14.310x: Data Analysis for Social Scientists

 Describing Data, Joint and Conditional Distributions - Part IISuppose two sisters, Caroline and Anna, sleep in adjoining rooms. Each has a speaker with which she plays music, and each speaker has a volume dial going from 0 to 1 . The joint distribution of the volumes of the two speakers is $f_{X Y}(x, y)=c\left(x+y^{2}\right)$ over the unit square, 0 otherwise. Caroline's volume is denoted by X , Anna's by Y.

Question 1
Which of the following figures represent the domain (in red) in which the density function is defined as $f_{X Y}(x, y)=c\left(x+y^{2}\right)$?

0

0

Question 2

What does the constant c represent? (Select all that apply)
The constant c is a parameter whose value assures that the joint PDF integrates to 1 .
The constant c represents a parameter that changes both the joint PDF and the joint CDF of the random variables X and Y .
The constant c is an irrelevant parameter in the shape of the joint CDF of the random variables X and Y .
The constant c is a parameter that helps to infer whether the random variables X and Y are independent.

Question 3

What is the value of the constant c in this case?

Now we are going to work in R to plot the bivariate PDF. Download the code here and take a look at the following code in order to create a grid and a 3-dimensional plot of the PDF. Please note that you might need to install the package plot 3D.

Question 4
The following plot was created by running the code. A student is claiming that this plot is wrong since there are certain regions in which the PDF shows values larger than 1 . Is this student
correct that there is a mistake and therefore the plot does not correspond to the information given in the problem?

Plotting joint pdf

- Yes
- No

Question 5
Are the volumes of the two speakers independent random variables?

- Yes
- No

Question 6
Recall that Caroline's speaker volume is denoted by X and Anna's speaker volume is denoted by
Y. What is the formula for the marginal distribution of Anna's speaker volume?

- $\frac{5}{6}\left(\frac{1}{2}+y^{2}\right)$
- $\frac{6}{5}\left(\frac{1}{2}+y^{2}\right)$

○ $\frac{6}{5}\left(\frac{1}{2}+\sqrt{y}\right)$

- $\frac{5}{6}\left(\frac{1}{2}+\sqrt{y}\right)$

Question 7
Recall that Caroline's volume is denoted by X and Anna's volume is denoted by Y. What is the conditional distribution of Caroline's volume as a function of Anna's?
$\bigcirc \frac{x+y^{2}}{\frac{1}{2}+y^{2}}$
○ $\frac{\frac{5}{6}\left(x+y^{2}\right)}{\frac{6}{5}\left(\frac{1}{2}+y^{2}\right)}$
○ $\frac{x+\sqrt{y}}{\frac{1}{2}+y^{2}}$
○ $\frac{\frac{6}{5}\left(x+y^{2}\right)}{\frac{1}{2}+y^{2}}$

Question 8

From this conditional distribution can you infer whether Caroline likes Anna's music or not? Hint: Think about the probability that Caroline's volume is high when the volume of Anna's music increases.

- Caroline does like Anna's music
- Caroline does not like Anna's music

Question 9
What is the probability that Caroline's volume is less than $1 / 2$ if Anna's volume is $1 / 2$?

Question 10

Recall that Caroline's speaker volume is denoted by X and Anna's speaker volume is denoted by Y. What is the marginal distribution of Caroline's speaker volume?

○ $\frac{5}{6}\left(x+\frac{2}{3}\right)$

- $\frac{5}{6}\left(x+\frac{1}{3}\right)$

○ $\frac{6}{5}\left(x+\frac{2}{3}\right)$

- $\frac{6}{5}\left(x+\frac{1}{3}\right)$

Question 11
Is there a First Order Stochastic Dominance (FOSD) relationship between the random variables X and Y ? (We suggest you compute the CDFs of both variables and plot them in R.)

- The distribution of X FOSD the distribution of Y
- The distribution of Y FOSD the distribution of X
- There is no clear relationship

Question 12
From this information, does Anna or Caroline prefer higher volumes? Hint: Think about the implications of the answer to Question 11)

- Anna
- Caroline
- We can't say

MIT OpenCourseWare
https://ocw.mit.edu/

14.310x Data Analysis for Social Scientists

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

