x(0) to an arbitrary x(wi ). If the answer is “yes,” the system is said to be controllable. To  

find an answer, consider for simplicity, 134 a model  with  B = 0 and with the  control,  x, a scalar. 
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Then the model time steps can be written 

x(1) = Ax(0) + �x(0)


x(2) = Ax(1) + �x(1)


= A2 x(0) + A�x(0) + �x(1)


. . . 

wi 31 X 
x(wi ) =  Awi x(0) + Awi 313m �x(m) 

m=0 65 

9999997 

x(wi � 1)::::::8


£ ¤
� A� · · ·Awi 31 � . = Awi x(0) + .
 = . 

x(0) 

To determine x(w), we must be able to  solve  the system  

65 

£ ¤
� A� · · ·Awi 31 �

9999997


::::::8 

(wi � 1)x

. = x(wi ) � Awi x(0) >. . 

(4.151) {65002} x(0) 

or 

Cu = x(wi ) � Awi x(0) 

for x(w). The state vector dimension is Q ; therefore the dimension of C is Q by the number of 

columns, wi (a special case–with x(w) being scalar, � is Q × 1). Therefore, Equation (4.151) 

has no (ordinary) solution if wi is less than Q . If  wi = Q and C is nonsingular–that is, of 

rank Q–there is a unique solution, and the system is controllable. If the dimensions of C 

are nonsquare, one could have a discussion, familiar from Chapter 2, of solutions for x(w) with 

nullspaces present. If wi ? Q , there is a nullspace of the desired output, and the system would 

not be controllable. If wi A Q , then there will still be a nullspace of the desired output, unless 

the rank is Q , when  wi = Q , and the system is controllable. The test can therefore be restricted 

to this last case. 

This concept of controllability can be described in a number of interesting and useful ways135 

and generalized to vector controls and time-dependent models. To the extent that a model is 

found to be uncontrollable, it shows that some elements of the state vector are not connected to 
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the controls, and one might ask why this is so and whether the model cannot then be usefully 

simplified. 

Observability 

The concept of “observability” is connected to the question of whether given Q perfect 

observations, it is possible to infer all of the initial conditions. Suppose that the same model is 

used, and that we have (for simplicity only) a scalar observation sequence, 

|(w) =  E(w)x(w) +  q(w) > 0 w (4.152) {65003}� � wi = 

Can we find x(0)? The sequence of observations can be written, with x(w) � 0, as  

|(1) = E(1)x(1) = E(1)Ax(0) 

. . . 

|(wi ) =  E(wi )A
wi x(0) > 

which is, 

�

Ox(0) = | (1) ===
 | (wi ) 

¸W 

<
AAAAAA

;
AAAAAA E(1)A


@? (4.153) {65005} 

O = . . =
AAAAAA= E(wi )Awi 

.
 AAAAAA>


If the “observability matrix” is square–that is, wi = Q and is full rank–there is a unique 

solution for x(0), and the system is said to be observable. Should it fail to be observable, it 

suggests that at least some of the initial conditions are not determinable by an observation 

sequence and are irrelevant. Determining why that should be would surely shed light on the 

model one was using. As with controllability, the test (4.153) can be rewritten in a number 

of ways, and the concept can be extended to more complicated systems. The concepts of 

‘stabilizability,” “reachability,” “reconstructability,” and “detectability” are closely related.136 , 

and there is a close connection between observability and controllability and the existence of a 

steady-state solution for the algebraic Riccati equations. 

In practice, one must distinguish between mathematical observability and controllability 

and practical limitations imposed by the realities of observational systems. It is characteristic of 

fluids that changes occurring in some region at a particular time are ultimately communicated to 

all locations, no matter how remote, at later times, although the delay may be considerable, and 

the magnitudes of the signal may be much reduced by dissipation and geometrical spreading. 
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Nonetheless, one anticipates that there is almost no possible element of a fluid flow, no matter 

how distant from a particular observation, that is not in principle observable. A bit more is said 

about this subject in Chapter 5. 

4.7 Nonlinear Models 

Fluid flows are nonlinear by nature, and one must address the data/model combination problem 

where the model is nonlinear. (There are also, as noted above, instances in which the data 

are nonlinear combinations of the state vector elements.) Nonetheless, the focus here on linear 

models is hardly wasted e�ort. As with more conventional systems, there are not many general 

methods for solving nonlinear estimation or control problems; rather, as with forward modeling, 

each situation has to be analyzed as a special case. Much insight is derived from a thorough 

understanding of the linear case, and indeed it is di!cult to imagine tackling any nonlinear 

situation without a thorough grasp of the linear one. Not unexpectedly, the most accessible 

approaches to nonlinear estimation/control are based upon linearizations. 

A complicating factor in the use of nonlinear models is that the objective functions need no 

longer have unique minima. There can be many nearby, or distant, minima, and the one chosen 

by the usual algorithms may depend upon exactly where one starts in the parameter space and 

how the search for the minimum is conducted. Indeed, the structure of the cost function may 

come to resemble a chaotic function, filled with hills, plateaus, and valleys into which one may 

stumble, never to get out again.137 The combinatorial methods described in Chapter 3 are a 

partial solution. 

4.7.1 The Linearized and Extended Kalman Filter 

If one employs a nonlinear model, 

¡ ¢ 
{66001} x(w) =  L x(w � 1)> Bq(w � 1)> �(w)u(w � 1) > (4.154) 

then reference to the Kalman filter recursion shows that the forecast step can be taken as before, 

¡ ¢ 
˜ ˜{66002} x(w> �) =  L x(w � 1)> Bq(w � 1)> 0 > (4.155) 

but it is far from clear how to propagate the uncertainty from P(w � 1) to P(w> �), the previous 
derivation being based upon the assumption that the error propagates linearly, independent 

of  the true value  of  x(w) (or equivalently, that if the initial error is Gaussian, then so is the 

propagated error). With a nonlinear system one cannot simply add the propagated initial 

condition error to that arising from the unknown controls. A number of approaches exist to 
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finding approximate solutions to this problem, but they can no longer be regarded as strictly 

optimal, representing di�erent linearizations. 

