
 

14.310x: Data Analysis for Social Scientists 
Fundamentals of Probability, Random Variables, Joint Distributions + Collecting Data 

Welcome to your second homework assignment! We encourage you to get an early start, 
particularly if you still feel you need more experience using R. We have provided this PDF copy 
of the assignment so that you can print and work through the assignment offline. Good luck! 

Section 1 – Fundamentals of Probability 
Unit 1 – Set Theory and Probability 

1. For events A and B in S, which of the following formulas correspond to the probability 
that either A or B, but not both occur? (Select all that apply) 

a. P(A)+P(B)-P(AÇB) 
b. P(A)+P(B)-2*P(AÇB) 
c. P(A)+P(B) 
d. (P(A)- P(AÇB)) +(P(B)- P(AÇB)) 
e. P(AÇBC)+ P(ACÇB) 

Unit 2 – Defining Probability and Examples 

2. State whether the following statement is True or False: if P(A)=1/3 and P(BC)=1/4, A and 
B can be disjoint. 
a. True 
b. False 
c. From the information given it is not possible to tell 

3. Consider the following example taken from Casella Berger: A game of darts is played by 
throwing a dart at a board and receiving a score assigned to the region where the dart hits. 
Figure 1 shows the board and the different possible regions. 

© Cengage Learning. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

Assume that you are a novice player and that a friend suggests that the probability of you 
scoring i points is given by the following formula: 
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Which of the following probability axioms does this problem satisfy? Select all that apply 
a. �(�) ≥ 0 ��� ��� � ⊂ � 
b. �(�) = 1 
c. For any sequence of disjoint sets, �!, �", … , �(�#�#) = �#�(�#) 

Unit 3 – Ordered and Unordered Arrangements 

4. Using an alphabet of 26 letters, how many unique two-letter initials can be formed if every 
person has exactly one first name and one surname (last name)? 
Note: initials consist of the first letter of the first name, followed by the first letter of the last 
name. For example, Esther Duflo’s initials would be ED. 

5. In the game of dominoes, each piece is marked with two numbers and each piece is unique. 
The pieces are symmetrical so that the numbered pair is not ordered: this means that (2,6) = (6,2) 
and there is only one of such tile. The piece may have identical numbers as well, such as (1,1), 
(2,2), or (3,3). How many pieces can be formed with different numbers using the numbers 1, 
2, …, n?
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" 

d. �(� + 1) 

Unit 4 – Independence and Bayes’ Rule 

Consider the example you saw in the lecture involving the Zika virus. We will start with the 
same set-up: A woman lives in a country where only 1 out of 1000 people has the virus. There 
is a test available that is a positive result 5% of the time when the patient does not have Zika 
and a negative result 1% of the time when the patient does have Zika. Otherwise, it gives 
correct results. Recall that we computed that th ewoman’s chance of having the virus, conditional 
on a positive test, is less than 1.9%. 

In Bayesian parlance, we call the initial, unconditional probability the “prior” and the resulting 
conditional probability, after updating based on observations, the “posterior.” 

6. Let the conditional probability we computed (1.9%) serve the role as the new prior. Compute 
the new probability that she has the virus (new posterior) based on her getting a second positive 
test. Please use 1.9% as the prior. 

7. Round your previous answer to the hundredth decimal place. For instance, if your answer is 
0.338, you should round to 0.34. How many consecutive positive test results would she have to 
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receive in total (including the two previous test results) in order to be at least 95% sure that she 
has the virus? 
Note: You will need the correct answer from Question 6 in order to obtain the correct 
response for this question. 
a. Two 
b. Three 
c. Four 
d. Five 
e. Not possible to infer from the available information 

8. In Question 6, we computed the probability of having the Zika virus after a second positive 
test using the probability of having the Zika virus given a positive test (1.9%). Another way to 
compute this probability would be to use the fact that the two tests are independent and directly 
apply the Bayes rule to derive the same result without using the technique employed in Question 
6. 

True or False: We would obtain the same probability using either method. 
a. True 
b. False 
c. No possible to infer from the available information 

Section 2 – Random Variables, Distributions, and Joint Distribution 

For Questions 9 – 15, let �~�(�, �), with � = 8 and � = 0.2. 

For this section, please use the R file (hyperlinked in homework on edX) for help with the R 
code. We highly encourage you to look up the documentation on your own time. 

Look at the rbinom() documentation to sample draws from this binomial distribution. Use it to 
generate a vector called “successes” with 1000 draws from this distribution. 

Please note that in R, n refers to the sample size and size refers to the number of trials. In 
contrast, the lectures call the number of trials n. 

9. Suppose you saved the output of previous step as “successes,” which is a numeric vector. 

Please fill in the blank to write down a simplest base code to plot a histogram of “successes”: 

__________(successes) 

Question 10 
Which of the following histograms is closest to the plot that you created? 
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c. 

d. 
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11. Try to think about this question without estimating it empirically in R. 

Now, suppose �~�(�, �), with � = 8 and � = 1. What is the mean of this variable? What would 
be the standard deviation? 

12. R has two other built-in functions related to the binomial random variable. One is 
dbinom(),and the other is pbinom(). Look up these functions, and use them to answer the 
questions below. 

For parts (a)-(c), suppose you flip an unfair coin, where � (ℎ����) = 0.65. Round your 
answer to two decimal places. 
(a) What is the probability of getting exactly 7 heads on 10 flips? 
(b) What is the probability of getting at most 7 heads on 10 flips? 
(c) What is the probability of getting at least 6 heads on 10 flips? 

13. Let � be a continuous random variable with a uniform probability distribution between 0 and 
1. What is the value of its CDF, �)(�) for any given value � such that 0 ≤ � ≤ 1? 

14. Admittedly, the histogram you generated in part 9 could use some work: Firstly, we 
plotted the frequency counts as opposed to the observed densities in our sample. Recall, 
that a probability function takes on values between 0 and 1. Second, it is not very pretty 
to look at. 

We found the code below, to plot the densities from the “successes” vector you 
generated in part 9, however it is filled with blanks. Choose from the drop-down options for the 
correct code. 

binom_draws<- as_tibble(data.frame(successes)) 

estimated_pf <- binom_draws %>% 
group_by(______1________) %>%
�______2_______(n=n()) %>%
mutate(freq= n/sum(_____3____))
ggplot(estimated_pf, aes(x= successes, y = freq)) +
geom_col() +
ylab("Estimated Density") 

1. Choose from successes, binom_draws, failures, summarize 
2. Choose from mutate, filter, summarize, count 
3. Choose from binom_draws, n(), n, successes 

15. Instead of plotting the observed density, we could’ve plotted the analytical densities 
derived from the formula above. Below is the code to do this. Select from the drop-down options 
the correct code to fill in the blank. 
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Please note n=1000 and p=0.2 

# Create a tibble with x and the analytical probability
densities. 
my_binom <- as_tibble(list(x=0:n, prob = dbinom(0:n , n,p))) 

# Plot the computed theoretical density.
ggplot(my_binom, aes(x=x, y=prob)) + geom_col() +
ylab("Analytical Density") 

Now, we are going to use the vector my_binom to compute the CDF. Look up cummean and 
cumsum, and select the correct option to complete the code. 

calculated_cdf <- my_binom %>%
mutate(cdf = __________) 

# Plot the computed cdf
ggplot(calculated_cdf, aes(x=x, y=cdf)) + geom_step() +
ylab("CDF") 

Select from 
a. cummean(x) 
b. cummean(successes) 
c. cumsum(prob) 
d. cummean(prob) 
e. cumsum(successes) 
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