
4.9 A SUMMARY 265

4.9 A Summary

Once rendered discrete for placement on a digital computer, time-dependent inverse problems

all reduce formally to the least-squares problems already considered in Chapters 2, 3. With

a large enough, fast enough computer, they could even be solved by the same methods used

for the static problems. Given however, the common need to to reduce the computing and

storage burdens, a number of algorithms are available for finding solutions by considering the

problem either in pieces, as in the sequential methods of filter/smoother, or by iterations as in

the Lagrange multiplier methods. Solutions can be either accurate or approximate depending

upon one’s needs and resources. In the end, however, the main message is that one is still

seeking the solution to a least-squares problem, and the di�erences among the techniques are

algorithmic ones, with tradeo�s of convenience and cost.

Appendix to Chapter. Automatic Di�erentiation and Adjoints

The utility of automatic di�erentiation (AD) of computer model codes was alluded to on Pages,

4.2.2, 4.7.3, both as a way to determine the state transition matrix A> when it was only implicit

in a code, and as a route to linearizing nonlinear models. The construction of software capable

of taking (say) a Fortran90 code and automatically generating a second Fortran90 code for the

requisite derivatives of the model is a considerable, if not altogether complete, achievement of

computer science. Any serious discussion is beyond the author’s expertise, and well outside the

scope of this book. But because only AD methods have made the Lagrange multiplier (adjoint)

method of state estimation a practical approach for realistic fluid problems, we briefly sketch the

possibilities with a few simple examples. The references given in note 142 should be consulted

for a proper discussion.

Consider first the problem of finding the state transition matrix. A simple time stepping

code written in Matlab for a 2-vector is

function y=lin(x);

y(1)=0.9*x(1)+0.2*x(2); y(2)=0.2*x(1)+0.8*x(2);

Here x would be the state vector at time w � 1> and y would be its value one-time step in the

future. A matrix/vector notation is deliberately avoided so that A is not explicitly specified.

When the AD tool ADiMat (available through http://www.sc.rwth-aachen.de/adimat) is used,

it writes a new Matlab code,

function [g_y, y]= g_lin(g_x, x) %lin.m;

266CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION

%x is assumed to be a 2-vector

g_lin_0= 0.9* g_x(1);

lin_0= 0.9* x(1);

g_lin_1= 0.2* g_x(2);

lin_1= 0.2* x(2);

g_y(1)= g_lin_0+ g_lin_1;

y(1)= lin_0+ lin_1;

clear lin_0 lin_1 g_lin_0 g_lin_1 ;

g_lin_2= 0.2* g_x(1);

lin_2= 0.2* x(1);

g_lin_3= 0.8* g_x(2);

lin_3= 0.8* x(2);

g_y(2)= g_lin_2+ g_lin_3;

y(2)= lin_2+ lin_3;

clear lin_2 lin_3 g_lin_2 g_lin_3 ;

The notation has been cleaned up somewhat to make it more readable. Consider for exam-

ple, the new variable, g_lin_0 = 0=9 � g_x(1); The numerical value 0.9 is the partial derivative

of | (1) with respect to { (1) = The variable g_x(1) would be the partial derivative of { (1) with

respect to some other independent variable, permitting the chain rule to operate if desired.

Otherwise, one can set it to unity on input. Similarly the notation g_lin_i denotes the corre-

sponding derivative of |(1) with respect to {(l)= By simple further coding, one can construct the

A matrix of the values of the partial derivatives. Here, ADiMat has produced the tangent linear

model, which is also the exact forward model. More interesting examples can be constructed.

The Matlab code corresponding to the simple switch is,

function y= switch1(a); if aA 0, y= a; else, y= a^2+2*a; end

that is, | = d if independent variable d (externally prescribed) is positive, or else, | = d2 +2d=

Running this code through AdiMat produces (again after some cleaning up of the notation),

function [g_y, y]= g_switch1(g_a, a);

if aA 0, g_y= g_a;

y= a;

else, g_tmp_2=2* a^(2- 1)* g_a;

tmp_0= a^2;

g_tmp_1= 2* g_a;

tmp_1= 2* a;

g_y= g_tmp_0+ g_tmp_1;

4.9 A SUMMARY 267

evaporation

inflow

spill-over

release

Figure 4.18: Reservoir. (From P. Heimbach) {reservoir.eps

y= tmp_0+ tmp_1;

end

That is to say, the derivative, g_y, is 1 for positive d> otherwise it is d + 2= g_a can be

interpreted as the derivative of d with respect to another, arbitrary, independent variable, thus

permitting the use of the chain rule. The derivative is defined for all values of d except d = 0=

Consider now a physical problem of a reservoir as shown in Fig. 4.18.151 The model is

chosen specifically to have discontinuous behavior: there is an inflow, storage, and outflow. If

the storage capacity is exceeded, there can be overspill, determined by the max statement below.

A forward code, now written in Fortran is,

Thresholds: a hydrological reservoir model (I)

do t = 1, msteps

• get sources & sinks at time t

inflow, evaporation, release

• calculate water release based on storage

release(t) = 0.8*storage(t-1)0=7

• calculate projected stored water,

268CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION

storage = storage+inflow-release-evaporation

nominal = storage(t-1) +

h*(infl(t)-release(t)-evap(t))

• If threshold capacity is exceeded, spill-over:

spill(t) = MAX(nominal-capac , 0.)

• re-adjust projected stored water after spill-over:

storage(t) = nominal - spill(t)

• determine outflow:

out(t) = release(t) + spill(t)/h

end do

Note the presence of the max statement.