Suppose that we write, 

x(w) = xr(w) +�x(w) > q = q0(w) +�q(w) > (4.156) {66003} 

¡ ¢ 
L x(w)> Bq(w)> �u(w)> w  = ¡ ¢ ¡ ¢W 

Lr xr(w)> qr(w)> 0> w  + L{ xr(w)> 0 �x(w) ¡ ¢W ¡ ¢W 
+ Lt xr(w)> qr(w) �q(w) +  Lx xr(w)> qr(w) u(w) 

where 

(4.157) {66004} 

L{ xr(w)> qr(w) =
¡ ¢ CL 

Cx(w) 
> 

Lx xr(w)> qr(w) =
¡ ¢ CL 

Cu(w) 
= 

Lt xr(w)> qr(w) =
¡ ¢ CL 

Cq(w) 
> 

Then, ¡ ¢ 
�xr(w) = Lr xr(w� 1)> Bqr(w� 1)> 0> w 1 > (4.158) {66006} 

defines a nominal solution, or trajectory, xr(w). The model is assumed to be di�erentiable 

in this manner; all discrete models are so di�erentiable, numerically, barring a division by 

zero somewhere. Note that all discrete models are by definition discontinuous, and discrete 

di�erentiation automatically accomodates such discontinuities. Numerical models often have 

switches, typically given by “if xx, then yy” statements. Even these models are di�erentiable in 

the sense we need, except at the isolated point where the “if” statement is evaluated; typically 

the code representing the derivatives will also have a switch at this point. 

A non-linear models, in particular, can have trajectories which bifurcate in a number of 

di�erent ways, so that subject to slight di�erences in state, the trajectory can take widely 

di�ering pathways as time increases. This sensitivity can be a very serious problem for a Kalman 

filter forecast, because a linearization may take the incorrect branch, leading to divergences well-

beyond any formal error estimate. Note, however, that the problem is much less serious in a 

smoothing problem, as one then has observations available indicating the branch actually taken. 

Assuming a nominal solution is available, we have an equation for the solution perturbation: 

¡ ¢W 
x�x(w) = L{ xr(w� 1)> qr(w� 1) �x(w� 1) + Lt 

W �q(w� 1) + LW u(w� 1) > (4.159) {66007} 

which is linear–called the “tangent linear model,” and of the form already used for the Kalman 

filter, but with redefinitions of the governing matrices. The full solution would be the sum of the 

nominal solution, xr(w)> and the perturbation �x(w). This form of estimate is sometimes known 
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as the “linearized Kalman filter,” or the “neighboring optimal estimator.” Its usage depends 

upon the existence of a nominal solution, di�erentiability of the model, and the presumption 

that the controls �q, u do not drive the system too far from the nominal trajectory. 

The so-called “extended Kalman filter” is nearly identical, except that the linearization is 

taken instead about the most recent estimate x̃(w); that is, the partial derivatives in (4.157) are 

evaluated using not xr(w � 1)> but x̃(w � 1). This latter form is more prone to instabilities, but 

if the system drifts very far from the nominal trajectory, it could well be more accurate than 

the linearized filter. Linearized smoothing algorithms can be developed in analogous ways, and 

as already noted, the inability to track strong model nonlinearities is much less serious with a 

smoother than with a filter. The references go into these questions in great detail. Problems 

owing to multiple minima in the cost function138 can always be overcome by having enough  

observations to keep the estimates close to the true state. The usual posterior checks of model 

and data residuals are also a very powerful precaution against a model failing to track the true 

state adequately. 

It is possible to define physical systems for which su!ciently accurate or useful derivatives of 

the system cannot be defined139 so that neither Lagrange multiplier nor linerearized sequential 

methods can be used. Whether such systems occur in practice, or whether they are somewhat like 

the mathematical pathologies used by mathematicians to demonstrate the limits of conventional 

mathematical tools (e.g., the failure to exist of the derivative of sin (1@w) > w  $ 0> or of the 

existence of space-filling curves) is not so clear. It is clear that all linearization approaches 

do have limits of utility, but they are and will likely remain, the first choice of practitioners 

necessarily aware that no universal solution methods exist. 

4.7.2 Parameter Estimation and Adaptive Estimation 

Often models contain parameters whose values are poorly known. In fluid flow problems, these 

often concern parameterized turbulent mixing, with empirical parameters which the user is 

willing to adjust to provide the best fit of the model to the observations. Sometimes, this 

approach is the only way to determine the parameter values. 

Suppose that the model is linear in x (w) and that it contains a vector of parameters, p> 

whose nominal values, p0> we wish to improve, while also estimating the state vector. Write the 

model as ¡ ¢ 
{66008} x(w) =  A p(w � 1) x(w � 1) + Bq(w � 1) + �u(w � 1)> (4.160) 

where the time dependence in p (w) to the changing estimate of their value rather than a true 

physical time dependence. A general approach to solving this problem is to augment the state 
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vector. That is, 6
5


997

x(w)
::8
{66009} xD(w) =  = (4.161) 

p(w) 

Then write a model for this augmented state as, 

xD(w) = LD [xD(w � 1)> q(w � 1)> u(w � 1)] > (4.162) {66010} 

where
 ;
AA?


<
AA@ 

AA>

xD (w � 1) +Bq(w � 1) + �u(w � 1) = (4.163) {66011}

¡ ¢ 
A p(w � 1) 0 

LD =
AA=
 0 I 

The observation equation is augmented simply as 

yD(w) = ED(w)xD(w) + nD(w) > 

ED(w) = {E(w) 0} > nD(w) = n(w) > 

assuming that there are no direct measurements of the parameters. The evolution equation for 

the parameters can be made more complex than indicated here. A solution can be found by 

using the linearized Kalman filter, for example, linearizing about the nominal parameter values. 

