Quantifying Uncertainty

Sai Ravela

M. I. T

2012

Organization

- Project: Two MCMC applications
- Lecture
- Next Meet: Project Updates

Content

- Model Reduction Wrap up
- Response Surface Modeling
- Polynomial Chaos

Uncertainty Propagation in Causal Systems

$M \rightarrow$ Physical Model
\rightarrow (Estimated)StatisticalModel

Model Reduction

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=D \theta(x, t) \rightarrow \text { System } \\
& R(\theta)=\frac{\partial \theta}{\partial t}-D \theta \rightarrow \text { Residual } \\
& \theta=u \eta(t) \rightarrow \text { KLT (POD or Krylov) } \\
& u^{T} R=0 \rightarrow \text { Galerkin Projection } \\
& \frac{\partial \eta}{\partial t}=u^{T} D u \eta \rightarrow R O M
\end{aligned}
$$

K-L Theorem

Recall

$$
\underline{Y}(t)=\underline{\underline{u}} \underline{\underline{\lambda}} \underline{\underline{\eta}} \underline{[t]}
$$

or

$$
y(x, t)=\sum_{i=1}^{\infty(N)} u(i) \lambda(i) \eta(i, t)
$$

K-L Contd.

We understand that

AND

$\underline{u} \rightarrow$ over space
$\eta \rightarrow$ over time

$$
\begin{gathered}
C\left(x_{1}, x_{2}\right)=\sum_{i=1}^{\infty(N)} \lambda_{i}^{2} u_{i}\left(x_{1}\right) u_{i}\left(x_{2}\right) \\
\underline{\underline{C} \equiv \underline{\underline{u}} \underline{\underline{\lambda}}^{2} \underline{\underline{u}}^{T}} \\
u u^{T}=u^{T} u=I
\end{gathered}
$$

\&

$$
\underline{\underline{C}} \underline{\underline{u}}=\underline{\underline{\lambda}} \underline{\underline{u}}
$$

Extension

What about Stochastic Process?

$$
\underline{Y}[s, t] \equiv y(x, \underline{t}, \underline{S})
$$

K-L works fine:

$$
\begin{aligned}
\underline{Y}[t, s] & =\underline{\underline{u}} \underline{=} \underline{\eta}[t, s] \\
& =\underline{\underline{u}} \underline{\underline{\chi}}[t, s]
\end{aligned}
$$

What if

$$
\underline{Y}=\underline{\underline{u}} \underline{w}
$$

Or

$$
y(x)=\sum_{i=1}^{\infty} w_{i} u_{i}(x)
$$

Now let

$$
y(x) \approx \hat{y}(x)=\underbrace{\sum_{i=1}^{N} w_{i} u_{i}(x)}_{\text {approximated }}
$$

Residual

$$
\Rightarrow R(x) \equiv y-\hat{y}=y(x)-\sum_{i=1}^{N} w_{i} u_{i}(x)
$$

Galerkin Projection

$$
\int R(x) u_{j}(x) d x=0
$$

Errors are orthogonal to basis

$$
\Rightarrow \int_{x}\left[y(x)-\sum_{i} w_{i} u_{i}(x)\right] u_{j}(x) d x=0
$$

Galerkin Projection Contd.

Orthoganality condition in \underline{u}

$$
\int_{x} u_{i}(x) u_{j}(x)=\delta_{i j}
$$

So, we get:

$$
\int_{x}\left[y(x) u_{j}(x)\right] d x-w_{j}=0
$$

Contd.

Or

$$
\begin{gathered}
w_{j}-\int_{x} u_{j}(x) y(x) d x \\
\underline{w}=\underline{\underline{u}}^{T} \underline{y}
\end{gathered}
$$

What is u ?
How to evaluate the integral?

Gaussian Quadrature

$$
w_{j}=\int_{x} u_{j}(x) y(x) d x=\sum_{i} u_{j}\left(x_{i}\right) y\left(x_{i}\right) v_{j}
$$

or

$$
\int_{x} R(x) u_{j}(x)=\sum_{i=1}^{c} u_{j}\left(x_{i}\right) R\left(x_{i}\right) v_{j}=0 \quad \forall j
$$

x_{i}-Collocation points

Quadrature leads us out

let $V_{i} \equiv V\left(x_{i}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{c} u_{j}\left(x_{i}\right)\left[y\left(x_{i}\right)-\sum_{k=1}^{N} w_{k} u_{k}\left(x_{i}\right)\right] V\left(x_{i}\right) \\
= & \sum_{i=1}^{c}[u_{j}\left(x_{i}\right) y\left(x_{i}\right) V\left(x_{i}\right)-\underbrace{\sum_{k=1}^{N} w_{k} u_{k}\left(x_{i}\right) u_{j}\left(x_{i}\right) V\left(x_{i}\right)}_{\text {consider this term }}]
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=1}^{N} w_{k} \sum_{i=1}^{c} u_{k}\left(x_{i}\right) u_{j}\left(x_{i}\right) V\left(x_{i}\right) & = \begin{cases}0 & k \neq j \\
w_{j} & k=j\end{cases} \\
\sum_{i=1}^{c} u_{k}\left(x_{i}\right) u_{j}\left(x_{i}\right) V\left(x_{i}\right) & =0 \quad k \neq j \\
& =1 \quad k=j
\end{aligned}
$$

