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Class7: Model Reduction 

Organization
 

� Project: Two MCMC applications 
� Lecture 
� Next Meet: Project Updates 
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Content
 

Model Reduction Wrap up 
Response Surface Modeling 
Polynomial Chaos 
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Uncertainty Propagation in Causal Systems
 

X f 0 X f 1 X f 2 X f n 

M ≡ M(Xt ; αt ) 

Xt+1 = M(Xt ; αt ) + ωt 

M → Physical Model 
→ (Estimated)StatisticalModel 
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Model Reduction
 

Model Reduction
 
Structure
 

Krylov Nonlinear 

LinearPoD Balanced Truncation Empirical Grammian Hankel approx. 
Lauczos 
Arnoldi etc. 

SVD 

SVD Krylov 
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∂θ 
(x , t) = Dθ(x , t) → System

∂t 
∂θ 

R(θ) = − Dθ → Residual 
∂t 

θ = uη(t) → KLT (POD or Krylov) 

uT R = 0 → Galerkin Projection 
∂η 

= uT Duη → ROM 
∂t 
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K-L Theorem
 

Recall 

Y (t) = u λ η[t ] 

or 

y(x , t) = 
∞c(N) 

i=1 

u(i)λ(i)η(i , t) 
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K-L Contd.
 

We understand that AND 

u → over space ∞(N)c 
η → over time C(x1, x2) = λi 

2ui (x1)ui (x2) 
i=1 

η(t) 
2 TC ≡ u λ u

T Tuu = u u = I 
u 

& 
C u = λ u 
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Extension
 

What about Stochastic Process? 

• 

• 

• 

S3 

S2 

S1 

Y [s, t ] ≡ y(x , t , S) 
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K-L works fine: 

Y [t , s] = u λ η[t , s] 

= u χ[t , s] 
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What if 
Y = u w 

1
 
2
 
3
 
4
 
5
 
6
 

Or 
∞c 

y(x) = 
i=1 

wiui (x) 
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Now let 
N

y(x) ≈ ŷ(x) = wiui (x) 
i=1 

c
" v " 
approximated 

Residual 
Nc 

⇒ R(x) ≡ y − ŷ = y(x) − wiui (x) 
i=1 
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Galerkin Projection
 

R(x)uj (x)dx = 0 

Errors are orthogonal to basis 

c 
⇒	 y(x) − wi ui (x) uj (x)dx = 0
 

x
 i
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Galerkin Projection Contd.
 

Orthoganality condition in u 

ui (x) uj (x) = δij 
x 

So, we get: 

[y(x) uj (x)] dx − wj = 0 
x 
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Contd.
 

Or 
wj − uj (x) y(x)dx 

x 

Tw = u y 

What is u? 
How to evaluate the integral? 
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Gaussian Quadrature
 

c 
wj = uj (x)y(x)dx = uj (xi )y(xi )vj 

x i 

or 
cc 

R(x)uj (x) = uj (xi )R(xi )vj = 0 ∀j 
x i=1 

xi -Collocation points 

Quantifying Uncertainty 

∫
∫

16



� �

Class7: Model Reduction 

Quadrature leads us out
 

let Vi ≡ V (xi ) 

c N

uj (xi ) y(xi ) − wk uk (xi ) V (xi ) 
i=1 k=1 

cc 

⎤⎡ 

= 
c

i

c 

1=

⎢⎢⎢⎢⎣ 

N

uj (xi )y(xi )V (xi ) − wk uk (xi )uj (xi )V (xi ) 
c 

k 1=" 

⎥⎥⎥⎥⎦ " v 
consider this term 

Quantifying Uncertainty 
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N c

k =1 

cc 

1 i=

0 k = j
uk (xi )uj (xi )V (xi ) = 

wj k = j 
wk 

cc 
uk (xi )uj (xi )V (xi ) = 0 k  = j 

i=1 

= 1 k = j 

u = Orthogonal 
xi = Collocation 

⎤ ⎥⎦How to determine? 
V (xi ) = Weights! 
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Let us assume χ = χ(ξ), a r.v. 
χ M y 

a random 
input 

So, we may let V (xi ) = P(xi ) 

• 

• 

• 

• • 

• 

• 

• 
P(xi ) 

xi 
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uj ≡ Orthogonal Polynomials 
If x(ξ) ∼ N(·), Then u ⇒ Hermite Polynomials 
And {xi } ⇒ Roots of (N+1) polynomial 
Can we do better? 