Parameter estimation is a very large subject.140 

A major point of concern in estimation procedures based upon Gauss-Markov type methods 

lies in specification of the various covariance matrices, especially those describing the model 

error–here lumped into Q(w). The reader will probably have concluded that there is, however, 

nothing precluding deduction of the covariance matrices from the model and observations, given 

that adequate numbers of observations are available. For example, it is straightforward to show 

that if a Kalman filter is operating properly, then the so-called innovation, y(w) � Ex̃(w> �), 
should be uncorrelated with all previous measurements: 

¡ ¢ 
hy(w 0) y(w)� Ex̃(w> �) i = 0 > w0 ? w>  (4.164) {66013} 

(recall Eq. (2.431)). To the extent that (5.29) is not satisfied, the covariances need to be modi-

fied, and algorithms can be formulated for driving the system toward this condition. The possi-

bilities for such procedures have an extended literature under the title “adaptive estimation.”141 

4.7.3 Nonlinear Adjoint Equations; Searching for Solutions 

Consider now a nonlinear model in the context of the Lagrange multipliers approach. Let the 

model be nonlinear in either the state vector, or the model parameters, or both, so that a typical 
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objective function is, 

M = [x(0) � x0]
W 
P(0)31 [x(0) � x̃0] 

wi X 
+ [E(w)x(w) � y(w)]W 

R(w)31 [E(w)x(w) � y(w)] 
w=1 

wi 31 (4.165) X 
+ u(w)W Q(w)31 u(w) 
w=0

wi
X 

� 2 µ(w)W [x(w) � L [x(w � 1)> Bq(w � 1)> �u(w � 1)]] = 
w=1 

The observations continue to be treated as linear in the state vector, but even this assumption 

can be relaxed. The normal equations are: 

µ ¶
{66015} 1 CM 

= Q (w)31 
u(w) +  

CL (x(w)> Bq(w)> �u(w)) W 
W � µ(w + 1)  =  0 > (4.166) 2 Cu(w) Cu (w)


0 w
� � wi � 1 

CM1{66016} 2 Cµ(w)
= x(w) � L [x(w � 1)> Bq(w � 1)> �u(w � 1)] = 0 > 1 w (4.167) � � wi 

¶
CM CL (x(0)> Bq(0)> �u(0)) W 

{66017} 1 = P(0)31 [x(0) � x0] +  

µ 

µ(1) = 0 > (4.168) 2 Cx(0) Cx(0)

CM


{66018} 1 = E(w)W R(w)31 [E(w)x(w) � y(w)] � µ(w) (4.169) 2 Cx(w) ¶W 

µ(w + 1)  =  0 > 1 w+ 

µ 
CL (x(w)> Bq(w)> �u(w)) 

Cx(w) 
� � wi � 1 

CM 
{66019} 1 = E(wi )

W R(wi )
31 [E(wi )x(wi ) � y(wi )] � µ(wi ) =  0 = (4.170) 2 Cx(wi ) 

These are nonlinear because of the nonlinear model (4.167)–although the adjoint model (4.169) 

remains linear in µ(w)–and the linear methods used thus far will not work directly. The oper-

ators, 

µ 
CL (x (w) > Bq (w) > �u (w) > w) 

¶
> 

µ 
CL (x (w) > Bq (w) > �u (w) > w) 

¶ 

> (4.171) {adjoint1} 
Cu (w) Cx(w) 

appearing in the above equations are, as in Eq. (4.157), the derivatives of the model with respect 

to the control and statevectors. Assuming they exist, they represent a linearization of the model 

about the state and control vectors and again are the tangent linaer model. Their transposes 

are, in this context, the adjoint model. There is some ambiguity about the terminology: the 

form of (4.171) or the transposes are definable independent of the form of M= Otherwise, Eq. 

(4.169) and its boundary condition (4.170) depend upon the actual observations and the details 
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of M ; one might call this pair the “adjoint evolution” equation to distinguish it from the adjoint 

model. 

If the nonlinearity is not too large, perturbation methods may work. This notion leads to 

what is usually called “neighboring optimal control”142 Where the nonlinearity is large, the 

approach to solution is an iterative one. Consider what one is trying to do. At the optimum, 

if we can find it, M will reach a stationary value in which the terms multiplying the µ(w) will 

vanish. Essentially, one uses search methods that are able to find a solution (there may well be 

multiple such solutions, each corresponding to a local minimum of M). 

There are many known ways to seek approximate solutions to a set of simultaneous equations, 

linear or nonlinear, using various search procedures. Most such methods are based upon what 

are usually called “Newton” or “quasi-Newton” methods, or variations on steepest descent. The 

most popular approach to tackling the set (4.166)—(4.170) has been a form of conjugate gradient 

or modified steepest descent algorithm. The iteration cycles are commonly carried out by making 

a first estimate of the initial conditions and the boundary conditions—for example, setting u = 0. 

One integrates (4.167) forward in time to produce a first guess for x(w). A first guess set of 

Lagrange multipliers is obtained by integrating (4.169) backward in time. Normally, (4.166) is 

not then satisfied, but because the values obtained provide information on the gradient of the 

objective function with respect to the controls, one knows the sign of the changes to make in 

the controls to reduce M . Perturbing the original guess for u(w) in this manner, one does another 

forward integration of the model and backward integration of the adjoint. Because the Lagrange 

multipliers provide the partial derivatives of M with respect to the solution, (Eq. (4.168) permits 

calculation of the direction in which to shift the current estimate of x (0) to decrease M)> one can 

employ a conjugate gradient or steepest descent method to modify x̃ (0) and carry out another 

iteration. 

In this type of approximate solution, the adjoint solution, µ̃(w), is really playing two distinct 

roles. On the one hand, it is a mathematical device to impose the model constraints; on the 

other, it is being used as a numerical convenience for determining the direction and step size to 

best reduce the objective function. The two roles are obviously intimately related, but as we 

have seen for the linear models, the first role is the primary one. The problem of possibly falling 

into the wrong minimum of the objective function remains here, too. 

In practice, L (x (w� 1) >Bq (w� 1) >�u (w� 1) > w� 1) is represented as many lines of com-

puter code. Generating the derivatives in Eq. (4.171) can be a major undertaking. Fortunately, 

and remarkably, the automatic di�erentiation (AD) tools mentioned above can convert the code 

for L [x (w) >Bq (w) >�u (w) > w] into the appropriate code for the derivatives. While still requir-

ing a degree of manual intervention, this AD software renders Lagrange multiplier methods a 
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practical approach for model codes running to many thousands of lines.143 The basic ideas are {pagead2} 

sketched in the next subsection and the Chapter Appendix. 

4.7.4 Automatic Di�erentiation, Linearization, and Sensitivity 

The linearized and extended filters and smoothers (e.g., Eq. 4.158) and the normal equations 

(4.166-4.170) involve derivatives such as CL@Cx (w). One might wonder how these are to be 

obtained. Several procedures exist, but to motivate what is perhaps the most elegant method, 

let us begin with a simple example of a two-dimensional non-linear model. 

H{dpsoh. 