$$
\left.\begin{array}{rl}
u & =\text { Orthogonal } \\
x_{i} & =\text { Collocation } \\
V\left(x_{i}\right) & =\text { Weights! }
\end{array}\right] \text { How to determine? }
$$

Let us assume $\chi=\chi(\xi)$, a r.v.

a random input

So, we may let $V\left(x_{i}\right)=P\left(x_{i}\right)$

$u_{j} \equiv$ Orthogonal Polynomials

- If $x(\xi) \sim N(\cdot)$, Then $u \Rightarrow$ Hermite Polynomials
- And $\left\{x_{i}\right\} \Rightarrow$ Roots of $(\mathrm{N}+1)$ polynomial
- Can we do better?
"STOCHASTIC COLLOCATION"

R.v. $\mathrm{x}(\xi)$	Wiener-Asky PC	Support
Gaussian	Hermite	$(-\infty, \infty)$
Gamma	Laguerre	$[0, \infty]$
Beta	Jacobi	$[\mathrm{a}, \mathrm{b}]$
Uniform	Legendre	$[\mathrm{a}, \mathrm{b}]$
Poisson	Charlier	$\{0,1,2, \ldots\}$
Binomial	Krawtchouk	$\{0,1,2, \ldots \mathrm{~N}\}$
Hypergeometric	Hahn	$\{0,1,2, \ldots, \mathrm{~N}\}$

- How to get coefficients?
- How to get good collocation points?

SCM or PCM

$$
y(z, t, \xi)=\sum_{i=0}^{N} w\left(z, t,\left\{\xi_{i}\right\}\right) u\left(\left\{\xi_{i}\right\}\right)
$$

This general form is the same as what we have discussed.

Coefficients

$$
w_{j}=\sum_{i} u_{j}\left(x_{i}\right) y\left(x_{i}\right) v(x-i)
$$

Is it too good to be true?

How smooth must y be?

Other Methodology

$\mathrm{x} \longrightarrow \mathrm{M} \longrightarrow \mathrm{y}$

Gaussian r.v.

$$
\begin{gathered}
y=w_{0}+\sum_{i=1}^{N} w_{i} u_{i}(x) \\
U_{i}(x)=\underbrace{(-1)^{i} e^{\frac{1}{2} x^{2}} \frac{\partial}{\partial x^{i}} e^{-\frac{1}{2} x^{2}}}_{\text {Hermites Polynomials }}
\end{gathered}
$$

$$
\begin{aligned}
& y^{(1)}=w_{0}+x w_{1} \\
& y^{(2)}=w_{0}+x w_{1}+w_{2}\left(x^{2}-1\right) \\
& y^{(3)}=y^{(2)}+\left(x^{3}-3 x\right) w_{3} \\
& y^{(4)}=y^{(3)}+\vdots
\end{aligned}
$$

Can iteratively refine!

$$
\left[\begin{array}{l}
y_{1}^{(3)} \\
y_{2}^{(3)} \\
y_{3}^{(3)} \\
y_{4}^{(3)}
\end{array}\right]=\left[\begin{array}{llll}
1 & x_{1} & x_{1}^{2}-1 & x_{1}^{3}-3 x_{1} \\
1 & x_{2} & x_{2}^{2}-1 & x_{2}^{3}-3 x_{2} \\
1 & x_{3} & x_{3}^{2}-1 & x_{3}^{3}-3 x_{3} \\
1 & x_{4} & x_{4}^{2}-1 & x_{4}^{3}-3 x_{4}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

Solve

$$
\underline{Y}=\underline{\underline{M}} \underline{w}
$$

Can be iterative

Collocation vs Regression

Not Intrusive Compare with model reduction
Too many points If there are d variables (dimensions) and order p, there are $(p+1)^{d}$ points (grows quickly!)
Also Collocation in the Gauss-Quadrature can not be reused $u_{k} \& u_{k+1}$ don't share roots!
Are collocation points highly probable?

In multiple dimensions (two)

$$
\begin{aligned}
y^{(1)}= & a_{0}+a_{1_{1}} x_{1}+a_{1_{2}} x_{2} \\
y^{(2)}= & y^{(1)}+a_{2_{1}}\left(x_{1}^{2}-1\right)+a_{2_{2}}\left(x_{2}^{2}-1\right) \\
& +a_{2_{3}} x_{1} x_{2} \\
y^{(3)}= & y^{(2)}+\ldots
\end{aligned}
$$

What's going on?

