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Probability---example 
Two weeks ago, we ended with an example involving 

computing probabilities from a joint PDF. It generated a 
lot of questions. So let’s do another example*. 

Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 
0 otherwise 

*Taken from DeGroot and 
Schervish. 
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Probability---example 
Two weeks ago, we ended with an example involving 

computing probabilities from a joint PDF. It generated a 
lot of questions. So let’s do another example*. 

Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 
0 otherwise 

First, let’s draw a picture of the support of this distribution, 
or the region of the xy-plane over which there is positive 
probability. 

*Taken from DeGroot and 
Schervish. 
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Probability---example 
Two weeks ago, we ended with an example involving 

computing probabilities from a joint PDF. It generated a 
lot of questions. So let’s do another example*. 

Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 
0 otherwise 

First, let’s draw a picture of the support of this distribution, 
or the region of the xy-pl 
probability. 

*Taken from DeGroot and 
Schervish. 

ane over which there is positive 
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Probability---example 
Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Now here’s a 3D drawing of the joint PDF. 
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Probability---example 
Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Let’s figure out what c is. How? 
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Probability---example 
Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Let’s figure out what c is. How? We know this joint PDF 

has to integrate to 1. So let’s integrate this thing and 
solve for what c must be. 
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Probability---example 
fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Note that we only need to integrate over the support of the 

distribution because the PDF is 0 elsewhere. 

So c = 21/4. 
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Probability---example 
fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Note that we only need to integrate over the support of the 

distribution because the PDF is 0 elsewhere. 

How did I get these limits of integration? 
So c = 21/4. 
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Probability---example 
fXY(x,y) = cx2y for x2 <= y <= 1 

0 otherwise 
Note that we only need to integrate over the support of the 

distribution because the PDF is 0 elsewhere. 

So c = 21/4. 
How did I get these limits of integration? 
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Probability---example 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

What is P(X>Y)? 
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Probability---example 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

What is P(X>Y)? Have to figure out the region of the xy-
plane over which we integrate. 
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Probability---example 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

What is P(X>Y)? 
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Probability---example 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

What is P(X>Y)? 

This is the intersection between the support of the joint PDF 
and the half-plane where x > y. 
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Probability---example 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

What is P(X>Y)? 
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Probability---joint, marginal, conditional dstns 
Ok, so now we’re comfortable with the notion of a joint 

distribution being a surface (or set of point masses) over 
the xy-plane that describe the probability with which the 
random vector (X,Y) is in certain regions of the xy-plane. 
We saw examples of how to calculate probabilities by 
integrating the PDF fXY over the relevant regions. 
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Probability---joint, marginal, conditional dstns 
Ok, so now we’re comfortable with the notion of a joint 

distribution being a surface (or set of point masses) over 
the xy-plane that describe the probability with which the 
random vector (X,Y) is in certain regions of the xy-plane. 
We saw examples of how to calculate probabilities by 
integrating the PDF fXY over the relevant regions. 

Now, we’ll see some other things we can do with joint 
distributions. To start, we are going to see how to 
recover individual, or marginal, distributions from the joint. 
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Probability---joint, marginal, conditional dstns 
For discrete: 

fX(x) = ΣyfXY(x,y) 
For continuous: 

fX(x) = ∫yfXY(x,y)dy 
For discrete random variables, the intuition is clearer, 

perhaps. For a particular value of x, just sum up the 
joint distribution over all values of y to obtain the marginal 
distribution of X at that point. 

For continuous random variables, just do the continuous analog. 
18



 

       
          

          
           
          

        
      

        
        

Probability---discrete example 

Esther and I play tennis. Like many sports, tennis players 
tend to rise (or fall) to the level their opponent is playing, 
so it would not be surprising to learn that we’re more likely 
to both be playing well or both playing poorly. 

What would the observation above suggest about the shape of 
a joint PF of our unforced errors by game? (By the way, 
a game is completed when a player wins four points by at 
least two points, but the score-keeping has this strange 
vestigial character: Love, 15, 30, 40, game.) 
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Probability---discrete example 

Esther and I play tennis. Like many sports, tennis players 
tend to rise (or fall) to the level their opponent is playing, 
so it would not be surprising to learn that we’re more likely 
to both be playing well or both playing poorly. 