Let 65 

dxW (w � 1) x (w � 1) + f997

::8
x (w) =  L (x (w � 1)) =
 (4.172){nonlin1} 

exW (w � 1) x (w � 1) + g 

where d> e> f> g are fixed constants. Time stepping from w = 0> 

65 

dxW (0) x (0) + f997

::8
x (1)
 = > (4.173) 

exW (0) x (0) + g 

dxW (1) x (1) + f 

65 

997 
::8
x (2) = 

ex W (1) x (1) + g 
=== 

Consider the dependence, Cx (w) @Cx (0) > 

;
AA?


<
AA@ 

AA>


C{1(w) C{2 (w) 
Cx (w) C{1(0) C{1(0) 

(4.174){nonlin4} =
AA=
Cx (0) C{1(w) 
C{2(0) 

C{2 (w) 
C{2(0) 

For w = 2> by the definitions and rules of Chapter 2, we have,


;
AA?


<
AA@ 

AA>

= 
CL (L (x (0))) 
Cx (0) 

= L0 (x (0)) L0 (L (x (0))) = (4.175) 

C{1(2) C{2(2) 
Cx (2) C{1(0) C{1(0)

{chain4} =
AA=
Cx (0) C{1(2) 
C{2(0) 

C{2(2) 
C{2(0) 

Noting, 
Cx (2) CL (x (1)) Cx (1) CL (x (1)) CL (x (0)) CL (x (1))

{nonlin3} = = = (4.176)
Cx (0) Cx (0) Cx (0) Cx (1) Cx (0) Cx (1) 
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where we have used the “chainrule” for di�erentiation. Substituting into (4.176) we have, 
;
AA?


;
AA? 

< 
AA@ 

AA> 

< 
AA@ 

AA>


2d{1 (0) 2e{1 (0) 2d{1 (1) 2e{1 (1) 

2d{2 (1) 2e{2 (1) 

Cx (2) 
= 

Cx (0) A
A=

A
A=
2d{2 (0) 2e{2 (0) 

;
AA?


;
AA? 

<
AA@ 

AA> 

<
AA@ 

AA>


2d22d{1 (0) 2e{1 (0) 2de 
W (0) x (0) >= xA
A=


A
A 2=
2d{2 (0) 2e{2 (0) 2de 2e

which it may be confirmed is identical to Eq. (??). By direct calculation from Eq. (4.173), we


have ;
AA?


<
AA@ 

AA>

= (4.177) {chain3} 

d{1 (0) e{1 (0)Cx (2) ¡ ¢
2= 4  d2 + e x (0)W 

x (0)
Cx (0) AA=
d{2 (0) e{2 (0) 

Now let us use the chain rule on, 

x (2) = L (L (x (0))) = 

Cx (2) 
= L0 (x (0)) L0 (L (x (0))) > (4.178)

Cx (0) ;
AA?


< 
AA@ 

AA>

=


2d{1 (0) 2e{1(0) 
L0 (x (0)) = AA=
2d{2 (0) 2e{2 (0) 
;
AA?


< 
AA@ 

AA>

=


;
AA?


< 
AA@ 

AA>

=


2d2x (0)W 
x (0) 2dex (0)W2d{1 (1) 2e{1(1) x (0) 

L0 (L (x (0))) = L0 (x (1)) = A
A A
A=
2dex (0)W 
x (0) 2e2x (0)W=
2d{2 (1) 2e{2 (1) x (0) 

Multiplying, as in (4.178), 
;
AA?


;
AA? 

< 
AA@ 

AA> 

< 
AA@ 

AA>


2d2x (0)W 
x (0) 2dex (0)W2d{1 (0) 2e{1(0) x (0) 

= A
A=

A
A 2dex (0)W 

x (0) 2e2x (0)W= 
;
AA?


2d{2 (0) 2e{2 (0) x (0) 
<
AA@ 

AA>


d{1 (0) e{1 (0)¡ ¢
24 d2 + e x (0)W 

x (0)AA=
d{2 (0) e{2 (0) 

consistent with (4.177). Hence, as required, 
;
AA?
2d{1 (0) 2e{1(0) 

;
AA? 

<
AA@ 

AA> 

2d2x (0)W 
x (0) 2dex (0)W 

<
AA@ 

AA>


x (0) 
gx (2) = gx (0)W = A
A AA= 2dex (0)W 

x (0) 2e2x (0)W 
x (0)2d{2 (0) 2e{2 (0) =
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As a computational point note that this last equation involves a matrix-matrix multiplication on 

the right. But if written as a transpose, 

;
AA?


W 

AA

<
AA@ 

AA> 

;
AA?


<
AA@

W 

2d2x (0)W 
x (0) 2dex (0)W 

x (0) 2d{1 (0) 2e{1(0) 
gx (2)W = gx (0) =
A
A AA>= 2e22dex (0)W 

x (0) x (0)W 
x (0) =
2d{2 (0) 2e{2 (0) 

gx (2)W can be found from matrix-vector multiplications alone, and which for large matrices is a 

vastly reduced computation. This reduction in computational load lies behind the use of so-called 

reverse mode methods described below. 

Going much beyond these simple statements takes us too far into the technical details. 144 

The chain rule can be extended, such that, 

Cx (w) CL (x (w � 1)) Cx (w � 1) CL (x (w)) CL (x (w � 2)) CL (x (w � 1))
{chainrule1} = = = (4.179)

Cx (0) Cx (0) Cx (0) Cx (w � 1) Cx (0) Cx (w � 1) 
CL (x (w � 3)) CL (x (w � 2)) CL (x (w � 1)) 

= = === 
Cx (0) Cx (w � 2) Cx (w � 1) 

CL (x (w � 2)) CL (x (w � 1)) 
= 
CL (x (0)) 

=== 
Cx (0) Cx (w � 2) Cx (w � 1) 

Although this result is formally correct, such a calculation could be quite cumbersome to code 

and carryout for a more complicated model (examples of such codes do exist). An alternative, of 

course, is to systematically and separately perturb each of the elements of x (0) > and integrate 

the model forward from w = 0  to w> thus numerically evaluating Cx (w) @C{l (0) > 1 � l � Q= The 

model would thus have to be run Q times, and there might be issues of numerical accuracy. 

(The approach is similar to the determination of numerical Green functions considered above.) 

