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Probability---functions of RVs 
There are various methods one can use to figure out the 

distribution of a function of random variables. Which 
methods one can use on a particular problem depend on 
whether the original random variable is discrete or 
continuous, whether there is just one random variable or a 
random vector, and whether the function is invertible or 
not. We will not learn all of the methods here. Instead 
we’ll learn one important method and also see a lot of 
examples that can be applied somewhat generally. 
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Probability---functions of RVs 
X is a random variable with fX(x) known.  We want the 

distribution of Y = h(X). Then, 
FY(y) = 

If Y is also continuous, then 
fY(y) = dFY(y)/dy 

3



  
        

      
 

      
    

    
  

Probability---functions of RVs 
X is a random variable with fX(x) known.  We want the 

distribution of Y = h(X). Then, 
FY(y) = 

If Y is also continuous, then 
First, find the CDF by fY(y) = dFY(y)/dy integrating over the 
appropriate region 
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Probability---functions of RVs 
X is a random variable with fX(x) known.  We want the 

distribution of Y = h(X). Then, 
FY(y) = 

If Y is also continuous, then 
First, find the CDF by fY(y) = dFY(y)/dy integrating over the 
appropriate region 

Then take the derivative 
to find the PDF 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
Recall we need to “integrate over the appropriate region.” 
Easier said than done, perhaps, but we will argue in steps 

what is the appropriate region. 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
First note that the support of X is [-1,1], which implies that 

the induced support of Y is [0,1]. 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
First note that the support of X is [-1,1], which implies that 

the induced support of Y is [0,1]. 

Remember this---we will use it 
again in a few slides. 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
FY(y) = P(Y <= y) by definition 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
FY(y) = P(Y <= y) by definition (first step) 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
FY(y) = P(Y <= y) by definition 

= P(X2 <= y) plugging in function 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
FY(y) = P(Y <= y) by definition 

= P(X2 <= y) plugging in function 
= solving for X 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2.  What is fY? 
FY(y) = P(Y <= y) by definition 

= P(X2 <= y) plugging in function 
= 

= 

solving for X 

integrating over appropriate area 
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Probability---example 
fX(x) = 1/2 for -1 <= x <= 1 

0 otherwise 
Y = X2. What is fY? 
FY(y) = P(Y <= y) by definition 

= P(X2 <= y) plugging in function 
= solving for X 

= integrating over appropriate area 

= for 0 <= y <= 1 
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Probability---example 
FY(y) = 0 for y < 0 

for 0 <= y <= 1 
1 for y > 1 

Since Y is continuous, we can just take the derivative of FY 
to get fY. 

fY(y) = 1/(2 ) for 0 <= y <= 1 
0 otherwise 
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Probability---example This is where we use 
FY(y) = 0 for y < 0 that fact we noted 

earlier for 0 <= y <= 1 
1 for y > 1 

Since Y is continuous, we can just take the derivative of FY 
to get fY. 

fY(y) = 1/(2 ) for 0 <= y <= 1 
0 otherwise 
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Probability---example 
FY(y) = 0 for y < 0 

for 0 <= y <= 1 
1 for y > 1 

Since Y is continuous, we can just take the derivative of FY 
to get fY. 

fY(y) = 1/(2 ) for 0 <= y <= 1 
0 otherwise 
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Probability---important examples we’ll see 
1. Linear transformation of a single random variable 
2. Probability integral transformation 
3. Convolution 
4. Order statistics 
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Probability---linear transformation 
There may be lots of reasons why we care about the 

distribution of a linear transformation of a random 
variable. Perhaps the random variable is measured in the 
wrong or inconvenient units. (What’s the distribution of 
the length of Steph Curry’s shots in meters, instead of 
feet?) Perhaps some formula dictates a linear 
relationship between two variables, and we know how one 
is distributed. (The number of heating degree days in 
the month of February can be approximated as 28x(65-
average high temp).) Perhaps some theory predicts a 
linear relationship between variables. 
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Probability---linear transformation 
Let X have PDF fX(x).  Let Y = aX + b, a <> 0.  How is 

Y distributed? 
FY(y) = P(Y <= y) = P(aX+b <= y) 
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Probability---linear transformation 
Let X have PDF fX(x).  Let Y = aX + b, a <> 0.  How is 

