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4.9 A Summary 

Once rendered discrete for placement on a digital computer, time-dependent inverse problems 

all reduce formally to the least-squares problems already considered in Chapters 2, 3. With 

a large enough, fast enough computer, they could even be solved by the same methods used 

for the static problems. Given however, the common need to to reduce the computing and 

storage burdens, a number of algorithms are available for finding solutions by considering the 

problem either in pieces, as in the sequential methods of filter/smoother, or by iterations as in 

the Lagrange multiplier methods. Solutions can be either accurate or approximate depending 

upon one’s needs and resources. In the end, however, the main message is that one is still 

seeking the solution to a least-squares problem, and the di�erences among the techniques are 

algorithmic ones, with tradeo�s of convenience and cost. 

Appendix to Chapter. Automatic Di�erentiation and Adjoints 

The utility of automatic di�erentiation (AD) of computer model codes was alluded to on Pages, 

4.2.2, 4.7.3, both as a way to determine the state transition matrix A> when it was only implicit 

in a code, and as a route to linearizing nonlinear models. The construction of software capable 

of taking (say) a Fortran90 code and automatically generating a second Fortran90 code for the 

requisite derivatives of the model is a considerable, if not altogether complete, achievement of 

computer science. Any serious discussion is beyond the author’s expertise, and well outside the 

scope of this book. But because only AD methods have made the Lagrange multiplier (adjoint) 

method of state estimation a practical approach for realistic fluid problems, we briefly sketch the 

possibilities with a few simple examples. The references given in note 142 should be consulted 

for a proper discussion. 

Consider first the problem of finding the state transition matrix. A simple time stepping 

code written in Matlab for a 2-vector is 

function y=lin(x); 

y(1)=0.9*x(1)+0.2*x(2); y(2)=0.2*x(1)+0.8*x(2); 

Here x would be the state vector at time w � 1> and y would be its value one-time step in the 

future. A matrix/vector notation is deliberately avoided so that A is not explicitly specified. 

When the AD tool ADiMat (available through http://www.sc.rwth-aachen.de/adimat) is used, 

it writes a new Matlab code, 

function [g_y, y]= g_lin(g_x, x) %lin.m; 
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%x is assumed to be a 2-vector 

g_lin_0= 0.9* g_x(1);


lin_0= 0.9* x(1);


g_lin_1= 0.2* g_x(2);


lin_1= 0.2* x(2);


g_y(1)= g_lin_0+ g_lin_1;


y(1)= lin_0+ lin_1;


clear lin_0 lin_1 g_lin_0 g_lin_1 ;


g_lin_2= 0.2* g_x(1);


lin_2= 0.2* x(1);


g_lin_3= 0.8* g_x(2);


lin_3= 0.8* x(2);


g_y(2)= g_lin_2+ g_lin_3;


y(2)= lin_2+ lin_3;


clear lin_2 lin_3 g_lin_2 g_lin_3 ;


The notation has been cleaned up somewhat to make it more readable. Consider for exam-

ple, the new variable, g_lin_0 = 0=9 � g_x(1); The numerical value 0.9 is the partial derivative 

of | (1) with respect to { (1) = The variable g_x(1) would be the partial derivative of { (1) with 

respect to some other independent variable, permitting the chain rule to operate if desired. 

Otherwise, one can set it to unity on input. Similarly the notation g_lin_i denotes the corre-

sponding derivative of |(1) with respect to {(l)= By simple further coding, one can construct the 

A matrix of the values of the partial derivatives. Here, ADiMat has produced the tangent linear 

model, which is also the exact forward model. More interesting examples can be constructed. 

The Matlab code corresponding to the simple switch is, 

function y= switch1(a); if aA 0, y= a; else, y= a^2+2*a; end 

that is, | = d if independent variable d (externally prescribed) is positive, or else, | = d2 +2d= 

Running this code through AdiMat produces (again after some cleaning up of the notation), 

function [g_y, y]= g_switch1(g_a, a);


if aA 0, g_y= g_a;


y= a;


else, g_tmp_2=2* a^(2- 1)* g_a;


tmp_0= a^2;


g_tmp_1= 2* g_a;


tmp_1= 2* a;


g_y= g_tmp_0+ g_tmp_1;
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y= tmp_0+ tmp_1; 

end 

That is to say, the derivative, g_y, is  1 for positive d> otherwise it is  d + 2= g_a can be 

interpreted as the derivative of d with respect to another, arbitrary, independent variable, thus 

permitting the use of the chain rule. The derivative is defined for all values of d except d = 0= 

Consider now a physical problem of a reservoir as shown in Fig. 4.18.151 The model is 

chosen specifically to have discontinuous behavior: there is an inflow, storage, and outflow. If 

the storage capacity is exceeded, there can be overspill, determined by the max statement below. 

A forward code, now written in Fortran is, 

Thresholds: a hydrological reservoir model (I) 

do t = 1,  msteps  

• get sources & sinks at time t 

inflow, evaporation, release 

• calculate water release based on storage 

release(t) = 0.8*storage(t-1)0=7 

• calculate projected stored water, 
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storage = storage+inflow-release-evaporation 

nominal = storage(t-1) +


h*( infl(t)-release(t)-evap(t) )


• If threshold capacity is exceeded, spill-over: 

spill(t) = MAX(nominal-capac , 0.) 

• re-adjust projected stored water after spill-over: 

storage(t) = nominal - spill(t) 

• determine outflow: 

out(t) = release(t) + spill(t)/h 

end do


Note the presence of the max statement.


° When run through the AD tool TAF (a product of FastOpt R ), one obtains for the tangent 

linear model, 

Thresholds: a hydrological reservoir model (II) 

The tangent linear model 

do t=1, msteps


g_release(t) =0.56*g_storage(t-1)*storage(t-1)**(-0.3)


release(t)=0.8*storage(t-1)**0.7


g_nominal=-g_release(t)*h+g_storage(t-1)


nominal=storage(t-1)+h*(infl(t)-release(t)-evap(t))


g_spill(t)=g_nominal*(0.5+sign(0.5,nominal-capac-0.))


spill(t)=MAX(nominal-capac,0.)


g_storage(t)=g_nominal-g_spill(t)


storage(t)=nominal-spill(t)


g_out(t)=g_release(t)+g_spill(t)/h


out(t)=release(t)+spill(t)/h


end do


• g_release(t) not defined for storage(t-1) = 0. 

• g_spill(t) not defined for nominal = capac 

Note how the maximum statement has given rise to the new variable g_spill(t), its cor-

responding adjoint variable. 
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Note that the AD tool can cope with such apparently non-di�erentiable operators as the 

maximum of a vector. In practice, it internally replaces the function max with a loop of tests for 

relative sizes of successive elements. Not all AD tools can cope with all language syntaxes, and 

one must be alert to failures owing to incomplete handling of various structures. Nonetheless, 

the existing tools are a remarkably complete achievement. 

TAF is capable of producing the reverse mode. A major issue is the ability to restart the 

computation from intermediate results, in an operation called “checkpointing.” 
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