Practical di!culties such as these have given rise to the idea of “automatic di�erentia-

tion” in which one accepts from the beginning that a computer code will be used to define 

L (x (w) > w>  q (w)) (reintroducing the more general definition of L)=145 One then seeks automatic 

generation of a second code, capable of evaluating the elements in Eq. (4.179), that is terms of 

the form CL (x (q)) @Cx (q) > for any q= Automatic di�erentiation (AD) tools (sometimes called 

“compilers” take the computer codes (typically in Fortran, or C or Matlab) and generate new 

codes for the exact partial derivatives. Various packages go under names like ADIFOR, TAF, 

ADiMAT, etc. The possibility of using such procedures has already been alluded to, where it 

was noted that for a linear model, the first derivative would be the state transition matrix A> 

which may not otherwise be explicitly available. That is, 

Cx (w) 
A (w) =  

CL (x (w) > w>  q (w)) 
= 
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Actual implementation of AD involves one deeply in the structures of computer coding languages, 

and is not within the scope of this book. Note that the existing implementations are not 

restricted to such simple models as we used in the particular example, but deal with the more 

general L (x (w) > w>  q (w)) = 

In many cases, one cares primarily about some scalar quantity, K (x̃ (wi )) > e.g. the heat 

flux or pressure field in a flow, as given by the statevector at the end time, x (wi ) > of a model 

computation. Suppose146 one seeks the sensitivity of that quantity to perturbations in the 

initial conditions (any other control variable could be considered), x (0) = Let L continue to be 

the operator defining the time-stepping of the model. Define �w = L (x (w) > w>  q (w)) = Then, 

¡ £ 
K = K �wi �wi 31 [===�1 [x (0)]]

¤¢ 
> 

that is, the function of the final state of interest is a nested set of operators working on the 

control vector x (0). Then the derivative of K with respect to x (0) is again obtained from the 

chain rule, ³ h i´CK £ ¤
0 0 0 

Cx (0) 
= K 0 �wi 

�wi 31 ===�1 [x (0)] > (4.180) {operator1} 

where the prime denotes the derivative with respect to the argument of the operator L evaluated 

at that time, 
C�w (p) 
Cp 

= 

Notice that these derivatives, are the Jacobians (matrices) of dimension Q × Q at each time-

step, and are the same derivatives that appear in the operators in (4.171). The nested operator 

(4.180) can be written as a matrix product, 

CK 
kW C�1 (p) C�2 (p) C�wi (p) = === 

Cx (0) 
u

Cp Cp Cp 
= (4.181) {operator2} 

uk is the vector of derivatives of function K (the gradient) and so (4.181) is a column vector of 

dimension Q × 1= p represents the statevector at the prior timestep for each �w The adjoint com-

pilers described above compute CK@Cx (0) in what is called the “forward mode”, producing an 

operator which runs from right to left, multiplying wi -Q ×Q matrices starting with C�1 (p) @Cp= 

If however, Eq. (4.181) is transposed, 

µ ¶ µ ¶W µ ¶W µ ¶
C�1 (p) 

WCK W C�wi (p) = === 
Cx (0) Cp 

C�wi 31 (p) 

Cp Cp 
uk> (4.182) {operator3} 

where the first multiplication on the right involves multiplying the column vector uk by an Q ×Q 

matrix, thus producing another Q ×1 vector. More generally, the set of products in (4.182), again 

taken from right to left, involves only multiplying a vector by a matrix, rather than a matrix by 
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a matrix as in (4.181), with a potentially very large computational saving. Such evaluation is 

the reverse or adjoint mode calculation (the transposes generate the required adjoint operators. 

although a formal transpose is not actually formed) and have become available in the automatic 

di�erentiation tools only comparatively recently. In comparing the computation in the forward 

and reverse modes, one must be aware that there is a storage penalty in (4.182) not incurred 

in (4.181).147 In practice, the various operators C�l (p) @Cp are not obtained explicitly, but are 

computed. 

Historically, the forward mode was developed first, and remains the most common imple-

mentation of AD. It permits one to systematically linearize models, and by repeated application 

of the AD tool, to develop formal Taylor series for nonlinear models. With the rise in fluid state 

estimation problems of very large dimension, there has recently been a much greater emphasis 

on the reverse mode. 

Many fluid models rely on “if...then...” and similar branching statements, such as assignment 

of a variable to the maximum value of a list. For example, if some region is statically unstable 

owing to cooling at the surface, a test for instability may lead the model to homogenize the 

fluid column; otherwise, the stratification is una�ected. Objections to AD are sometimes raised, 

apparently based on the intuitive belief that such a model cannot be di�erentiated. In practice, 

once a branch is chosen, the statevector is well-defined, as is its derivative, the AD code itself 

then having corresponding branches or assignments to maxima or minima of a list. A brief 

example of this issue is given in the Chapter Appendix. Our employment so far of the adjoint 

model and the adjoint evolution equation, has been in the context of minimizing an objective 

function–and to some degree, the adjoint has been nothing but a numerical convenience for 

algorithms which find minima. As we have seen repeatedly however, Lagrange multipliers have 

a straightforward interpretation as the sensitivity of an objective function M> to perturbations 

in problem parameters. This use of the multipliers can be developed independently of the state 

estimation problem. 

H{dpsoh. 

Consider the linear time invariant model 

x (q) =  Ax (q � 1) > 

such that 

x (q) =  Aqx (0) = ³ ´ 
Suppose we seek the dependence of K = x (q)W 

x (q) @2 =  x (0)W 
AqW Aqx (0) @2 on the prob-

lem parameters. The sensitivity to the initial conditions is straightforward, 

CK 
= AqW Aqx (0) = 

Cx (0) 
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Suppose instead that A depends upon an internal parameter, n> perhaps the spring constant in 

the example of the discrete mass-spring oscillator, for which K would be an energy. Then, 

³ ´ 3 ³ ´ 4W 
C x (q)W 

x (q) C x (q)W 
x (q) Cx (q)

= x (q)W Cx (q)CK D= = C = 
Cn Cn Cx (q) Cn Cn 

We have from Eq. (2.33), 

� 
= x (0) = 

gx (q) gAq gA
Aq31 + A 

gA
Aq32+=== + Aq31 gA ̧

 

x (0) > 
gn gn gn gn gn 

and so, � 
CK 

= x (0)W 
AqW gAAq31 + A 

gA
Aq32+=== + Aq31 gA ̧

 

x (0) = 
Cn gn gn gn 

and with evaluation of  gA@gn being straightforward, we are finished. 

The Chapter Appendix describes briefly how computer programs can be generated to carry 

out these operations. 

