1431 /14.310 Lecture 6



Probabilit \j’”example

Two weeks a40, We ended with an example involving
computing probabilifies brom a \oint PDF. It generated
lot of questions. Do lef's do another example™.

Suppose we have \Cﬁ(x,ﬂ) = { cx% for %2 <= y < |

O otherwise

* Taken trom Delroot and
Schervish,



Probabilit \j’”example

Two weeks a40, We ended with an example involving
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Probabilit \j’”example

Two weeks a40, We ended with an example involving
computing probabilifies brom a \oint PDF. It generated
lot of questions. Do lef's do another example™.

vaose we have \ngﬁx, 5} = { cx% \for xt <= y < |
O  otherwise
First, lefs draw a picture of the support of this distribvtion,
or the vegqion o the x'j’?lavxe over Which There is positive
?robabili’ﬂj. 1
(-1,0) (1)

* Taken trom Delroot and )
Schervish. Uﬂ .

X




Probubilit y~"example
vaose we have \Cﬁ(x,ﬂ) = { cx% \for xt <= y < |

O otherwise

Now here's a 3D drawing of the Joint PDF. 4{

oA




Probubility=—-example
vaose we have \Cﬁ(x,ﬂ) = { cx% for %2 <= y < |

O  otherwise
Let's \Ciﬂwe ovt what ¢ 1s.  How?



Probubility=—-example
vaose we have \Cﬁ(x,ﬂ) = { cx% for %2 <= y < |

O otherwise

Let's \Ciﬂwe ot what ¢ is. How? We know this Joint PDF

has Yo ivx’feﬁm’fe Yol. Solet's ivx’feﬁm’fe this W\Mﬁ and
solve for what ¢ must be.



Probabilit \j’”example
%@c,g) = { cx% \for xt ¢ y < |

O otherwise

Note that we omhj need To Wnteqrate over The support of the
distribution becavse the PDF is O elsewhere.

j—l| j;lﬂ?ﬁlﬂdﬂd% - %c:

So ¢ = 2U/%.



Probabilit \j’”example
{thx,'j) -‘{ cx% \for xt ¢ y < |

O otherwise

Note that we owhj need To inteqrafe over The support of the
distribution becavse the PDF is O elsewhere.

How did | get These limits of infeqration?
Soc=2/%.



Probabilit \j’”example
{thx,'j) -‘{ cx% \for xt ¢ y < |
o) otherwise

Note that we owhj need To inteqrafe over The support of the
distribution becavse the PDF is O elsewhere.

How did | get These limits of inteqration?
19

(1,0 (1)

4=r>
4 6

So ¢ = 2U/%.




Probabilit \j’”example
So \fﬁ(x,ﬂ) - { 21/ ‘r)x% xt <= y < |
0

otherwise

What is POGY)?



Probabilit \j’”example
So \fﬁ(x,ﬂ) - { 21/ ‘r)x% xt <= y < |
0

otherwise

What is POGY)? Have Yo £ qure vt the region of the XY~

?Iavxe over which we ’m’feﬁm’fe.
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So \fﬁ(x,g) - { 21/ ”r)xlﬂ xt <= y < |
0

otherwise

What is POGY)? +J




Probabilit \j’”example
So \fﬁ(x,g) - { 21/ ”r)xlﬂ xt <= y < |
0

otherwise

What is POGY)? +J

(L)
=X
J j,xi
>?C

This is the intersection between the support of the AUl PDF
and, the hal\f'PlaV\e where x 7 y.




Probabilit \j’”example
So \fﬁ(x,'j) - { 21/ ”r)xlﬂ xt <= y < |
0

otherwise

What is POGY)? +J




Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

Ok, so now we're combortable with the notion of a \oint
distribution being a surtace Cor set of point masses) over
the xy-plane that deseribe the probubility with which the
random vector (XY) is in certain regions of the xy~plane.
We saw examples of how o calevlate probabilities bﬁ
infeqrating the PDF fxy over the relevant regions.



Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

Ok, so now we're combortable with the notion of a \oint
distribution being a surtace Cor set of point masses) over
the xy-plane that deseribe the probubility with which the
random vector (XY) is in certain regions of the xy~plane.
We saw examples of how o calevlate probabilities bﬁ
infeqrating the PDF fxy over the relevant regions.

Now, well see some other things we can do with \oint
distributions.  To start, we are qoing Yo see bow o

recover individval, or mmm\,iml, distributions from the \'\o\vx’f .



Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

For discrete:

\Cx(@ } Zﬁ\fMX' @

For continvovs:

0 = ﬁﬁ(ﬁ Yy dy

For discrete vandom variables, The wntuition is clearer,
perhaps. For a particvlar valve of x, \'\\)s’f sum vp The

ot distribution over all valves of y o obfain the margival
distribution of X at that point.

For contivwovs vandom variables, \'\vs’f do The continvovs anal 04,



Probabili’ﬂj”'discre’fe example

Esther and | ?laﬂ Yennis. Like many sports, Tennis Plaujers
tend, Yo vise Cor fall) Yo the level their opponent is playing,
50 it would vt be surprising To learn thaf we're more likelﬁ
Yo both be lejivxﬁ well or both ﬂa@vg ?oorlﬁ.

What would the observation above sugqest about the shape of
i \')oiV\’f PF of o wnforced ervors bﬁ 3ame’.1 (5(3 the way,
& game is completed when a ‘)laﬁer wins four points bﬂ al
least two Poivx’(s, but the score’kee?i\nﬁ has this s’ﬂravxﬁe
vestigial character Love, 15, 30, 40, 3ame.)



Probabili’ﬂj”'discre’fe example

Esther and | ?laﬂ Yennis. Like many sports, Tennis Plaujers
tend, Yo vise Cor fall) Yo the level their opponent is playing,
50 it would vt be surprising To learn thaf we're more likelﬁ
Yo both be lejivxﬁ well or both ﬂa@vg ?oorlﬁ.

What would the observation above sugqest about the shape of
i \')oiV\’f PF of o wnforced ervors bﬁ 3ame’.1 (5(3 the way,
& game is completed when a ‘)laﬁer wins four points bﬂ al
least two Poivx’(s, but the score’kee?i\nﬁ has this s’ﬂravxﬁe
vestigial character Love, 15, 30, 40, 3ame.)



Probabili’ﬂj”’discre’fe example

Here's the joiw’f PF of owr witorced evrors in a qome:

¢ Y
x¥ 0 l 2 3 4
ol % % o 0 0
1% % e 000
X 21 O l/l& yliv %?» v
sl 0 0 Y Vb 4
gl o 0 0 W

Note the paffern——we either both have few wntorced errors
or both make a lot,



Probabili’ﬂj”'discre’fe example

Here's the \oint PF of ow wnforced errors in a qame

'?x\{ 0 l Yl 2 4

A{)Pare\'\ﬂ\j weve o 4% % o 0 0
pretty qood. % % % o o
X 2l 0 Y ‘% % O

3l 0 0 Y Y
gl o 0 0 W

Note the paffern——we either both have few wkorced errors
or both make a lot,



Probabili’fﬁ”’discre’fe example

Here's the \oint PF of ow wnforced errors in a qame

Tuy

i! 4 4 :':_%
] ‘II[T'
v 1

]

Note the paffern——we either both have few wntorced errors
or both make a lot,



Probabili’ﬂj”’discre’fe example

To caleviate the margival distributions, we st add vp over
valves of the other random variable. S?eci\ficaﬂiﬁ, the

?robab'\\i’f 4 Yhaat
?robab'\\i’f 4 Yhat
?robabili’ﬂﬁ Yt

make 2 wtorced ervors in a qame is The

make 2 and Esther makes O + the
make 2 and Esther makes | + . . .

i
’ For a parficular valve
of x, add up over all
(it >y possible valves of Y.
VAN
U o
v
j 24



Probabili’ﬂj”'discre’fe example

To calevate the marﬂiml distributions, we st add vp over valves
of the other random variable. S?eci\cicaﬁﬂ, the probadility that
| wake 2 untorced errors i a qame is The probability that |
make 2 and Esther makes O + the ?robabili’fﬂ Yhat p make 2

and Esther makes | + . . .
Since | have set up the \’\o'm’f PF o be symmefric,
£60) = \%j) = [ 38 x-=0
5/16 x = |
15/3 x=1
7/65 x =3
3/6h x= &

*or\j



Probabili’fﬁ”’discre’fe example

To calevate the marﬂiml distributions, we \ust add up over valves
of the other random variable. S?ed\cicaﬁﬂ, the probadility that
| wake 2 untorced errors i a qame is The probability that |
make 2 and Esther makes O + the ?robabili’fﬂ Yhat p make 2

and Esther makes | + . . .
Since | have set up The 30'\%’( PF o be symmefric,

%&X) i W"ﬁ) ) 38 x* =0 Yb will vever know
5/16 x = | the veal Truth,
15/3 x=1
7/64 x =3
3/eh x -4