Y distributed? 
FY(y) = P(Y <= y) = P(aX+b <= y) 

= P(X <= (y-b)/a) if a > 0 
P(X >= (y-b)/a) if a < 0 
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Probability---linear transformation 
Let X have PDF fX(x).  Let Y = aX + b, a <> 0.  How is 

Y distributed? 
FY(y) = P(Y <= y) = P(aX+b <= y) 

= P(X <= (y-b)/a) if a > 0 
P(X >= (y-b)/a) if a < 0 

= 
a > 0 

a < 0 
23



  
              

  
      

Probability---linear transformation 
Let X have PDF fX(x).  Let Y = aX + b, a <> 0.  How is 

Y distributed? 
So take the derivative to get the PDF: 
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Probability---linear transformation 
Let X have PDF fX(x).  Let Y = aX + b, a <> 0.  How is 

Y distributed? 
So take the derivative to get the PDF: 

In other words, 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
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Let X, continuous, have PDF fX(x) and CDF FX(x).
= FX(X). How is Y distributed? 

Probability---probability integral transformatn
 Let Y 

Strange that we would use a CDF, 
which describes the distribution of a 
random variable, to transform a random 
variable. But why not? It’s a function. 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
First note that, whatever the support of X, Y lives on [0,1]. 

Why? 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
First note that, whatever the support of X, Y lives on [0,1]. 

Why? CDFs always have values between 0 and 1. 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
First note that, whatever the support of X, Y lives on [0,1]. 

Why? CDFs always have values between 0 and 1. 
Also note that FX is invertible. (We noted earlier that FX 

is non-decreasing. In fact, it will be invertible if X is 
continuous over a connected set.) 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
So FY(y) = P(Y <= y) = P(FX(X) <= y) 

= P(X <= FX
-1(y)) 

= FX(FX
-1(y)) 

= y 0 <= y <= 1 
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Probability---probability integral transformatn 
Let X, continuous, have PDF fX(x) and CDF FX(x).  Let Y 

= FX(X). How is Y distributed? 
So FY(y) = P(Y <= y) = P(FX(X) <= y) 

= P(X <= FX
-1(y)) 

= FX(FX
-1(y)) 

= y 0 <= y <= 1 

What random variable has a CDF that looks like that? 
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  Probability---probability integral transformatn 
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Probability---probability integral transformatn 

A U[0,1] random variable! 
So a continuous random variable transformed by its own CDF 

will always have a U[0,1] distribution. 
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Probability---probability integral transformatn 

A U[0,1] random variable! 
So a continuous random variable transformed by its own CDF 

will always have a U[0,1] distribution. 

Pretty cool. 
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Probability---probability integral transformatn 
How about the other way? Can we transform a U[0,1] 

random variable by the inverse of a CDF and get a 
random variable with that CDF? 
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Probability---probability integral transformatn 
How about the other way? Can we transform a U[0,1] 

random variable by the inverse of a CDF and get a 
random variable with that CDF? 

Yes! (assuming the random variable is continuous and meets 
certain regularity conditions) 
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Probability---probability integral transformatn 
How about the other way? Can we transform a U[0,1] 

random variable by the inverse of a CDF and get a 
random variable with that CDF? 

Yes! (assuming the random variable is continuous and meets 
certain regularity conditions) 

Again, pretty cool. 
38



  
        

Probability---probability integral transformatn 
Interesting, perhaps, but how could this be useful? 
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Probability---probability integral transformatn 
Interesting, perhaps, but how could this be useful? 
One example: performing computer simulations 
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Probability---probability integral transformatn 
Suppose we were writing a computer program to simulate, say, 

the spread of some virus over time in a school population. 
To perform the simulation, we would need random draws 
from a uniform distribution to model the proportion of the 
school population that was infected initially, random draws 
from an exponential distribution to model the physical 
proximity of children during a PE class, and random 
draws from a beta distribution to model humidity inside 
the school on different days. 
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Probability---probability integral transformatn 
Suppose we were writing a computer program to simulate, say, 

the spread of some virus over time in a school population. 
To perform the simulation, we would need random draws 
from a uniform distribution to model the proportion of the 
school population that was infected initially, random draws 
from an exponential distribution to model the physical 
proximity of children during a PE class, and random 
draws from a beta distribution to model humidity inside 
the school on different days. 

