
174 CHAPTER 3 EXTENSIONS OF METHODS 

3.3 Inequality Constraints; Nonnegative Least Squares 

In many estimation problems, it is useful to be able to impose inequality constraints upon the 

solutions. Problems involving tracer concentrations, for example, usually demand that they 

remain positive; empirical eddy di�usion coe!cients are sometimes regarded as acceptable only 

when non-negative; in some fluid flow problems we may wish to impose directions, but not 

magnitudes, upon velocity fields. 

Such needs lead to consideration of the forms, 

{eq:51002} Ex + n = y> (3.35) 

{eq:51003} Gx h > (3.36)� 
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where the use of a greater-than inequality to represent the general case is purely arbitrary; 

multiplication by minus 1 readily reversing it. G is of dimension P2 × Q . 

Several cases need to be distinguished. (A) Suppose E is full rank and fully determined; then 

the SVD solution to (3.35) by itself is x̃, ñ, and there is no solution nullspace. Substitution of the 

solution into (3.36) shows that the inequalities are either satisfied or that some are violated. In 

the first instance, we are finished, and the inequalities bring no new information. In the second 

case, the solution must be modified and necessarily, kñk will increase, given the noise-minimizing 

nature of the SVD solution. It is also possible that the inequalities are contradictory, in which 

case there is no solution. 

(B) Suppose that E is formally underdetermined–so that a solution nullspace exists. If the 

particular-SVD solution violates one or more of the inequalities and requires modification, we can 

distinguish two subcases. (1) Addition of one or more nullspace vectors permits the inequalities 

to be satisfied. Then the solution residual norm will be una�ected, but kx̃k will increase. (2) The 

nullspace vectors by themselves are unable to satisfy the inequality constraints, and one or more 

range vectors are required to do so. Then both kx̃k, kñk will increase. 

Case (A) is the conventional one.74 The so-called Kuhn-Tucker-Karush theorem is a require-

ment for a solution x̃ to exist. Its gist is as follows: Let P � Q and E be full rank; there are 

no vl in the solution nullspace. If there is a solution, there must exist a vector, q, of dimension  

P2> such that 

EW (Ex̃ � y) = GW q = (3.37) {eq:51004} 

Gx � h = r > (3.38) {eq:51005} 

where the P2 elements of q are divided into two groups. For group 1, of dimension  p1, 

ul = 0> tl � 0 > (3.39) {eq:51006} 

and for group 2, of dimension  p2 =P2 � p1, 

ul A 0> tl = 0 = (3.40) {eq:51007} 

To understand this theorem, recall that in the solution to the ordinary overdetermined least-

squares problem, the left-hand side of (3.37) vanishes identically (2.91 and 2.262), being the 

projection of the residuals onto the range vectors, ul> of EW . If this solution violates one or 

more of the inequality constraints, one must introduce into it structures that produce increased 

residuals. 

Because there are no nullspace vl, the  rows  of  G may each be expressed  exactly by an  

expansion in the range vectors. In the second group of indices, the corresponding inequality 
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constraints are already satisfied by the ordinary least-squares solution, and no modification of the 

structure proportional to vl is required. In the first group of indices, the inequality constraints 

are marginally satisfied, at equality, only by permitting violation of the demand (2.91) that the 

residuals should be orthogonal to the range vectors of E. If the ordinary least-squares solution 

violates the inequality, the minimum modification required to it pushes the solution to the 

edge of the acceptable bound, but at the price of increasing the residuals proportional to the 

corresponding ul. The algorithm consists of finding the two sets of indices and then the smallest 

coe!cients of the vl corresponding to the group 1 indices required to just satisfy any initially 

violated inequality constraints. A canonical special case, to which more general problems can 

be reduced, is based upon the solution to G = I, h = 0–called “nonnegative least squares”.75 

The requirement, x � 0, is essential in many problems involving tracer concentrations, which 

are neccessarily positive. 

The algorithm can be extended to the underdetermined/rank-deficient case in which the 

addition, to the original basic SVD solution, of appropriate amounts of the nullspace of vl is 

capable of satisfying any violated inequality constraints.76 One simply chooses the smallest 

mean-square solution coe!cients necessary to push the solution to the edge of the acceptable in-

equalities, producing the smallest norm. The residuals of the original problem do not increase– 

because only nullspace vectors are being used. G must have a special structure for this to be 

possible. 

The algorithm can be further generalized77 by considering the general case of rank-deficiency/-

underdeterminism where the nullspace vectors by themselves are inadequate to produce a solu-

tion satisfying the inequalities. In e�ect, any inequalities “left over” are satisfied by invoking 

the smallest perturbations necessary to the coe!cients of the range vectors vl. 