*or“



Probabili’fﬁ”'djscre’fe example

To calevate the marﬂiml distributions, we st add vp over valves
of the other random variable. S?ed\cicaﬁﬂ, the probadility that
| wake 2 untorced errors i a qame is The probability that |
make 2 and Esther makes O + the ?robabili’fﬂ Yhat p make 2

and Esther makes | + . . .
Since | have set up the \’\o'm’f PF Yo be sgmme’fric,

£0 = fy = [ 3/8 x-0 L
5/16 x = |
| 5/30 x=12 “[1,\_
/6% x =3 01234 X

3/64 x =&
*or“



Probabili’ﬂ\'j”'co\n’ﬁvwovs example

Well do some’rwvxﬁ similar using a \'\oivx’f PDF. LeYs retun Yo
our example brom the beginning of lecture.

So \fﬁ(x,g) - {(?.I / ”r)xlﬂ xt <= y < |
O

otherwise

Recall:




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise

So, H4(x) = J: { » (x'j) d’j ] j;l % 'xzj M




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise

So, 1) - J: {(Y(x,j)&j . J;} %% 'xljdbj I?'Iéxs;[j




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise
So, 1) - J: {(Y(x,j)&j . J;} %% 'xljdbj 1 i'léxs;[j

- 21/5 'Xl( l-'?("“) IE'ISXSIJ



Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,'j) -‘{ /A0ty X<y <
0

otherwise
So, 1) - J: {:Y(x,j)dfj . J; %% 'xljotj 1 i'léxs;(j

= 21/6 '>L1(I~?<4) I?"[S?{,S[j ‘f'FX

M %

,-.l i




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise

SO, ¥V(ﬁ> ” S: Q}(*{ (%j) dx. = E_% 2%} ')C?-j "




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise

o, &(ﬁ) 2 SZ wa(x.j)clx - S% 7 ')Ciﬁ Ax Ii 0 €Y< 175




Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,g) ={ /A0ty X<y <
0

otherwise

o, &(ﬁ) 2 SZ wa(x.j)clx - S% 7 ')Ciﬁ Ax Ii 0 €Y< 175

< By Tloeyel]



Probabili’ﬂ\'j”'co\n’ﬁvwovs example
\fﬁ(x,'j) -‘{ /A0ty X<y <
0

otherwise

o, {y(ﬁ) 2 SZ wa(x.j)clx - S% 7 ')Cij Ax rLi 0 €Y< 175

: 7/23% 1}05:35-175 i

g 18
Y l.
|
l
|
I
>

t )




Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

We have seen: i yov know the yoint distribvtion, Yo can
recover the marqinal distributions of the constituent random
variables.

£ you know the margivals, can you construct the jom’f?.



Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

We have seen: i yov know the yoint distribvtion, Yo can
recover the marqinal distributions of the constituent random
variables.

£ you know the margivals, can you construct the jom’f?.

In 3evxeml, no. We veed another crucial piece of information
the velationship between the vandom variables.



Probubility-=-independence of RVs

KsY are independent it POCA 5 YB) = POCAIPYD)
for all reqions AsD.

Well, that colld cevtai vly be hard Yo check.

However, that definition does imply that Fodx, 5) =
FX(X)F\M) which cold be vse}vi. Furthermore, ove can
rove That X4Y are independent it 4 kx, ) =
Ex(x)\%'j). This condition is easy Yo check and, vseful.

In fact, it XgY are both continvous with jant PDF {yy,
KsY are independent i Hdx, 5,) = 3{@».(3) where 4 is

& vion-viegafive fnction of x alone and b the same with Y.



Example brom previovs lecture

Probabilit \j’”example

Suppose abter howrs of wrifing lecture viotes, | develop a
splitfing headache, | rummage arownd in my drawer and
fnd one tablet of naproxen and one of acepamivxo?hew. |

fake both. Let X be the effective period of naproxen.
Let Y be the etfective period of acciamiwophew. Suppose

\Cﬁ(x,g) = Azexﬁ’Mx’fg)} {or XY 7 O

What is the grobabili’f Y Yot mi, headache comes back within
Three hours! Are KgY independent here?