° When run through the AD tool TAF (a product of FastOpt R), one obtains for the tangent

linear model,

Thresholds: a hydrological reservoir model (II)

The tangent linear model

do t=1, msteps

g_release(t) =0.56*g_storage(t-1)*storage(t-1)**(-0.3)

release(t)=0.8*storage(t-1)**0.7

g_nominal=-g_release(t)*h+g_storage(t-1)

nominal=storage(t-1)+h*(infl(t)-release(t)-evap(t))

g_spill(t)=g_nominal*(0.5+sign(0.5,nominal-capac-0.))

spill(t)=MAX(nominal-capac,0.)

g_storage(t)=g_nominal-g_spill(t)

storage(t)=nominal-spill(t)

g_out(t)=g_release(t)+g_spill(t)/h

out(t)=release(t)+spill(t)/h

end do

• g_release(t) not defined for storage(t-1) = 0.

• g_spill(t) not defined for nominal = capac

Note how the maximum statement has given rise to the new variable g_spill(t), its cor-

responding adjoint variable.

NOTES 269

Note that the AD tool can cope with such apparently non-di�erentiable operators as the

maximum of a vector. In practice, it internally replaces the function max with a loop of tests for

relative sizes of successive elements. Not all AD tools can cope with all language syntaxes, and

one must be alert to failures owing to incomplete handling of various structures. Nonetheless,

the existing tools are a remarkably complete achievement.

TAF is capable of producing the reverse mode. A major issue is the ability to restart the

computation from intermediate results, in an operation called “checkpointing.”

Notes
101
Liebelt (1967), Gelb (1974), Bryson and Ho (1975), Brown (1983), and Anderson and Moore (1979) are

especially helpful
102
Daley (1991)
103
Meteorologists have tended to go their own idiosynchratic way–seee Ide et al. (1997)–with some loss in

transparency to other fields.
104
Box et al. (1994)
105
Luenberger (1979)
106
Menemenlis and Wunsch (1997); Stammer and Wunsch (1996)
107
von Storch, et al. (1988).
108
Giering and Kaminski (1997), Marotzke et al. (1999).
109
See Bryson and Ho (1975, p. 351).
110
For example, Stengel (1986).
111
Munk, Worcester, & Wunsch (1995).
112
A method exploited by Stammer and Wunsch (1996).
113
Kalman (1960). Kalman’s derivation was for this discrete case. The continuous case, which was derived later,

is known as the “Kalman-Bucy” filter and is a much more complicated object.
114
Stengel (1986, Eq. 4.3-22)
115
For example, Goodwin and Sin (1984, p. 59).
116
Feller (1957).
117
Anderson and Moore (1979) discuss these and other variants of the Kalman filter equations.
118
Some history of the idea of the filter, its origins in the work of Wiener and Kolmogoro� and with a number

of applications, can be found in Sorenson (1985).
119
Bryson & Ho (1975 , p. 363) , or Brown (1983, p. 218).
120
Adapted from Bryson & Ho (1975, Chapter 13), whose notation is unfortunately somewhat di!cult.
121
For Rauch, Tung, and Striebel (1965)
122
Gelb (1974); Bryson & Ho (1975); Anderson & Moore (1979); Goodwin & Sin, (1984); Sorenson (1985).
123
Some guidance is provided by Bryson and Ho (1975, pp. 390—5) or Liebelt (1967). In particular, Bryson and

Ho (1975) introduce the Lagrange multipliers (their equations 13.2.7—13.2.8) simply as an intermediate numerical

device for solving the smoother equations.
124
Luenberger (1979)
125
Wunsch (1988b) shows a variety of calculations as a function of variations in the terminal constraint accuracies.

An example of the used of this type of model is discussed in Chapter 6.

270 NOTES

126
Bennett (2002).
127
The use of the adjoint to solve o2-norm problems is discussed by Bryson and Ho (1975, Section 13.3), who

relax the restriction of full controllability, K = I. Because of the connection to regulator/control problems, a

variety of methods for solution is explored there.
128
Bryson & Ho (1975)
129
Franklin, Powell, and Workman (1990)
130
See the examples in Ghil et al. (1981) or Figure 6—5e.
131
Stengel (1986), Franklin (1990), Anderson and Moore (1979), Bittanti, Laub, and Willems (1991a), Fukumori

et al. (1993) and Fu et al. (1993).
132
See Reid (1972) for a discussion of the history of the Riccati equation in general; it is intimately related to

Bessel’s equation and has been studied in scalar form since the 18th century. Bittanti et al. (1991a) discuss many

di�erent aspects of the matrix form.
133
Discussed by Bittanti et al. (1991b)
134
following Franklin et al., 1990

135
e.g., Franklin et al., 1990; Stengel, 1986

136
Goodwin and Sin (1984) or Stengel (1986)
137
Miller, Ghil, and Gauthiez (1994) discuss some of the practical di!culties.
138
For example, Miller et al. (1994)
139
e.g., Lea et al. (2000).
140
E.g., Anderson & Moore, 1979; Goodwin & Sin, 1984; Haykin, 1986

141
Among textbooks that discuss this subject are those of Haykin (1986), Goodwin and Sin (1984), and

Ljung (1987).
142
E.g., see Stengel, Chapter 5

143
Giering and Kaminski (1998); Marotzke et al. (1990); Griewank (2000); Corliss et al. (2002)
144
See Marotzke et al. (1999) or Giering (2000).
145
Rall (1981), Griewank (2002)
146
We follow here, primarily, Marotzke et al. (1999).
147
Restrepo et al. (1995) discuss some of the considerations.
148
e.g., Gill et al., 1981; Luenberger, 1984; Scales, 1985

149
Gelb, 1974

150
Luenberger, 1964; O’Reilly, 1983

151
Example due to P. Heimbach. For more information see http://mitgcm.org, Short Course on Data Assimila-

tion, WHOI, May 2003.