What would the observation above suggest about the shape of 
a joint PF of our unforced errors by game? (By the way, 
a game is completed when a player wins four points by at 
least two points, but the score-keeping has this strange 
vestigial character: Love, 15, 30, 40, game.) 
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Probability---discrete example 
Here’s the joint PF of our unforced errors in a game: 

Note the pattern---we either both have few unforced errors 
or both make a lot. 
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Probability---discrete example 
Here’s the joint PF of our unforced errors in a game: 

Apparently we’ 
pretty good. 

Note the pattern---we either both have few unforced errors 
or both make a lot. 
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Probability---discrete example 
Here’s the joint PF of our unforced errors in a game: 

 
        

         
     

Note the pattern---we either both have few unforced errors 
or both make a lot. 
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Probability---discrete example 
To calculate the marginal distributions, we just add up over 

values of the other random variable. Specifically, the 
probability that I make 2 unforced errors in a game is the 
probability that I make 2 and Esther makes 0 + the 
probability that I make 2 and Esther makes 1 + . . . 

 
          

        
          
          
            

  
      

   

For a particular value 
of x, add up over all 
possible values of y. 
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Probability---discrete example 
To calculate the marginal distributions, we just add up over values 

of the other random variable. Specifically, the probability that 
I make 2 unforced errors in a game is the probability that I 
make 2 and Esther makes 0 + the probability that I make 2 
and Esther makes 1 + . . . 

Since I have set up the joint PF to be symmetric, 
fX(x) = fY(y) = 3/8 x* = 0 

5/16 x = 1 
5/32 x = 2 
7/64 x = 3 
3/64 x = 4 * or y 
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Probability---discrete example 
To calculate the marginal distributions, we just add up over values 

of the other random variable. Specifically, the probability that 
I make 2 unforced errors in a game is the probability that I 
make 2 and Esther makes 0 + the probability that I make 2 
and Esther makes 1 + . . . 

Since I have set up the joint PF to be symmetric, 
fX(x) = fY(y) = 3/8 x* = 0 

You will never know 5/16 x = 1 the real truth. 
5/32 x = 2 
7/64 x = 3 
3/64 x = 4 * or y 
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Probability---discrete example 
To calculate the marginal distributions, we just add up over values 

of the other random variable. Specifically, the probability that 
I make 2 unforced errors in a game is the probability that I 
make 2 and Esther makes 0 + the probability that I make 2 
and Esther makes 1 + . . . 

Since I have set up the joint PF to be symmetric, 
fX(x) = fY(y) = 3/8 x* = 0 

5/16 x = 1 
5/32 x = 2 
7/64 x = 3 
3/64 x = 4 * or y 

27



  
         
        

        
       

 
otherwise 

Probability---continuous example 
We’ll do something similar using a joint PDF. Let’s return to 

our example from the beginning of lecture. 
So fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 
Recall: 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fX(x) = 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fX(x) = 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fX(x) = 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fX(x) = 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fY(y) 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fY(y) 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fY(y) 
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Probability---continuous example 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

So, fY(y) 
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Probability---joint, marginal, conditional dstns 
We have seen: if you know the joint distribution, you can 

recover the marginal distributions of the constituent random 
variables. 

If you know the marginals, can you construct the joint? 
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Probability---joint, marginal, conditional dstns 
We have seen: if you know the joint distribution, you can 

recover the marginal distributions of the constituent random 
variables. 

If you know the marginals, can you construct the joint? 
In general, no. We need another crucial piece of information: 

the relationship between the random variables. 
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Probability---independence of RVs 
X&Y are independent if P(XcA & YcB) = P(XcA)P(YcB) 

for all regions A&B. 
Well, that could certainly be hard to check. 
However, that definition does imply that FXY(x,y) = 

FX(x)FY(y), which could be useful. Furthermore, one can 
prove that X&Y are independent iff fXY(x,y,) = 
fX(x)fY(y). This condition is easy to check and useful. 

