Quantifying Uncertainty

Sai Ravela

M. I. T

2012

System with high dimensions

\Rightarrow Can be described by few modes.

How to find subspace?
Projection Methods
POD-Proper Orthogonal Decomposition

- Galerkin Projection
- Snapshots

Krylov Subspace
Also Galerkin

$$
\sum_{i=1}^{n}\left[y_{n}-\pi_{d}\left(y_{n}\right)\right]^{2}
$$

Just minimize a projection error

$$
\begin{gathered}
\pi_{d}\left(y_{n}\right)=\left(\underline{y}^{T} \underline{e}_{1}\right) \underline{e}_{1}+\left(\underline{y}^{T} \underline{e}_{1}\right) \underline{e}_{1} \\
\therefore \sum_{i=1}^{n}\left[y_{n}-\sum_{j=1}^{d}\left(y_{n}^{T} e_{j}\right) e_{j}\right]^{2}
\end{gathered}
$$

Constraints ?

$$
e_{i}^{T} e_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

So, Lagrangian

$$
J\left(e_{1} \ldots e_{d}\right)=\sum_{i=1}^{n}\left[\underline{y}_{n}-\sum_{j=1}^{d}\left(\underline{y}_{n}^{T} \underline{e}_{j}\right) \underline{e}_{j}\right]^{2}+\sum_{k=1}^{d} \sum_{l=1}^{d} \lambda_{i j}\left(e_{i}^{T} e_{j}-\delta_{i j}\right)
$$

$$
\frac{\partial J}{\partial e_{j}}=\phi \Rightarrow \sum_{j=1}^{n} y_{i}\left(y_{i}^{\top} e_{j}\right)=\lambda_{j j} e_{j}
$$

$\lambda_{i j}=\phi$ for $i \neq j$.

Let y ,

$$
Y=\left[y_{1}, \ldots, y_{n}\right] \text { and } E=\left[e_{1}, \ldots, e_{n}\right]
$$

we have

$$
\begin{gathered}
\left.\underline{\underline{\lambda}}=\begin{array}{ccc}
\lambda_{11} & \ldots & \lambda_{1 d} \\
\vdots & \ddots & \vdots \\
\lambda_{d 1} & \ldots & \lambda_{d d}
\end{array}\right] \\
\underline{\underline{Y Y^{T}}} \underline{\underline{E}}=\underline{\underline{\lambda E}} \\
Y Y^{T} \underline{e}_{i}=\underline{\lambda}_{i i} \underline{e}_{i}
\end{gathered}
$$

An eigenvalue problem.

Notice

$$
\begin{aligned}
K(s, t) & =Y(s) Y(t) \\
K & =Y Y^{T}
\end{aligned}
$$

\Rightarrow Correlation matrix (or Covariance for centered process) Still, how to do this?

Via SVD

Letting

$$
\begin{aligned}
Y & =u s v^{T} \\
Y Y^{T} & =u s^{2} u^{T} \\
u u^{T} & =I, \quad u^{T} u=I
\end{aligned}
$$

Where does Y come from?

Snapshots

$$
Y=\left[y_{1}, \ldots, y_{n}\right]
$$

Typically $n \ll\left|y_{i}\right|$ and modes $d<n$.

$$
\text { But } \quad Y Y^{\top} \text { is huge! }
$$

Take 2

$$
Y=\underbrace{u S v^{T}}_{\begin{array}{c}
\text { svd via iterative methods } \\
\text { only 'd' leading vectors } \\
\text { or modes }
\end{array}}
$$

Then: $e_{i}=U_{i}, \lambda_{i i}=S_{i i}^{2}$

Take 3

$$
\begin{array}{r}
\underbrace{Y^{\top} Y}_{\text {small }}=v s^{2} v^{\top} \\
Y V S^{-1}=u \\
e_{i}=u_{i} \\
\lambda_{i i}=S_{i i}^{2}
\end{array}
$$

Pod \& Model reduction

Let's consider

$$
\dot{y}(t)=f(y(t))
$$

Let

$$
\begin{aligned}
y(t) & =u_{d} s r(t) \\
& =\underbrace{u_{d}}_{\text {Basis }} \underbrace{\chi(t)}_{\begin{array}{r}
\text { tepene } \\
\text { decorrelent }
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{d} \dot{\chi}(t)=f\left(u_{d} \chi(t)\right) \\
& \dot{\chi}(t)=u_{d}^{T} f(\underbrace{u_{d} \chi(t)}_{y_{d}(t)})
\end{aligned}
$$