But the computer language you were using only generated 
random draws from U[0,1]. 42



  
      

    
      

Probability---probability integral transformatn 
Note that random number generators, tables of random digits, 

and many other sources of random (and pseudo-random) 
numbers are giving you uniform random numbers. 
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Probability---probability integral transformatn 
Note that random number generators, tables of random digits, 

and many other sources of random (and pseudo-random) 
numbers are giving you uniform random numbers. 

So, if you knew (or could look up) the CDFs of exponential 
and beta random variables, you could compute the inverses 
of those CDFs and then use those functions to transform 
the random draws from the U[0,1] into random draws 
from exponential and beta distributions. 
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Probability---convolution 
A convolution in the context of probability refers to the sum 

of independent random variables. We have already seen 
one example where we cared about the sum of independent 
random variables (although we didn’t know they were 
independent at the time). 
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Probability---convolution 
A convolution in the context of probability refers to the sum 

of independent random variables. We have already seen 
one example where we cared about the sum of independent 
random variables (although we didn’t know they were 
independent at the time)---the headache example. We 
were interested in the sum there because I could take the 
two pills sequentially, so the distribution of the sum of 
their effective lives was of interest. 
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Probability---convolution 
A convolution in the context of probability refers to the sum 

of independent random variables. We have already seen 
one example where we cared about the sum of independent 
random variables (although we didn’t know they were 
independent at the time)---the headache example. We 
were interested in the sum there because I could take the 
two pills sequentially, so the distribution of the sum of 
their effective lives was of interest. 

Such questions can arise in many contexts: the total value of 
two investments, the total number of successes in two 
independent sets of trials, etc. 47



    
      
   

Probability---convolution 
Convolutions generalize naturally in two ways: 

sum of N, not 2, independent random variables 
linear function of independent random variables 
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Probability---convolution 
Convolutions generalize naturally in two ways: 

sum of N, not 2, independent random variables 
linear function of independent random variables 

We’ll do the simple version, sum of two independent random 
variables. 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

We will proceed similarly to the headache example. 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

We will proceed similarly to the headache example. 
One difference: in the headache example, we were given the 

joint PDF and here we’re not. 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

We will proceed similarly to the headache example. 
One difference: in the headache example, we were given the 

joint PDF and here we’re not. But we can easily get the 
joint PDF because we know the random variables are 
independent: fXY(x,y) = fX(x)fY(y) 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

Recall that, in the headache example, we just set up the 
double integral to get the P(X+Y <= z), i.e., the CDF 
of Z, and then took the derivative of that to get the 
PDF. 

54



 

          
              

      
           

         
        
 

       
 
 
 

Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

Recall that, in the headache example, we just set up the 
double integral to get the P(X+Y <= z), i.e., the CDF 
of Z, and then took the derivative of that to get the 
PDF. 

That method works, as well as some others. 
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Probability---convolution 
Let X be continuous with PDF fX, Y continuous with PDF 

fY. X and Y are independent. Let Z be their sum. 
What is the PDF of Z? 

Recall that, in the headache example, we just set up the 
double integral to get the P(X+Y <= z), i.e., the CDF 
of Z, and then took the derivative of that to get the 
PDF. 

So, we get FZ(z) = 
That method works, as well as some others. 
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Probability---convolution 
FZ(z) = 

So fZ(z) = 
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Probability---order statistics 
I told you that the uniform was my favorite distribution. 