4.7.5 Approximate Methods 

All of the inverse problems discussed, whether time-independent or not, were reduced ultimately 

to finding the minimum of an objective function, either in unconstrained form [e.g., (2.350) 

or 4.61] or constrained by exact relationships (e.g., models) (2.352) or (4.97). Once the model is 

formulated, the objective function agreed on, and the data obtained in appropriate form (often 

the most di!cult step), the formal solution is reduced to finding the constrained or unconstrained 

minimum. “Optimization theory” is a very large, very sophisticated subject directed at finding 

such minima, and the methods we have described here–sequential estimation and Lagrange 

multiplier methods–are only two of a number of possibilities. 

As we have seen, some of the methods stop at the point of finding a minimum and do not 

readily produce an estimate of the uncertainty of the solution. One can distinguish inverse 

methods from optimization methods by the requirement of the former for the requisite uncer-

tainty estimates. Nonetheless, as noted before in some problems, mere knowledge that there is 

at least one solution may be of intense interest, irrespective of whether it is unique or whether 

its stability to perturbations in the data or model is well understood. 

The reader interested in optimization methods generally is referred to the literature on that 

subject.148 Geophysical fluid problems often fall into the category of extremely large, nonlinear 

optimization, one which tends to preclude the general use of many methods that are attractive 

for problems of more modest size. 
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The continued exploration of ways to reduce the computational load without significantly 

degrading either the proximity to the true minimum or the information content (the uncertain-

ties of the results) is a very high priority. Several approaches are known. The use of steady-state 

filters and smoothers has already been discussed. Textbooks discuss a variety of possibilities 

for simplifying various elements of the solutions. In addition to the steady-state assumption, 

methods include: (1) “state reduction”–attempting to remove from the model (and thus from 

the uncertainty calculation) elements of the state vector that are either of no interest or com-

paratively unchanging;149 (2) “reduced-order observers”,150 in which some components of the 

model are so well observed that they do not need to be calculated; (3) proving or assuming 

that the uncertainty matrices (or the corresponding information matrices) are block diagonal or 

banded, permitting use of a variety of sparse algorithms. This list is not exhaustive. 

4.8 Forward Models 

The focus we have had on the solution of inverse problems has perhaps given the impression 

that there is some fundamental distinction between forward and inverse modeling. The point 

was made at the beginning of this book that inverse methods are important in solving forward 

as well as inverse problems. Almost all the inverse problems discussed here involved the use of 

an objective function, and such objective functions do not normally appear in forward modeling. 

The presence or absence of objective functions thus might be considered a fundamental di�erence 

between the problem types. 

But numerical models do not produce universal, uniformly accurate solutions to the fluid 

equations. Any modeler makes a series of decisions about which aspects of the flow are most 

important for accurate depiction–the energy or vorticity flux, the large-scale velocities, the 

nonlinear cascades, etc.–and which cannot normally be achieved simultaneously with equal 

fidelity. It is rare that these goals are written explicitly, but they could be, and the modeler 

could choose the grid and di�erencing scheme, etc., to minimize a specific objective function. 

The use of such explicit objective functions would prove beneficial because it would quantify the 

purpose of the model. 

One can also consider the solution of ill-posed forward problems. In view of the discussion 

throughout this book, the remedy is straightforward: One must introduce an explicit objective 

function of the now-familiar type, involving state vectors, observations, control, etc., and this 

approach is precisely that recommended. If a Lagrange multiplier method is adopted, then Eqs. 

(2.332, 2.333) show that an over- or under-specified forward model produces a complementary 

under- or overspecified adjoint model, and it is di!cult to sustain a claim that modeling in the 
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forward direction is fundamentally distinct from that in the inverse sense. 

H{dpsoh 

Consider the ordinary di�erential equation 

g2{(w) 
gw2 � n 2{(w) =  0  = (4.183) {69001a} 

Formulated as an initial value problem, it is properly posed with Cauchy conditions {(0) = {0, 

{0(0) = {0 0. The solution is 

{(w) =  D exp(nw) +  E exp(�nw) > (4.184) {69001b} 

with D, E determined by the initial conditions. If we add another condition–for example, 

at the end of the interval of interest, {(wi ) =  {wi –the problem is ill-posed because it is now 

overspecified. To analyze and solve such a problem using the methods of this book, discretize it 

as 

{(w + 1)  � (2 + n 2){(w) +  {(w � 1) = 0 > (4.185) {69001c} 

taking �w = 1, with corresponding redefinition of n2 . A canonical form is, 

£ ¤W 
x(w) =  Ax(w � 1)> x(w) =  {(w)> {(w � 1) > A = 

;
AA? 

AA= 

2 +  n2 1�
< 
AA@ 

AA>

= 

1 0 

A reduced form of equations (4.166-4.170) are easily solved (the only “observations” are 

at the final time) by a backward sweep of the adjoint model (4.101) to obtain µ(1), which  

˜through (??) produces  x(1) in terms of x(wi ) � xg(wi ). A forward sweep of the model, to 

wi , produces the numerical value of x(wi ); the backward sweep of the adjoint model gives the˜

corresponding numerical value of x(1), and a final forward sweep of the model completes the˜

solution. The subproblem forward and backward sweeps are always well-posed. This recipe was 

run for 

˜n 2 = 0=05> �w = 1> x(1) = [0=805> 1=0]W > P(1) = 1032I > ½ ¾ 

{̃(wi ) =  1=427 × 1035> P(wi ) = diag  1034 104 > wi = 50  

with results in Figure 4.17. (The large subelement uncertainty in P(50), corresponding to scalar 

element, {(49), is present because we sought to specify only scalar element {(50), in  x(50).) The 

solution produces a new estimated value x̃ (0) = [0=800> 1=00]W which is exactly the value used 

in Fig. 4.17 to generate the stable forward computation. Notice that the original ill-posedness 

in both overspecification and instability of the initial value problem have been dealt with. The 
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Figure 4.17: (a) Stable solution. {1 (w) (solid curve) to Eq. (4.185) obtained by setting n2 = 0=05> 

x (0) = [0=800> 1=00]W = Dashed line is an unstable solution (dotted) obtained by 

modifying the initial condition to x (0) = [0=80001> 1=00]W = The growing solution 

takes awhile to emerge, but eventually swamps the stable branch. (b) Solution 

obtained by overspecification, in which x̃ (0) = [0=80001> 1=00]W > P (0) = =01I2> £ ¤ ¡ ¢ 
x̃ (50) = 1=4 × 1035> 1 , P (50) = diag [1034> 104] =(c) Lagrange multiplier values 

used to impose the initial and final conditions on the model. Solid curve is �1 (w) > 

and dash-dot is �2 (w) = {unstable1.eps 

Lagrange multipliers (adjoint solution) are also shown in the figure, and imply that the system 

sensitivity is greatest at the initial and final times. For a full GCM, the technical details are 

much more intricate, but the principle is not in doubt. 