Example brom previovs lecture

Probabilit \j’”example

Suppose abter howrs of wrifing lecture viotes, | develop a
splitting headache, | rummage arownd in W\p drawer and

fnd one tablet of naproxen and, one of ace aminophen. |

fake both. Let X be the effective period of naproxen.
Let Y be the etfective period of acciamiwo?hew. Suppose

\Cﬁ(x,'j) = Azexﬁ’Mx*g)} {or XY > O

What is the grobabili’f Y Yot mi, headache comes back within
Y

Three howr Are XqY independent here? Yes! Twis PDF
can be factored, and XgY bave same dist", in fact.




Example brom earlier in this lecture
Probubility=—-example

Last time we ended with an example that qenerated a lof of
questions. We were compviing probubilifies brom a ot
PDF. Let's do another example.

Sv??ose we have \Cﬁ(x,ﬂ) = { cx% \for xt <= y < |
otherwise

First, lets \[iﬁwe ovt what ¢ 15. How? We know this ot
PDF bas Yo inteqrate Yo |.

Are KgY independent here?



Example brom earlier in this lecture
Probubility=—-example

Last time we ended with an example that qenerated a lof of
questions. We were computing probubilities brom a \'\o'm’f
PDF. Let's do another example.

vaose we have \ny(x, '3) = { cx% \for x: <= y < |
O  otherpise

First, lets \[iﬁwe ovt what ¢ is. How? We know this ot
PDF bas Yo inteqrate Yo |.

How about the svwor’f? The
valves that Y can take on depend
on the valve of x. So, vo.



Example brom earlier in this lecture

Probabili’fﬁ”’discre’fe example

Here's the \oint PF of ow wnforced errors in a qame

Tuy

Are KgY independent here?

Note the paffern——we either both have few wkorced errors
or both make a lot,



Example brom earlier in this lecture

Probabili’fﬁ”'discre’fe example

Here's the \oint PF of ow wnforced errors in a qame

Tuy

Are XY independent here?
Easy to think of a region
where defivition is vida
So, wo.

Note the paffern——we either both have few wkorced errors
or both make a lot,



Probubility-=-independence of RVs

For discrete vandom variables, it you have o Table
representing their \'\o'm’( PF, the two variables are
wndependent it e rows of the table are proporfional o
one ancther (livxemrhﬁ dependent) itk the columns of the

Yoble are ?ro?or’ﬁovxal Yo one another.

\/\/!/\3?



Probubility-=-independence of RVs

For discrete vandom variables, it you have o Table
representing their \'\o'm’( PF, the two variables are
wndependent it e rows of the table are proporfional o
one ancther (livxemrhﬁ dependent) itk the columns of the

Table are proporfional Yo one ancther.

Why?

Independence means that the product of the marqinals is equal
Yo the \'\oi\n’( 50 each colmn of the Table is \'\vs’f a mulfiple

of every ofher colomn, the mulfiple bc’w\ﬁ fhe ratio of
marqival probubilifies associated with the fwo columns.



Probubility-=-independence of RVs
An example of independent discrete RVs

'F Y
XY b | 2 3 4
0 | % b4 b4 %4 Mg

1% % Ve e Va2
2 % Y B Tm T4

3 ]/31 Vb \/lb e 1/52.

4| Vg Vs Yea Y4 Viog



Probubility-=-independence of RVs
An example of independent discrete RVs

e

¢
\ 2 3 4

l
/{25

|
2

3
b4

|
/37

1|/113

4 M b Mg
e Ve Mo Va2
T A T T
e Vs Mo Y32

Vea Vo4 Y4 Vies

We ean fhink of this as a
possible joint PF of
untorced, evvors if my and
Esther's unforced ervors were
independent, instead of
having the character that

we either both made a lot or
both made tew.



Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

Sivmilar Yo the idea o} conditional Probabili’fﬁ, we want To
introduce The conditional distribution, which allows ove To
“pdate” the distribution of a vandom variable, if necessary,

4iven relevant information.
The conditional PDF of Y given X is
fod) = el )/ )
(- P(Yﬂjl)(ﬁc) for XY discrete )

Note the conditional PDFs are often written as a fwnction of

both x and v, For a parficvlar valve of the conditi oning
variable, thouqh, they behave Just like a marqival PDF.




onbabili’fﬁ”'\'\om’f , margind, conditional dst’s

Sivmilar Yo the idea o} conditional Probabili’fﬁ, we want To
introduce The conditional distribution, which allows ove To
“pdate” the distribution of a vandom variable, if necessary,

qiven relevant information. ake the relevant slice

. . . of the \oint PDF and blow
Te conditional PDF of Y given K is t up 5o that it i a PDF

%(l)(%lx) ) %(%X,ﬂ)/ {xQX} ireelf Gie., inteqrates Yo ).
(= P(YﬂleﬁO for K.Y discrete )

Note the conditional PDFs are often written as a fwnction of

both x and v, For a parficvlar valve of the conditi oning
variable, thouqh, they behave Just like a marqival PDF.