With initial condition $\chi(0)$ calculated from y_{0}

$$
y_{d}^{(i)}(0)=\left[y_{0}^{\top}(0) u_{i}\right] u_{i}
$$

Can this work?

a
Snapshots make it easy, but how badly does it work when dynamics not in steady state (statistical)?
b
How much to truncate by?

$$
\text { Residual }=\sum_{i=d+1}^{n} \lambda_{i i}
$$

$$
\text { Information fraction }=\frac{\sum_{i=1}^{d} \lambda_{i i}}{\sum_{j=1}^{n} \lambda_{i i}}
$$

C
Do PoD modes correspond to dynamical modes?
d
Is it sensitive to choice of the inner product?
e
Is a PoD decomposition stable? e.g. $\dot{\chi}=A x+B u$ Rom may not have negative eigen values!

How to fix these issues?

- PoD+ Empirical Grammians (Balanced Truncation) e.g Wilcox
- Optimization for a stabilizing projection

A Trajectory Piecewise Approach

Via Krylov Subspace

$$
\begin{aligned}
x^{\prime} & =f(x)+B(x) u \\
y & =C^{T} u
\end{aligned}
$$

$Z \Rightarrow$ Reduced state
$x \cong V Z$

Residual

$$
f(V Z)+B(V Z)-\frac{d(V Z)}{d t}
$$

Orthogonal to some reduced space, $V^{\top} v=0$

$$
\begin{gathered}
\frac{d}{d t}\left[V^{\top} V Z(t)\right]=V^{\top} f(V Z(t))+V^{\top} B(V Z(t)) u(t) \\
y(t)=C^{\top} V Z(t)
\end{gathered}
$$

Is this supposed to be easy?

Linear Case

Say

$$
\begin{gathered}
f(x)=F x \\
B(x)=B \\
\frac{d}{d t} V^{\top} V Z(t)=V^{\top} F V Z(t)+V^{\top} B u(t) \\
y(t)=\left(V^{\top} C\right)^{T} Z(t)
\end{gathered}
$$

Linear Case contd.

$$
\begin{gathered}
w \frac{d}{d t} Z(t)=\tilde{A} Z(t)+\tilde{B} u(t) \\
y(t)=\left(V^{\top} C\right)^{\top} Z(t)
\end{gathered}
$$

Suppose original system was linear and of general form:

$$
\begin{aligned}
E \dot{x} & =F x+B u \\
y & =C^{T} x
\end{aligned}
$$

Introduction to Krylov Subspace methods

$$
A x=f
$$

Letting $A=M-N($ say $)$

$$
\begin{aligned}
\left(M_{N}\right) u & =f \\
M u^{n+1} & =N u^{n}+f \\
u^{n+1} & =M^{-1} N u^{n}+M^{-1} f \\
& =u^{n}+M^{-1}\left(F-A u^{n}\right)
\end{aligned}
$$

Letting

$$
\gamma^{n}=f-A u^{n}
$$

Iterative method:

$$
\begin{aligned}
u^{n+1} & =u^{n}+M^{-1} \gamma^{n} \\
u^{0} & \rightarrow u^{n} \rightarrow u^{?} \\
e^{n} & =u^{n}-u \\
e^{n+1} & =\left(I-M^{-1} A\right) e^{n}
\end{aligned}
$$

Examples

$$
A=D+L+u
$$

Jacobi: $M=D,-N=L+u$
Gauss-Sidel: $M=L+D,-N=u$ SOR:

$$
M=\left(\frac{1}{w} D+L\right), \quad-N=u-\frac{1-w}{w} D
$$

etc.

Letting,

$$
\begin{aligned}
\tilde{A}= & M^{-1} A \quad \tilde{f}=M^{f} \\
u^{n+1} & =u^{n}+\left(\tilde{f}-\tilde{A} u^{n}\right) \\
& =u^{n}+\tilde{\gamma}^{n} \\
\tilde{\gamma}^{n+1} & =\tilde{\gamma}^{n}-\tilde{A} \tilde{\gamma}^{n} \\
& =(I-\tilde{A}) \tilde{\gamma}^{n} \\
& =(I-\tilde{A})^{n+1} \tilde{\gamma}^{0} \\
\tilde{\gamma}^{n} & =(I-\tilde{A})^{n} \tilde{\gamma}^{0}
\end{aligned}
$$

$$
\begin{aligned}
u^{n+1} & =u^{0}+\sum_{i=0}^{n}(I-\tilde{A})^{i} \tilde{\gamma}^{0} \\
& \in u^{0}+\underbrace{\operatorname{Span}\left\{\tilde{\gamma}^{0}, \tilde{A} \tilde{\gamma}^{0}, \widetilde{A^{2}} \tilde{\gamma}^{0}, \ldots, \widetilde{A^{n}} \tilde{\gamma}^{0}\right\}}_{\text {Krylov }}
\end{aligned}
$$