“STOCHASTIC COLLOCATION” 

Quantifying Uncertainty 
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R.v. x(ξ) Wiener-Asky PC Support 
Gaussian 
Gamma 

Beta 
Uniform 
Poisson 
Binomial 

Hypergeometric 

Hermite 
Laguerre 

Jacobi 
Legendre 
Charlier 

Krawtchouk 
Hahn 

(−∞, ∞) 
[0, ∞] 
[a,b] 
[a,b] 

{0,1,2,. . . } 
{0,1,2,. . . N} 
{0,1,2,. . . ,N} 
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How to get coefficients?
 
How to get good collocation points?
 

SCM PCMor 

Nc 
y(z, t , ξ) = w(z, t , {ξi })u({ξi }) 

i=0 

This general form is the same as what we have discussed. 

Quantifying Uncertainty 
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Coefficients
 

c 
wj = uj (xi )y(xi )v(x − i) 

i 

xi M wj 

x RM ŷ 

• y(xi ) 

Nc 
ŷ(x) = ui (x)wi ⇒ Fast 

i=1 
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Is it too good to be true?
 

How smooth must y be? 
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Other Methodology
 

x M y 
Gaussian r.v. 

Nc 
y = w0 + wi ui (x) 

i=1 

1 2 ∂ 2 
2 x 2 xUi (x) = (−1)i e 

∂xi e
− 1 " v " 

Hermites Polynomials 
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(1)y = w0 + xw1 

y (2) = w0 + xw1 + w2(x2 − 1) 

y (3) = y (2) + (x3 − 3x)w3 

.
(4) (3) .y = y + . 

Can iteratively refine! 
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⎡ ⎡⎤ ⎤⎡⎤ 
w0 

(3) 
1 x1 x1

2 − 1 x1
3 − 3x1y1 

(3) 
2 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 

⎢⎢⎣ 
1 x2 x2

2 − 1 x2
3 − 3x2 

1 x3 x2 x3 
3 − 1 3 − 3x3 

⎢⎢⎣ 
⎥⎥⎦ 

⎥⎥⎦ 
y w1 

w2
(3) 
3y

1 x4 x4
2 − 1 x4

3 − 3x4(3) 
4 

w3y

Solve 
Y = M w 

Can be iterative 

Quantifying Uncertainty 27



Class7: Model Reduction 

Collocation vs Regression
 

Not Intrusive Compare with model reduction 
Too many points If there are d variables (dimensions) and order p, 

there are (p + 1)d points (grows quickly!) 
Also Collocation in the Gauss-Quadrature can not be reused 

uk & uk+1 don’t share roots! 

Are collocation points highly probable? 
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In multiple dimensions (two)
 

(1)y = a0 + a11 x1 + a12 x2 

(2) (1) 2 2y = y + a21 (x1 − 1) + a22 (x2 − 1) 
+ a23 x1x2 

(3) (2)y = y + . . . 
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What’s going on? 

Recall 

wj = uj (x)y(x)dx 
x c 

= uj (xi )y(xi )v(xi ) 
i c 

= y(xi )Hj (xi )G(xi ) 
i 

Hj (xi ) -Hermite Polynomial 
2−x

G(xi ) → e i 
2 

Quantifying Uncertainty 
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Contd.
 

c ∂ j 
wj = 

i 

y(xi ) 
∂xj G(xi ) 

= Y @ 
∂ j G 
∂xj" v " 

convolution by a 
Gaussian derivative! 