Probubility=—-example
Recall the ori gival Yoint PF of wnforced ervors:




Probubility=—-example
Recall the ori gival Yoint PF of wnforced ervors:

Y ake a slice, Sy, Y=2.




Probabilit \j’”example

Recall the ori gival Yoint PF of wnforced ervors:

'?x*r 0 | 2 |3 4
o| % % o |0 o
1% %[B[0 °
21 0 l/l& ylb 1/33- 9
3 0 0 || Y Y
gl o 0 | 0] B

ake a slice, Sy, Y=2.

That slice is not a PDF

on its own (doesnt infeqrate
Yo ), so we veed Yo blow

i vp.



Probubility=—-example
Recall the ori gival Yoint PF of wnforced ervors:

Y ake a slice, Sy, Y=2.

Tha slice is not a PDF

on its own (doesn’t 'w\’rcﬁm’fc
o || O © Yo 1), s0 we veed To blow
ir vp.

0
0 0 [%| Y " The factor we Hlow it vp by
) is PCY=2), or 5/32.




Probubility=—-example
Recall the ori gival Yoint PF of wnforced ervors:

S0
: Y ! ~
X %(MX‘T?.) = |2/5 J;OY x =12
gL BV SIS )M DS, - 11/5 forx =3
% 6 10 0 0 otherwise




Probabilit \j’”example

Let's also compute a conditional PDF, using the earlier
example.



Probabilit \j’”exam‘;le

Let's also compute a conditional PDF, using the earlier
exwwn?ka 'f
£

\fﬁ(x,g) - {(ZI 40,3 R SRl Kl
O

otherwise

oA

ﬂ




Probabilit \j’”example
Let's also compute a conditiona PDF, using the earlier

example. :
fu) - {(m /iy eyl
O otherwise
We will calevlate the conditional oI

PDF of Y as a fnction of x, bvr

bor a particvlar valve of x, think

of this function as Taking a

eross-sectional slice of the \'\o'm’f j

PDF and svi’rablﬂ normalizing i¥.



Probabilit \j’”example

Let's also compute a conditional PDF, using the earlier
example.

\fxy(x,n) - {(ZI 40,3 R SRl Kl
O

otherwise

Reall £4(x) 2'/5 (1-x4) 1 E'ISXSIJ
(Note *hat this PDF is von-zero for all x in (1] except

0. A PDF conditional on x will only be defived for on-
26r0 valves of x.)



Probabilit \j’”example

Let's also compute a conditional PDF, using the earlier
example.

\fxy(x,n) - {(ZI 40,3 R SRl Kl
O

otherwise

Reall £4(x) 2'/5 (1-x4) 1 E'ISXSIJ
Now vecall that \Cm(alx) =tk 5)/ 100



Probabilit \j’”example

Let's also compute a conditional PDF, using the earlier
example.

\fxy(x,n) - {(ZI 40,3 R SRl Kl
O

otherwise

Reall £4(x) 2'/5 (1-x4) 1 E'ISXSIJ

Now vecall that \Cm(alx) =tk 5)/ 100

S0 %«b(%lx) = { '2.5/ U-x" x* <= y < |
O

otherwise



Probabilit \j’”example

Let's also compute a conditional PDF, using the earlier
example.

\fxy(x,n) - {(ZI 40,3 R SRl Kl
O

otherwise

Reall {4(x) 2'/5 K 1-x*) 1 E'ISXSIJ
Now vecall that \Cm(alx) =tk 5)/ 100
o %«b(%lx) - { 29/U-x*) Xt <=y < |

0 otherwise

Only defined for von-2ero valves of x.



Probubility=—-example
S0 {m(ﬁlﬂ = { '2.5/ U-x" x* <= y < |
0 otherwise
Only defined, for von-2¢vo values of x.
Pl\)ﬂ n any leﬂi’ﬁma’fe valve of x, SWy X = 1/2.
We et {m(ﬁlx) - : (32/ IB)ﬁ /4 < y < |

O otherwise

—




Probubility=—-example
Here's the picture brom before: Here 1s the conditional

-f PDF ot x = 1/2:
.{
ti
£\
x=1/2 T
/ > /
l-I } 3
/ |



Probabili’fﬁ”'\'\om’f , margind, conditional dst’s

Not swPrismﬁlﬁ, Yhere is a rela’ﬁonsw? between conditional

distribvions and independence.
fidh) = ) i fekxn) = £ Gkw)
iff X4Y independent
£ two vandom variables are independent, knowing something

about the vedizations of one doesn’t tell Yov amgmmﬁ about
the distribution of the other.