In fact, if X&Y are both continuous with joint PDF fXY, 
X&Y are independent iff fXY(x,y,) = g(x)h(y) where g is 
a non-negative function of x alone and h the same with y. 
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    Example from previous lecture 

Probability---example 
Suppose after hours of writing lecture notes, I develop a 

splitting headache. I rummage around in my drawer and 
find one tablet of naproxen and one of acetaminophen. I 
take both. Let X be the effective period of naproxen. 
Let Y be the effective period of acetaminophen. Suppose 

fXY(x,y) = λ2exp{-λ(x+y)} for x,y >= 0 

What is the probability that my headache comes back within 
three hours? Are X&Y independent here? 
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    Example from previous lecture 

Probability---example 
Suppose after hours of writing lecture notes, I develop a 

splitting headache. I rummage around in my drawer and 
find one tablet of naproxen and one of acetaminophen. I 
take both. Let X be the effective period of naproxen. 
Let Y be the effective period of acetaminophen. Suppose 

fXY(x,y) = λ2exp{-λ(x+y)} for x,y >= 0 

What is the probability that my headache comes back within 
three hours? Are X&Y independent here? Yes! This PDF 

can be factored, and X&Y have same distn, in fact. 
41



 
            

      
        
           

  
             
      

   

    Example from earlier in this lecture 

Probability---example 
Last time we ended with an example that generated a lot of 

questions. We were computing probabilities from a joint 
PDF. Let’s do another example. 

Suppose we have fXY(x,y) = 
0

How? 

cx2y for x2 <= y <= 1 
otherwise 

First, let’s figure out what c is. We know this joint 
PDF has to integrate to 1. 

Are X&Y independent here? 
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    Example from earlier in this lecture 

Probability---example 
Last time we ended with an example that generated a lot of 

questions. We were computing probabilities from a joint 
PDF. Let’s do another example. 

Suppose we have fXY(x,y) = cx2y for x2 <= y <= 1 
0 otherwise 

know First, let’s figure out what c is. How? We this joint 
PDF has to integrate to 1. 

How about the support? The 
values that Y can take on depend 
on the value of x. So, no. 

43



s the joint PF of our unforced errors in a game: 
 

        

 

         
     

   

    Example from earlier in this lecture 

Probability---discrete example 
Here’ 

Are X&Y independent here? 

Note the pattern---we either both have few unforced errors 
or both make a lot. 
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s the joint PF of our unforced errors in a game: 

ated. 

 
        

 
 
 

         
     

      

   
    

    
  

    Example from earlier in this lecture 

Probability---discrete example 
Here’ 

Are X&Y independent here? 
Easy to think of a region 
where definition is viol 
So, no. 

Note the pattern---we either both have few unforced errors 
or both make a lot. 
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Probability---independence of RVs 
For discrete random variables, if you have a table 

representing their joint PF, the two variables are 
independent iff the rows of the table are proportional to 
one another (linearly dependent) iff the columns of the 
table are proportional to one another. 

Why? 
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Probability---independence of RVs 
For discrete random variables, if you have a table 

representing their joint PF, the two variables are 
independent iff the rows of the table are proportional to 
one another (linearly dependent) iff the columns of the 
table are proportional to one another. 

Why? 
Independence means that the product of the marginals is equal 

to the joint so each column of the table is just a multiple 
of every other column, the multiple being the ratio of 
marginal probabilities associated with the two columns. 
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Probability---independence of RVs 
An example of independent discrete RVs 
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Probability---independence of RVs 

We can think of this as a 
possible joint PF of 
unforced errors if my and 
Esther’s unforced errors were 
independent, instead of 
having the character that 
we either both made a lot or 
both made few. 

An example of independent discrete RVs 
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Probability---joint, marginal, conditional dstns 
Similar to the idea of conditional probability, we want to 

introduce the conditional distribution, which allows one to 
“update” the distribution of a random variable, if necessary, 
given relevant information. 