Recall

$$
\begin{aligned}
w_{j} & =\int_{x} u_{j}(x) y(x) d x \\
& =\sum_{i} u_{j}\left(x_{i}\right) y\left(x_{i}\right) v\left(x_{i}\right) \\
& =\sum_{i} y\left(x_{i}\right) H_{j}\left(x_{i}\right) G\left(x_{i}\right)
\end{aligned}
$$

$H_{j}\left(x_{i}\right)$-Hermite Polynomial
$G\left(x_{i}\right) \rightarrow e^{\frac{-x_{i}^{2}}{2}}$

Contd.

$$
\begin{aligned}
w_{j} & =\sum_{i} y\left(x_{i}\right) \frac{\partial^{j}}{\partial x^{j}} G\left(x_{i}\right) \\
& =\underbrace{Y \circledast \frac{\partial^{j} G}{\partial x^{j}}}_{\begin{array}{c}
\text { convolution by a } \\
\text { Gaussian derivative! }
\end{array}} \\
& =\frac{\partial^{j} Y}{\partial x^{j}} \circledast G \rightarrow \text { smoothed derivatives }
\end{aligned}
$$

So, if you had a surface Y , response surface, then the "weights" are the filtered responses of Y with Gaussian derivative filters.

FROM MY THESIS \Downarrow

Gaussian derivative filters in the frequency domain

Back to multiple dimensions

in " n " dimensions:

$$
\begin{aligned}
Y^{(2)}=w_{0} & +\sum_{i=1}^{n} w_{i i}\left(x_{i}^{2}-1\right) \\
& +\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} w_{i j} x_{i} x_{j}
\end{aligned}
$$

Back to Collocation

Gauss-quadrature is not nested

Non Gaussian rvs.

1. Choose from Askey scheme
2. Transform rvs some how
e.g: By decorrelation in case of correlated r.v.s

$$
\begin{aligned}
\widetilde{X} & =u s v^{\prime} \\
\tilde{x} & =\sqrt{s} u^{\top} \widetilde{X}
\end{aligned}
$$

Clenshaw-Curtis

Smolyak

Other Transformations

$\xi \sim N(0,1)$

$U(a, b)$	$a+(b-a)\left[\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{\xi}{\sqrt{(2)}}\right)\right]$
Lognormal (μ, σ)	$\exp (\mu+\sigma \xi)$
Gamma (a, b)	$a b\left(\xi \int \frac{1}{9 a}+1-\frac{1}{9 a}\right)$
Exponential (λ)	$-\frac{1}{\lambda} \log \left(\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{\xi}{\sqrt{(2)}}\right)\right)$
Weibull (a)	$\xi^{1 / a}$
Extreme Value	$-\log (\xi)$

Example

Convergence

$\left\|\hat{y}_{n}-y\right\| \rightarrow$ Convergence in L_{2}
Not in any norm

Summary

- Quick \& Easy UQ
- Non-Intrusive
- Time?
- Basis optimality (e.g. wavelets)
- Smooth Response Surface
- Not Significant nonlinearity
- Bifurcations in rv
- Grids!

Polynomial Chaos Expansion

SCM very different from PCE/gPC

$$
Y(x, t, \xi)=\sum_{i=0}^{\infty(N)} \underbrace{y_{i}(x, t)}_{\text {Deterministic }} \cdot \underbrace{\psi_{i}(\xi)}_{\text {Stochastic }}
$$

So PCE by construction/an assumed solution. SCM/PCM from quadrature!

Contd.

- $\psi_{i}(\xi)$ Polynomials from Askey-Wiener scheme depending on ξ
- $\left\langle\psi_{i} \psi_{j}\right\rangle=\delta_{i j}$ as before
- Galerkin Projection

Example

$$
\begin{aligned}
Y(x, t \xi) & =\sum_{i=0}^{1} Y_{i}(x, t) \psi_{i}(\xi) \\
& =Y_{0}+Y_{1} \xi \\
Y & \sim N\left(Y_{0}, Y_{1}^{2}\right)
\end{aligned}
$$

Independent of PDE

Example Contd.

$$
\begin{aligned}
& Y_{t}+C \frac{\partial Y}{\partial t}=0, \quad 0 \leq x \leq 1 \\
& Y(x, T)=Y_{\phi}(x-c t) \\
& Y(x, t=0, \xi)=g(\xi) \cos (x)
\end{aligned}
$$

Solution

$$
Y(x, t)=g(\xi) \cos (x-c t)
$$

Contd.