∂ jY 
= @ G → smoothed derivatives 
∂xj 

Quantifying Uncertainty 31



Class7: Model Reduction 

So, if you had a surface Y, response surface, then the “weights” are 
the filtered responses of Y with Gaussian derivative filters. 

FROM MY THESIS ⇓ 
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Figure 3.1. An image and its first two orders of derivatives expressed in rotationally invariant form
(magnitude of gradient and trace of the Hessian). The first order derivatives indicate “edgeness”, the
second “bars” (notice the brightness around the nose region in the third picture). In the second and third
picture brightness is an indication of the magnitude of the response of the derivative filters.

validity of this characterization stems from a Taylor expansion of the local surface. Consider an image

at point . The value at a location can be estimated using the Taylor series:

(3.1)

Equation 3.1 states that the derivatives at can estimate the surface in its neighborhood. Therefore,

it can be argued that spatial derivatives characterize the shape of the local surface.

Derivatives also capture useful statistical information about the image. The first derivatives represent

the gradient or “edgeness” of the intensity and the second derivatives can be used to represent bars

(or blobs). For example, Figure 3.1 shows an image, the magnitude of the gradient and the trace of

the Hessian (Laplacian). The magnitude of the gradient is a rotationally invariant form of the first

derivatives and the trace represents the second derivatives. In the first case, edgeness is highlighted by

bright spots, while in the second image blob and bar like structures (centers of eyebrows, nose and eyes)

are highlighted.

However, two important criteria must be satisfied in order for the above characterization to hold.

First, the surface around the point must be differentiable, and second, the series must be convergent.

Since the surfaces dealt with here are discrete, numerical differentiation around a point through finite

differences may be applied when boundary effects are suitably accounted for. That is, the derivatives

can typically be assumed to exist. However, the stability of the derivatives in the presence of noise

computed in this manner is uncertain, as is illustrated by the following example:

38
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The derivatives of are stable for all (positive) values of ; this noise attenuating property is

presented in Appendix A.1. Local derivatives computed in this manner are stable. Koenderink [65]

has advocated the use of this representation and calls it the local N-jet. The local N-jet of at scale

and order is defined as the set:

(3.4)

where

Observe that bundles all the derivatives required to fully reconstruct the

surface in a locality around at a particular scale. This is the observation that is used to characterize

local structure. Up to any order the derivatives locally approximate the regularized intensity surface.
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Figure 3.3. Gaussian derivative filters in the frequency domain.

Computing derivatives of a Gaussian smoothed image has a frequency domain interpretation as

well. Since differentiation and convolution commute (see Appendix A.1, Equation A.3), differentiating

the smoothed version of the image is equivalent to smoothing the derivative of the image which is,

in turn, equivalent to filtering the image with a Gaussian derivative. Assume the last form for the

following observation. In the frequency domain, Gaussian derivatives act as band-pass filters. Their

center frequency and bandwidth are determined by the scale( ) and order of the derivative ( see

Appendix A.1.5). In Figure 3.3, the amplitudes of Gaussian derivatives computed at a fixed scale are

41
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Back to multiple dimensions
 

in “n” dimensions: 

n

Y (2) 2 = w0 + wii (xi − 1) 
i=1 

1−n nc 

c
c 

+ wijxixj 
i=1 j=i+1 
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Back to Collocation
 

Gauss-quadrature is not nested 

Introduction

RVs and RPs

Several UQ methods

Spectral
representation

Karhunen-Loève

Polynomial Chaos

generalized Polynomial
Chaos

Post-processing

Resolution for a
general SPDE

Stochastic Galerkin
Method (SGM)

Stochastic Collocation
Method (SCM)

Multivariate
quadratures

Full

Sparse

Intrude or not
intrude ?