The conditional PDF of Y given X is 
fY|X(y|x) = fXY(x,y)/fX(x) 

( = P(Y=y|X=x) for X,Y discrete ) 
Note the conditional PDFs are often written as a function of 

both x and y. For a particular value of the conditioning 
variable, though, they behave just like a marginal PDF. 
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Probability---joint, marginal, conditional dstns 
Similar to the idea of conditional probability, we want to 

introduce the conditional distribution, which allows one to 
“update” the distribution of a random variable, if necessary, 
given relevant information. Take the relevant slice 

of the joint PDF and blow The conditional PDF of Y given X is it up so that it is a PDF 
fY|X(y|x) = fXY(x,y)/fX(x) itself (i.e., integrates to 1). 

( = P(Y=y|X=x) for X,Y discrete ) 
Note the conditional PDFs are often written as a function of 

both x and y. For a particular value of the conditioning 
variable, though, they behave just like a marginal PDF. 
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Probability---example 
Recall the original joint PF of unforced errors: 
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Probability---example 
Recall the original joint PF of unforced errors: 

Take a slice, say, Y=2. 
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Probability---example 
Recall the original joint PF of unforced errors: 

Take a slice, say, Y=2. 

That slice is not a PDF 
on its own (doesn’t integrate 
to 1), so we need to blow 
it up. 
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Probability---example 
Recall the original joint PF of unforced errors: 

Take a slice, say, Y=2. 

That slice is not a PDF 
on its own (doesn’t integrate 
to 1), so we need to blow 
it up. 

The factor we blow it up by 
is P(Y=2), or 5/32. 
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Probability---example 
Recall the original joint PF of unforced errors: 

So, 
fX|Y(x|y=2) = 2/5 for x = 1,2 

1/5 for x = 3 
0 otherwise 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
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x2 <= y <= 1 

Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y 

0 otherwise 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y 

0 

We will calculate the conditional 
PDF of Y as a function of x, but 
for a particular value of x, think 
of this function as taking a 
cross-sectional slice of the joint 
PDF and suitably normalizing it. 

x2 <= y <= 1 
otherwise 

x = 1/2 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

Recall fX(x) 
(Note that this PDF is non-zero for all x in [-1,1] except 

0. A PDF conditional on x will only be defined for non-
zero values of x.) 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

Recall fX(x) 
Now recall that fY|X(y|x) = fXY(x,y)/fX(x) . 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

Recall fX(x) 
Now recall that fY|X(y|x) = fXY(x,y)/fX(x) . 
So fY|X(y|x) = 2y/(1-x4) x2 <= y <= 1 

0 otherwise 
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Probability---example 
Let’s also compute a conditional PDF, using the earlier 

example. 
fXY(x,y) = (21/4)x2y x2 <= y <= 1 

0 otherwise 

Recall fX(x) 
Now recall that fY|X(y|x) = fXY(x,y)/fX(x) . 
So fY|X(y|x) = 2y/(1-x4) x2 <= y <= 1 

0 otherwise 
Only defined for non-zero values of x. 63



 
       

    

          
          

   

       

Probability---example 
So fY|X(y|x) = 2y/(1-x4) x2 <= y <= 1 

0 otherwise 
Only defined for non-zero values of x. 

Plug in any legitimate value of x, say x = 1/2. 
We get fY|X(y|x) = (32/15)y 1/4 <= y <= 1 

0 otherwise 
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Probability---example 
Here’s the picture from before: Here is the conditional 

PDF at x = 1/2: 

x = 1/2 

y 

65



    
       

  
    

   
      

       
      

Probability---joint, marginal, conditional dstns 
Not surprisingly, there is a relationship between conditional 

distributions and independence. 
fY|X(y|x) = fY(y) iff fXY(x,y) = fX(x)fY(y) 

iff X&Y independent 
If two random variables are independent, knowing something 

about the realizations of one doesn’t tell you anything about 
the distribution of the other. 
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Probability---functions of RVs 
As I’ve emphasized before, we need to start with a 

foundation in probability because we can’t talk about how 
functions of random variables behave until we know about 
how random variables behave. And we can’t talk about 
statistics, such as the sample mean, until we know about 
functions of random variables because that’s precisely what 
a statistic is. 