Well, order statistics are my favorite function of random 
variables. If that’s not enough motivation for you, keep 
in mind that order statistics can be very useful in 
economic modeling (we’ll see an example in auctions) and 
they also are the basis for some important estimators. 
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Probability---order statistics 
Let X1, . . . ,X be continuous, independent, identicallyn 

distributed, with PDF fX.  (We often abbreviate 
“independent, identically distributed” as “i.i.d.” A group 
of i.i.d. random variables is also called a random sample.) 
Let Y = max{X1, . . . ,X }. This is called the nth 

n n 
order statistic. 
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Probability---order statistics 
Let X1, . . . ,X be continuous, independent, identicallyn 

distributed, with PDF fX.  (We often abbreviate 
“independent, identically distributed” as “i.i.d.” A group 
of i.i.d. random variables is also called a random sample.) 
Let Y = max{X1, . . . ,X }. This is called the nth 

n n 
order statistic. (We can also define the 1st order 
statistic as the smallest value, the 2nd order statistic as 
the second smallest value, and so forth.) 
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Probability---order statistics 
Let X1, . . . ,X be continuous, independent, identicallyn 

distributed, with PDF fX.  (We often abbreviate 
“independent, identically distributed” as “i.i.d.” A group 
of i.i.d. random variables is also called a random sample.) 
Let Y = max{X1, . . . ,X }. This is called the nth 

n n 
order statistic. 

How is the nth order statistic distributed? 
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Probability---order statistics 
How is the nth order statistic distributed? 
F (y) = P(Y <= y) = P(X1 <= y, X2 <= y, . . . , X <= y) n n n 

by definition of Yn 
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Probability---order statistics 
How is the nth order statistic distributed? 
F (y) = P(Y <= y) = P(X1 <= y, X2 <= y, . . . , X <= y) n n n 

by definition of Yn 

= P(X1 <= y)P(X2 <= y) . . P(X <= y) n 

due to independence 
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Probability---order statistics 
How is the nth order statistic distributed? 
F (y) = P(Y <= y) = P(X1 <= y, X2 <= y, . . . , X <= y) n n n 

by definition of Yn 

= P(X1 <= y)P(X2 <= y) . . P(X <= y) n 

due to independence 
= FX(y)n 

due to identical distribution 
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Probability---order statistics 
How is the nth order statistic distributed? 
F (y) = P(Y <= y) = P(X1 <= y, X2 <= y, . . . , X <= y) n n n 

by definition of Yn 

= P(X1 <= y)P(X2 <= y) . . P(X <= y) n 

due to independence 
= FX(y)n 

due to identical distribution 

So, f (y) = dF (y)/dy = n(FX(y))n-1fX(y) n n 
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Probability---order statistics 
How is the 1st order statistic distributed? 
A similar calculation will lead to this: 

f1(y) = n(1-FX(y))n-1fX(y) 
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Probability---order statistics 
So we have the following: 

f (y) = n(FX(y))n-1fX(y) n 

f1(y) = n(1-FX(y))n-1fX(y) 

What do these distributions look like if we have a random 
sample from, say, a U[0,1] distribution? 
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Probability---order statistics 
So we have the following: 

f (y) = n(FX(y))n-1fX(y) n 

f1(y) = n(1-FX(y))n-1fX(y) 

What do these distributions look like if we have a random 
sample from, say, a U[0,1] distribution? Depends on n. 

For n = 5: f (y) = 5y4 0 <= y <= 1n 

f1(y) = 5(1-y)4 0 <= y <= 1 
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Probability---order statistics 
f1(y) = 5(1-y)4 0 <= y <= 1 
f (y) = 5y4 0 <= y <= 1n 
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Probability---order statistics 
Think of it like this: 
You have a random sample of size 5 from a U[0,1] 

distribution. How is the smallest realization from that 
random sample distributed? 

What is the PDF of these guys? 
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Probability---order statistics 
You’ll get something with the same support, [0,1], but with 

probability concentrated near 0. 
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Probability---order statistics 
Think of it like this: 
You have a random sample of size 5 from a U[0,1] 

distribution. How is the largest realization from that 
random sample distributed? 

What is the PDF of these guys? 
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Probability---order statistics 
You’ll get something with the same support, [0,1], but with 

probability concentrated near 1. 
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Probability---order statistics 
What if n is larger then 5? 
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Probability---order statistics 
What if n is larger then 5? 
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Probability---order statistics 
What if n is larger then 5? 

This guy is more likely to 
be near 1---its distribution 
will be more concentrated 
right below 1. 
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Probability---order statistics 
What if n is really large? 
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Probability---order statistics 
What if n is really large? 
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   right below 1. 

Probability---order statistics 
What if n is really large? 

This guy is even more likely to 
be near 1---its distribution 
will be even more concentrated 

79
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