Letting

$$
\begin{gathered}
Y(x, t, \xi)=\sum_{i=0}^{3} y_{i}(x, t) \psi_{i}(\xi) \\
\psi_{0}=1, \psi_{1}=\xi, \psi_{2}=\xi^{2}-1, \psi_{3}=\xi^{3}-3 \xi \\
\sum_{i=1}^{3} \frac{\partial Y_{i}}{\partial t} \psi_{i}(\xi)+c \sum_{i=0}^{s} \frac{\partial Y_{i}}{\partial x} \psi_{i}(\xi)=0
\end{gathered}
$$

How to solve?

Galerkin Projection

$$
\begin{aligned}
& \int_{\xi} \sum_{i=0}^{3} \frac{\partial Y_{i}}{\partial t} \psi_{i}(\xi) \psi_{j}(\xi) w(\xi) d \xi \\
& \quad+\int_{\xi} c \sum_{i=0}^{3} \frac{\partial Y_{i}}{\partial x} \psi_{i}(\xi) \psi_{j}(\xi) w(\xi) d \xi
\end{aligned}
$$

Galerkin Projection Contd.

Simplifying

$$
\begin{aligned}
& \sum_{i=0}^{3} \frac{\partial Y_{i}}{\partial t} \int_{\xi} \psi_{i}(\xi) \psi_{j}(\xi) w(\xi) d \xi \\
& \quad c \sum_{i=0}^{3} \frac{\partial Y_{i}}{\partial x} \int_{\xi} \psi_{i}(\xi) \psi_{j}(\xi) w(\xi) d \xi
\end{aligned}
$$

This must be recognizable!

Galerkin Projection Contd.

$$
\begin{gathered}
\sum_{i=1}^{3} \frac{\partial Y_{i}}{\partial t}<\psi_{i}, \psi_{j}>+\sum_{i=1}^{3} \frac{\partial Y_{i}}{\partial x}<\psi_{i}, \psi_{j}>=0 \\
<\psi_{i}, \psi_{j}>=\delta_{i j}
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{\partial Y_{0}}{\partial t}+c \frac{\partial Y_{0}}{\partial x}=0 & \frac{\partial y_{2}}{\partial t}+\frac{\partial Y_{2}}{\partial x}=0 \\
\frac{\partial Y_{1}}{\partial t}+c \frac{\partial Y_{1}}{\partial x}=0 & \frac{\partial y_{3}}{\partial t}+\frac{\partial Y_{3}}{\partial x}=0
\end{array}
$$

Contd.

Uncoupled!

What ICs?

$$
\begin{aligned}
Y_{0}^{(\phi)} & =\int \cos (x) g(\xi) \psi^{(0)}(\xi) d \xi \\
& =\left\langle g(\xi), \psi^{(0)}(\xi)\right\rangle \cos (x) \\
Y_{1}^{(\phi)} & =\left\langle g_{\varphi}, \psi^{(1)}\right\rangle \cos (x) \\
Y_{2}^{(\phi)} & =\left\langle g_{\varphi}, \psi^{(2)}\right\rangle \cos (x) \\
Y_{3}^{(\phi)} & =\left\langle g_{\varphi}, \psi^{(3)}\right\rangle \cos (x)
\end{aligned}
$$

Could life be that simple!

Let's say

$$
\begin{aligned}
& \frac{\partial Y}{\partial t}+c \frac{\partial Y}{\partial x}=0 \\
c= & g(\xi) \\
= & \sum_{i=0}^{N} g_{j} \psi_{j}(\xi) \quad \text { (say) }
\end{aligned}
$$

Repeating

$$
\begin{aligned}
& \sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial t}+c \sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial x} \psi_{i}=0 \\
\downarrow & \\
& \sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial t}\left\langle\psi_{i}, \psi_{j}\right\rangle+\sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial x}\left\langle\psi_{i}\left(\sum_{k=1}^{N} g_{k} \psi_{k}\right) \psi_{j}\right\rangle=0 \\
= & \sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial t}\left\langle\psi_{i}, \psi_{j}\right\rangle+\sum_{i=0}^{N} \frac{\partial Y_{i}}{\partial x} \sum_{k=1}^{N} g_{k}\left\langle\psi_{i} \psi_{j} \psi_{k}\right\rangle=0
\end{aligned}
$$

Tough!
$\mathrm{N}+1$ Coupled Equations! Need to totally change code Intrusive \Leftrightarrow Stochastic Galerkin scheme.

Summary

Many ways to propagate uncertainty

- Monte-Carlo
- PCM/SCM/RSM
- PC/gPC
- MOR/POD etc

There are others:
e.g. using wavelets instead of polynomials

Much work to do!

Key Topics

1. Non Gaussian distributions
2. Non intrusive methodology
3. Non linearity
4. Fast computation

Methodology is very much "open"

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