So now we start our discussion of functions of random 
variables. 
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Probability---functions of RVs 
Basic idea: we have a random variable X and its PDF. We 

want to know how a new random variable Y = h(X) is 
distributed. (More complicated: we have random variables 
X1, X2, X3, . . ., and we want to know how h(X), a 
function of the entire random vector X, is distributed.) 
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Probability---functions of RVs 
Let’s start with a graphical example. 
We want the distribution of Y = |2X| + 3, where X has 

PDF fX(x) = 1 - |x| for -1 <= x <= 1. 

Here’s the PDF of X: 

Here’s what happens when we multiply it by 2---it gets 
stretched out: 
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Probability---functions of RVs 
Let’s start with a graphical example. 
We want the distribution of Y = |2X| + 3, where X has 

PDF fX(x) = 1 - |x| for -1 <= x <= 1. 

Now take the absolute value---all 
of the density over negative values 
gets folded over onto the positive values: 
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Probability---functions of RVs 
Let’s start with a graphical example. 
We want the distribution of Y = |2X| + 3, where X has 

PDF fX(x) = 1 - |x| for -1 <= x <= 1. 

Now finally let’s add 3---shifts entire distribution over: 

71



  
      
            

         

       
        

    

Probability---functions of RVs 
Let’s start with a graphical example. 
We want the distribution of Y = |2X| + 3, where X has 

PDF fX(x) = 1 - |x| for -1 <= x <= 1. 

Keep in mind that throughout this process, the distribution 
always retained the properties of a PDF, in particular, it 
integrated to 1. 
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Probability---functions of RVs 
One more example that should help firm up your intuition of 

what a function of a RV does: 
Suppose we have X U[0,1]. What function g can 

transform X to a 
~ 
B(2,.5)? 
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Probability---functions of RVs 
One more example that should help firm up your intuition of 

what a function of a RV does: 
Suppose we have X U[0,1]. What function g can 

transform X to a 
~ 
B(2,.5)? 

fX(x) = 1 0 <= x <= 1 
fY(y) = 1/4 x = 0, 2 

1/2 x = 1 
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Probability---functions of RVs 
One more example that should help firm up your intuition of 

what a function of a RV does: 
Suppose we have X U[0,1]. What function g can 

transform X to a 
~ 
B(2,.5)? 

fX(x) = 1 0 <= x <= 1 
fY(y) = 1/4 x = 0, 2 

1/2 x = 1 
How about just chopping up the unit interval and mapping 

appropriate sized sub-intervals to each point mass? 
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Probability---functions of RVs 
How about just chopping up the unit interval and mapping 

appropriate sized sub-intervals to each point mass? 

y 

fY 
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Probability---functions of RVs 
How about just chopping up the unit interval and mapping 

appropriate sized sub-intervals to each point mass? 

y 

fY 

1/4 3/4 
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Probability---functions of RVs 
How about just chopping up the unit interval and mapping 

appropriate sized sub-intervals to each point mass? 

y 

fY 
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Probability---functions of RVs 
How about just chopping up the unit interval and mapping

appropriate sized sub-intervals to each point mass? 

y 

fY 

So Y = 0 x <= 1/4 
1 1/4  <= x <= 3/4 
2 3/4 <= x 
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y 

fY 

Probability---functions of RVs 
How about just chopping up the unit interval and mapping

appropriate sized sub-intervals to each point mass? 

This is one possible So Y = 0 x <= 1/4 
function---it is 1 1/4  <= x <= 3/4 certainly not unique. 

2 3/4 <= x 
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Probability---functions of RVs 
There are various methods one can use to figure out the 

distribution of a function of random variables. Which 
methods one can use on a particular problem depend on 
whether the original random variable is discrete or 
continuous, whether there is just one random variable or a 
random vector, and whether the function is invertible or 
not. We will not learn all of the methods here. Instead 
we’ll learn one important method and also see a lot of 
examples that can be applied somewhat generally. 
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