Probabili’fﬁ”'\cvm’ﬁ ons of RVs

As I've emplusized before, we veed Yo start with a
fondation in probubility Decavse we cant Yalk abovt how
fnctions of random variables behave witil we know abovt
how random variables behave. And we cant Talk about
sTafistics, such as the sam?le mean, wtil we know about
fnctions of random varibles becavse that's precisely what
a stafistic is.

So now we start owr discussion of functions of random
variables.



Probabili’fﬁ”'\cvm’ﬁ ons of RVs
Basic idea: we have a random variable X and its PDF. We

want Yo know how a new random variable Y = WX) is
distributed. (More complicat ed: we have random variables
K, K, K, .., and we want Yo know how WX), a
fnction of the enfire random vector X, is distribvted )



Probabili’fﬁ”'\cvm’ﬁ ons of RVs

Lets start with a ﬁmp‘nical example.

We want the distribvtion of Y = 12X + 3, where X las
POF ) =1 - I for 1 = x <= 1. A

Here's the PDF of X: / \
- >

Here's what hawe\ns when we W\vl’ﬂ?hj il btj 2---% 3@’(5
strefched ovt




Probabili’fﬁ”'\cvm’ﬁ ons of RVs

Lets start with a ﬁmp‘nical example.

We want the distribvtion of Y = 22X + 3, where X las
POF &) =1 - Id for 1 = x <= 1.

A

Now take the absalvte valve=-al \
of the densify over veqative valves | -

qets Foded over onto the posifive valves:
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Lets start with a ﬁmp‘nical example.

We want the distribvtion of Y = 22X + 3, where X las
POF &) =1 - Id for 1 = x <= 1.
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Lets start with a ﬁmp‘nical example.

We want the distribvtion of Y = 22X + 3, where X las
POF &) =1 - Id for 1 = x <= 1.

Keep in mind that taroughovt this process, the distribution
alwags refained the properfies j a PDF, parficar, it
ivx’feﬁm’red Yo l.
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Ove wore example that shovld help £irm vp your infuition of
what & function of a RV does:

Suppase we have K ~VIO,1]. What fnction 4
franstorm X Yo a B(2,.5)7
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Ove wore example that shovld help £irm vp your infuition of
what & function of a RV does:

Suppase we have K ~VIO,1]. What fnction 4
franstorm X Yo a B(2,.5)7

D=1 Ocexel
) =[1/4  x=0,2
/2 x=|

How abovt \'\vs’f chowmﬁ up Yhe vt nterval and ma??'mﬁ
appropriafe sized sub-intervals Yo each point mass?
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How abovt \'\vs’f dnowivxﬁ up Yhe vt inferval and manﬁ
appropriafe sized sub-intervals Yo each point mass?
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How abovt \'\vs’f dnowivxﬁ up Yhe vt inferval and manﬁ
appropriafe sized sub-infervals o each point mass?

/% 3/%



onbabili’fﬁ”'%m’ﬁ ons of RVs

How abovt \'\vs’f dnowivxﬁ up Yhe vt inferval and W\awmﬁ
appropriafe sized sub-infervals o each point mass?
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How abovt \'\vs’f dnowivxﬁ up Yhe vt inferval and W\ag{)mﬁ
appropriafe sized sub-intervals Yo each point mass !

’&(4# {Y
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SoY=1|0 x <= /%
4 | /4 < x < 3/%
2 3/4 < x
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How about ‘\'\vs’f dnowivxﬁ up the wnit interval and W\ag‘)mﬁ

appropriafe sized sub-intervals Yo each point mass !
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SoY=[0 x <= | /% ;Clv—h‘i 1S omirgossible
netion==1T 1
I8 I/; < x4 certainly not wiique.
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There are variovs methods one can vse Yo i qure ot The
distribution of a function of vandom variables. Which
methods one can vse on a particdar problem depend on
whether the origival random variable is discrete or
continvovs, whether there is ;\vs’f ove random variable or a
random vector, and whether The funckion is invertible or
not. We will vt learn all of the methods here. Instead
well learn one important method and, also see a lot of
examples Tt can be applied somewhat generally.
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