Open issues

Gauss quadrature rule are not nested (2)

2D Hermite collocation grids for di�erent levels of resolution
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Introduction to Stochastic Spectral Methods 25 Novembre 2008 103 / 133
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Non Gaussian rvs.
 

1. Choose from Askey scheme 
2. Transform rvs some how 

e.g: By decorrelation in case of correlated r.v.s 

x 'X = usv
√ T xx̃ = su X 
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Clenshaw-Curtis
 
Clenshaw-Curtis

Introduction

RVs and RPs

Several UQ methods

Spectral
representation

Karhunen-Loève

Polynomial Chaos

generalized Polynomial
Chaos

Post-processing

Resolution for a
general SPDE

Stochastic Galerkin
Method (SGM)

Stochastic Collocation
Method (SCM)

Multivariate
quadratures

Full

Sparse

Intrude or not
intrude ?

Open issues

Growth of one-dimensional Clenshaw-Curtis (Chebyshev
extrema) grid

�! �"#$ �"#% �"#& �"#' " "#' "#& "#% "#$ !
!

'

(

&

)

%

*

+,-./-0,/123-4,152672!8

+
,-
./
-0
,/
12
41
31
4

Introduction to Stochastic Spectral Methods 25 Novembre 2008 105 / 133

Quantifying Uncertainty 38



Class7: Model Reduction 

Smolyak
 

• • • • • • • 

• 
•

• 
• 
•

• 
• 
•

• 
• 
•

• 
• 
•

• 
• 
•

• 
• 
•

• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•
•
•
•
•
•
• 

•

• 
•

• 

•
•
•
•
•
•
• 

•

• 
•

• 

•
•
•
•
•
•
• 

•

• 
•

• 

•
•
•
•
•
•
• 

•

• 
•

• 

•
•
•
•
•
•
• 

Quantifying Uncertainty 39



Other Transformations
 

Class7: Model Reduction 

_ _ 

ξ ∼ N(0, 1) 

U(a, b) a + (b − a) 1 
2 + 1 

2 erf ( √ξ 

(2) 
) 

Lognormal(µ, σ) exp(µ + σξ)_ _ _ 
Gamma(a, b) 

Exponential(λ) − 1 
λ 

ab ξ 1 
9a + 1 − 1 

9a 

log 
( 

1 
2 + 1 

2 erf 
( 
√ξ 

(2) 

__ 

Weibull(a) ξ1/a 

Extreme Value − log(ξ) 
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Example
 

ξ
(j) 
1 

ξ
(j) 
2 

ξ
(j) 
3 

u 

Lognorm 

Gamma 

M 

RSM 

• 

• 

• 

Y (i) 1 

Y (i) 2 

wi ui 
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Convergence 

||ŷn − y || →Convergence in L2 
Not in any norm 

Summary 
Quick & Easy UQ 
Non-Intrusive 
Time?
 
Basis optimality (e.g.
 
wavelets)
 

Smooth Response Surface 
Not Significant nonlinearity 
Bifurcations in rv 
Grids! 

Quantifying Uncertainty 
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Polynomial Chaos Expansion
 

SCM very different from PCE/gPC 

∞(N)c 
Y (x , t , ξ) = 

i=0 

yi (x , t)" v " 
Deterministic 

· ψi (ξ)" v " 
Stochastic 

So PCE by construction/an assumed solution. SCM/PCM from 
quadrature! 

Quantifying Uncertainty 43



�

�

�

Class7: Model Reduction 

Contd.
 

ψi (ξ) Polynomials from Askey-Wiener scheme depending on ξ 
< ψi ψj >= δij as before 
Galerkin Projection 

Quantifying Uncertainty 
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Example
 

1c 
Y (x , tξ) = Yi (x , t)ψi (ξ) 

i=0 

= Y0 + Y1ξ 

Y ∼ N(Y0, Y1
2) 

Independent of PDE 
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Example Contd.
 