This example can be thought of as the solution to a forward problem, albeit ill-posed, or as 

the solution to a more or less conventional inverse one. The distinction between forward and 

inverse problems has nearly vanished. Any forward model that is driven by observed conditions 

is ill-posed in the sense that there can again be no unique solution, only a most probable 

one, smoothest one, etc. As with an inverse solution, forward calculations no more produce 

unique solutions in these circumstances than do inverse ones. All problems involving observed 

parameters, initial or boundary conditions are necessarily ill-posed. 
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4.9 A Summary 

Once rendered discrete for placement on a digital computer, time-dependent inverse problems 

all reduce formally to the least-squares problems already considered in Chapters 2, 3. With 

a large enough, fast enough computer, they could even be solved by the same methods used 

for the static problems. Given however, the common need to to reduce the computing and 

storage burdens, a number of algorithms are available for finding solutions by considering the 

problem either in pieces, as in the sequential methods of filter/smoother, or by iterations as in 

the Lagrange multiplier methods. Solutions can be either accurate or approximate depending 

upon one’s needs and resources. In the end, however, the main message is that one is still 

seeking the solution to a least-squares problem, and the di�erences among the techniques are 

algorithmic ones, with tradeo�s of convenience and cost. 

Appendix to Chapter. Automatic Di�erentiation and Adjoints 

The utility of automatic di�erentiation (AD) of computer model codes was alluded to on Pages, 

4.2.2, 4.7.3, both as a way to determine the state transition matrix A> when it was only implicit 

in a code, and as a route to linearizing nonlinear models. The construction of software capable 

of taking (say) a Fortran90 code and automatically generating a second Fortran90 code for the 

requisite derivatives of the model is a considerable, if not altogether complete, achievement of 

computer science. Any serious discussion is beyond the author’s expertise, and well outside the 

scope of this book. But because only AD methods have made the Lagrange multiplier (adjoint) 

method of state estimation a practical approach for realistic fluid problems, we briefly sketch the 

possibilities with a few simple examples. The references given in note 142 should be consulted 

for a proper discussion. 

Consider first the problem of finding the state transition matrix. A simple time stepping 

code written in Matlab for a 2-vector is 

function y=lin(x); 

y(1)=0.9*x(1)+0.2*x(2); y(2)=0.2*x(1)+0.8*x(2); 

Here x would be the state vector at time w � 1> and y would be its value one-time step in the 

future. A matrix/vector notation is deliberately avoided so that A is not explicitly specified. 

When the AD tool ADiMat (available through http://www.sc.rwth-aachen.de/adimat) is used, 

it writes a new Matlab code, 

function [g_y, y]= g_lin(g_x, x) %lin.m; 
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%x is assumed to be a 2-vector 

g_lin_0= 0.9* g_x(1);


lin_0= 0.9* x(1);


g_lin_1= 0.2* g_x(2);


lin_1= 0.2* x(2);


g_y(1)= g_lin_0+ g_lin_1;


y(1)= lin_0+ lin_1;


clear lin_0 lin_1 g_lin_0 g_lin_1 ;


g_lin_2= 0.2* g_x(1);


lin_2= 0.2* x(1);


g_lin_3= 0.8* g_x(2);


lin_3= 0.8* x(2);


g_y(2)= g_lin_2+ g_lin_3;


y(2)= lin_2+ lin_3;


clear lin_2 lin_3 g_lin_2 g_lin_3 ;


The notation has been cleaned up somewhat to make it more readable. Consider for exam-

ple, the new variable, g_lin_0 = 0=9 � g_x(1); The numerical value 0.9 is the partial derivative 

of | (1) with respect to { (1) = The variable g_x(1) would be the partial derivative of { (1) with 

respect to some other independent variable, permitting the chain rule to operate if desired. 

Otherwise, one can set it to unity on input. Similarly the notation g_lin_i denotes the corre-

sponding derivative of |(1) with respect to {(l)= By simple further coding, one can construct the 

A matrix of the values of the partial derivatives. Here, ADiMat has produced the tangent linear 

model, which is also the exact forward model. More interesting examples can be constructed. 

The Matlab code corresponding to the simple switch is, 

function y= switch1(a); if aA 0, y= a; else, y= a^2+2*a; end 

that is, | = d if independent variable d (externally prescribed) is positive, or else, | = d2 +2d= 

Running this code through AdiMat produces (again after some cleaning up of the notation), 

function [g_y, y]= g_switch1(g_a, a);


if aA 0, g_y= g_a;


y= a;


else, g_tmp_2=2* a^(2- 1)* g_a;


tmp_0= a^2;


g_tmp_1= 2* g_a;


tmp_1= 2* a;


g_y= g_tmp_0+ g_tmp_1;
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evaporation 

inflow 

spill-over 

release 

Figure 4.18: Reservoir. (From P. Heimbach) {reservoir.eps 

y= tmp_0+ tmp_1; 

end 

That is to say, the derivative, g_y, is  1 for positive d> otherwise it is  d + 2= g_a can be 

interpreted as the derivative of d with respect to another, arbitrary, independent variable, thus 

permitting the use of the chain rule. The derivative is defined for all values of d except d = 0= 

Consider now a physical problem of a reservoir as shown in Fig. 4.18.151 The model is 

chosen specifically to have discontinuous behavior: there is an inflow, storage, and outflow. If 

the storage capacity is exceeded, there can be overspill, determined by the max statement below. 

A forward code, now written in Fortran is, 

Thresholds: a hydrological reservoir model (I) 

do t = 1,  msteps  

• get sources & sinks at time t 

inflow, evaporation, release 

• calculate water release based on storage 

release(t) = 0.8*storage(t-1)0=7 

• calculate projected stored water, 
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storage = storage+inflow-release-evaporation 

nominal = storage(t-1) +


h*( infl(t)-release(t)-evap(t) )


• If threshold capacity is exceeded, spill-over: 

spill(t) = MAX(nominal-capac , 0.) 