So:(after several steps)

$$
E \hat{x}=F x+B u \quad y=C^{\top} x
$$

we look for an orthonormal basis V in Krylov subspace

$$
\operatorname{Span}\left\{F^{-1} B, F^{-1} E F^{-1} B, \ldots,\left(F^{-1} E\right)^{v-1} F^{-1} B\right\}
$$

Algo:(F, B, E, v) Output: V

$$
\begin{aligned}
v_{1} & =B /\|B\|_{2} \\
\text { for } i & =1 \text { to } q \\
x & =E v i
\end{aligned}
$$

Solve $A v=x$
Orthogonalize v

$$
\text { for } j=1 \text { to } i
$$

$$
\alpha=v_{j}^{\top} V
$$

$$
v=v-\alpha v_{j}
$$

$$
v_{i}=v /\|v\|_{2}
$$

Reduced System: $E=I$

$$
\begin{gathered}
w \widetilde{Z}=\widetilde{A} Z+\widetilde{B} u \\
y=\widetilde{C}^{T} Z \\
H_{\gamma}(s)=\widetilde{C}^{T}[s W-\widetilde{A}]^{-1} \widetilde{B}
\end{gathered}
$$

Original

$$
H(s)=C^{T}[s I-A]^{-1} B
$$

$H_{\gamma}(s)$ will match first q moments of H.

However,

- Still an issue for nonlinear
- No provable error bounds
- No guarantee of stability How does this compare to PoD?

Linearization \& model reduction

$$
\begin{aligned}
\dot{x}_{i} & =f\left(x_{i}\right)+B\left(x_{i}\right) u \\
\dot{x} & =f\left(x_{i}\right)+\underbrace{A_{i}\left(x-x_{i}\right)}_{\text {Jacobian of } \mathrm{f} .}+B_{i} u
\end{aligned}
$$

A weighted combination of linearized models.

$$
\sum_{i=1}^{S} w_{i}(x) \dot{x}=\sum_{j=1}^{s} w_{j}(x)\left[f\left(x_{j}\right)+A_{j}\left(x-x_{j}\right)+B_{j} u\right]
$$

$\sum_{i} w_{i}(x)=1$

So,
$\sum_{s=1}^{S} w_{i}[V Z] V^{\top} V Z=\sum_{i=1}^{S} w_{i}[V Z][\overbrace{V^{\top} f\left(x_{i}\right)}^{\text {Precompute }}+V^{\top} A_{i}\left[V Z-x_{i}\right]+V^{\top} B_{i} u]$
Can be fast!

How to get weights?
Kernell estimated!

$$
\begin{aligned}
\left\|x-x_{i}\right\| & =\left\|V Z-V Z_{i}\right\| \\
& =\left(Z-Z_{i}\right) V^{\top} V\left(Z-Z_{i}\right) \\
& =\left\|Z-Z_{i}\right\| v
\end{aligned}
$$

$$
\begin{gathered}
d_{i} \in\left\|Z-Z_{i}\right\| \\
\widetilde{w}_{i}=e^{-K d_{i} / \sigma^{2}} \\
\sigma^{2} \sim \min d_{i} \\
w_{i}=\frac{\widetilde{w}_{i}}{\sum \widetilde{w}_{i}}
\end{gathered}
$$

Next time: On the Grasmann Manifold \Rightarrow Model Interpolation

When to linearize?

Break when error too large Interpolation also with response surface modeling.

Ideas

- Is there a way to combine PoD with krylov over MCMC?
- Can we assemble better collocation points?

$$
\begin{gathered}
\frac{\partial \theta}{\partial t}(x, t)=D \theta(x, t) \\
R(\theta)=\frac{\partial \theta}{\partial t}-D \theta \\
\theta=u \eta(t) \\
u^{T} R=0 \\
\frac{\partial \eta}{\partial t}=u^{T} D u \eta
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