∂Y
Yt + C = 0, 0 ≤ x ≤ 1 

∂t 
Y (x , T ) = Yφ(x − ct) 
Y (x , t = 0, ξ) = g(ξ)cos(x) 

Solution 
Y (x , t) = g(ξ)cos(x − ct) 
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Contd.
 

Letting 
3

Y (x , t , ξ) = yi (x , t)ψi (ξ) 
i=0 

ψ0 = 1, ψ1 = ξ, ψ2 = ξ2 − 1, ψ3 = ξ3 − 3ξ 

c 

3 s

i=1 i=0 

c 

How to solve? 

c ∂Yi ∂Yi 
ψi (ξ) = 0ψi (ξ) + c 

∂t ∂x 
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Galerkin Projection
 

3
∂Yic 

ψi (ξ)ψj (ξ)w(ξ)dξ 
ξ ∂t 

i=0
 

3
∂Yi
c 

+ c ψi (ξ)ψj (ξ)w(ξ)dξ 
∂xξ i=0 

Quantifying Uncertainty 

∫
∫

48



�
�

Class7: Model Reduction 

Galerkin Projection Contd.
 

Simplifying 

3
∂Yic 

ψi (ξ)ψj (ξ)w(ξ)dξ 
∂t ξi=0 

3
∂Yic 

c ψi (ξ)ψj (ξ)w(ξ)dξ 
∂x ξi=0 

This must be recognizable! 

Quantifying Uncertainty 

∫
∫
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Galerkin Projection Contd.
 

3
∂Yi 

3
∂Yic c 

< ψi , ψj > + < ψi , ψj >= 0 
∂t ∂x 

i=1 i=1 

< ψi , ψj >= δij 

∂Y0 ∂Y0 ∂y2 ∂Y2 
+ c = 0 + = 0 

∂t ∂x ∂t ∂x
 
∂Y1 ∂Y1 ∂y3 ∂Y3
 

+ c = 0 + = 0 
∂t ∂x ∂t ∂x 
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Contd.
 

Uncoupled! 
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What ICs?
 

Y (φ) = cos(x)g(ξ)ψ(0)(ξ)dξ0   
= g(ξ), ψ(0)(ξ) cos(x)   

Y (φ) = gϕ, ψ
(1) cos(x)1   

Y (φ) = gϕ, ψ
(2) cos(x)2   

Y (φ) = gϕ, ψ
(3) cos(x)3 

Quantifying Uncertainty 
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Could life be that simple!
 

Let’s say 
∂Y ∂Y 

+ c = 0 
∂t ∂x 

c = g(ξ) 
Nc 

= gj ψj (ξ) (say) 
i=0 
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Repeating
 

N N

∂t ∂x 
i=0 i=0 

↓ 

cc ∂Yi ∂Yi 
ψi = 0+ c 

NcN N

i=0 i=0 k=1 

N N

c
c 

c
c 

∂Yi ∂Yi 
= 0�ψi , ψj � + ψi gk ψk ψj

∂t ∂x 

Nc∂Yi ∂Yi gk �ψi ψj ψk � = 0�ψi , ψj � += 
∂t ∂x 

i=0 i=0 k=1 

Tough! 
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N+1 Coupled Equations!
 
Need to totally change code
 
Intrusive ⇔Stochastic Galerkin scheme.
 

Quantifying Uncertainty 55



�

�

�

�

Class7: Model Reduction 

Summary
 

Many ways to propagate uncertainty 
Monte-Carlo 
PCM/SCM/RSM 
PC/gPC 
MOR/POD etc 

There are others: 
e.g. using wavelets instead of polynomials 
Much work to do! 

Quantifying Uncertainty 
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Key Topics
 

1. Non Gaussian distributions 
2. Non intrusive methodology 
3. Non linearity 
4. Fast computation 

Methodology is very much “open” 
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