• re-adjust projected stored water after spill-over: 

storage(t) = nominal - spill(t) 

• determine outflow: 

out(t) = release(t) + spill(t)/h 

end do


Note the presence of the max statement.


° When run through the AD tool TAF (a product of FastOpt R ), one obtains for the tangent 

linear model, 

Thresholds: a hydrological reservoir model (II) 

The tangent linear model 

do t=1, msteps


g_release(t) =0.56*g_storage(t-1)*storage(t-1)**(-0.3)


release(t)=0.8*storage(t-1)**0.7


g_nominal=-g_release(t)*h+g_storage(t-1)


nominal=storage(t-1)+h*(infl(t)-release(t)-evap(t))


g_spill(t)=g_nominal*(0.5+sign(0.5,nominal-capac-0.))


spill(t)=MAX(nominal-capac,0.)


g_storage(t)=g_nominal-g_spill(t)


storage(t)=nominal-spill(t)


g_out(t)=g_release(t)+g_spill(t)/h


out(t)=release(t)+spill(t)/h


end do


• g_release(t) not defined for storage(t-1) = 0. 

• g_spill(t) not defined for nominal = capac 

Note how the maximum statement has given rise to the new variable g_spill(t), its cor-

responding adjoint variable. 
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Note that the AD tool can cope with such apparently non-di�erentiable operators as the 

maximum of a vector. In practice, it internally replaces the function max with a loop of tests for 

relative sizes of successive elements. Not all AD tools can cope with all language syntaxes, and 

one must be alert to failures owing to incomplete handling of various structures. Nonetheless, 

the existing tools are a remarkably complete achievement. 

TAF is capable of producing the reverse mode. A major issue is the ability to restart the 

computation from intermediate results, in an operation called “checkpointing.” 

Notes 
101
Liebelt (1967), Gelb (1974), Bryson and Ho (1975), Brown (1983), and Anderson and Moore (1979) are 

especially helpful 
102
Daley (1991) 
103
Meteorologists have tended to go their own idiosynchratic way–seee Ide et al. (1997)–with some loss in 

transparency to other fields. 
104
Box et al. (1994) 
105
Luenberger (1979) 
106
Menemenlis and Wunsch (1997); Stammer and Wunsch (1996) 
107
von Storch, et al. (1988). 
108
Giering and Kaminski (1997), Marotzke et al. (1999). 
109
See Bryson and Ho (1975, p. 351). 
110
For example, Stengel (1986). 
111
Munk, Worcester, & Wunsch (1995). 
112
A method exploited by Stammer and Wunsch (1996). 
113
Kalman (1960). Kalman’s derivation was for this discrete case. The continuous case, which was derived later, 

is known as the “Kalman-Bucy” filter and is a much more complicated object. 
114
Stengel (1986, Eq. 4.3-22) 
115
For example, Goodwin and Sin (1984, p. 59). 
116
Feller (1957). 
117
Anderson and Moore (1979) discuss these and other variants of the Kalman filter equations. 
118
Some history of the idea of the filter, its origins in the work of Wiener and Kolmogoro� and with a number 

of applications, can be found in Sorenson (1985). 
119
Bryson & Ho (1975 , p. 363) , or Brown (1983, p. 218). 
120
Adapted from Bryson & Ho (1975, Chapter 13), whose notation is unfortunately somewhat di!cult. 
121
For Rauch, Tung, and Striebel (1965) 
122
Gelb (1974); Bryson & Ho (1975); Anderson & Moore (1979); Goodwin & Sin, (1984); Sorenson (1985). 
123
Some guidance is provided by Bryson and Ho (1975, pp. 390—5) or Liebelt (1967). In particular, Bryson and 

Ho (1975) introduce the Lagrange multipliers (their equations 13.2.7—13.2.8) simply as an intermediate numerical 

device for solving the smoother equations. 
124
Luenberger (1979) 
125
Wunsch (1988b) shows a variety of calculations as a function of variations in the terminal constraint accuracies. 

An example of the used of this type of model is discussed in Chapter 6. 
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126
Bennett (2002). 
127
The use of the adjoint to solve o2-norm problems is discussed by Bryson and Ho (1975, Section 13.3), who 

relax the restriction of full controllability, K = I. Because of the connection to regulator/control problems, a 

variety of methods for solution is explored there. 
128
Bryson & Ho (1975) 
129
Franklin, Powell, and Workman (1990) 
130
See the examples in Ghil et al. (1981) or Figure 6—5e. 
131
Stengel (1986), Franklin (1990), Anderson and Moore (1979), Bittanti, Laub, and Willems (1991a), Fukumori 

et al. (1993) and Fu et al. (1993). 
132
See Reid (1972) for a discussion of the history of the Riccati equation in general; it is intimately related to 

Bessel’s equation and has been studied in scalar form since the 18th century. Bittanti et al. (1991a) discuss many 

di�erent aspects of the matrix form. 
133
Discussed by Bittanti et al. (1991b) 
134
following Franklin et al., 1990

135
e.g., Franklin et al., 1990; Stengel, 1986

136
Goodwin and Sin (1984) or Stengel (1986) 
137
Miller, Ghil, and Gauthiez (1994) discuss some of the practical di!culties. 
138
For example, Miller et al. (1994) 
139
e.g., Lea et al. (2000). 
140
E.g., Anderson & Moore, 1979; Goodwin & Sin, 1984; Haykin, 1986

141
Among textbooks that discuss this subject are those of Haykin (1986), Goodwin and Sin (1984), and 

Ljung (1987). 
142
E.g., see Stengel, Chapter 5

143
Giering and Kaminski (1998); Marotzke et al. (1990); Griewank (2000); Corliss et al. (2002) 
144
See Marotzke et al. (1999) or Giering (2000). 
145
Rall (1981), Griewank (2002) 
146
We follow here, primarily, Marotzke et al. (1999). 
147
Restrepo et al. (1995) discuss some of the considerations. 
148
e.g., Gill et al., 1981; Luenberger, 1984; Scales, 1985

149
Gelb, 1974

150
Luenberger, 1964; O’Reilly, 1983

151
Example due to P. Heimbach. For more information see http://mitgcm.org, Short Course on Data Assimila-

tion, WHOI, May 2003. 
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