Lecture 10, Part II: Special Distributions

Prof. Esther Duflo

14.310×

What is so special about us?

- Some distributions are special because they are connected to others in useful ways
- Some distributions are special because they can be used to model a wide variety of random phenomena.
- This may be the case because of a fundamental underlying principle, or because the family has a rich collection of pdfs with a small number of parameters which can be estimated from the data
- Like network statistics, there are always new candidate special distributions! But to be really special a distribution must be mathematically elegant, and should arise in interesting and diverse applications
- Many special distributions have standard members, corresponding to specified values of the parameters.
- Today's class is going to end up being more of a reference class than a conceptual one... (ロ)、

We have seen some of them -we may not have named them!

<ロ> < 団> < 団> < 目> < 目> < 目 > 3

- Bernouili
- Binomial
- Uniform
- Negative binomial
- Geometric
- Normal
- Log-normal
- Pareto

Bernouilli

Two possible outcomes ("success" or "failure"). The probability of success is p, failure is q (or: 1 - p)

$$f(x;p) = p^{x}q^{1-x}$$
 for $x \in \{0,1\}$

0 otherwise

E(X) = p(because: $E[X] = Pr(X = 1) \cdot 1 + Pr(X = 0) \cdot 0 = p \cdot 1 + q \cdot 0 = p$)

$$\mathsf{E}[X^2] = \mathsf{Pr}(X=1) \cdot 1^2 + \mathsf{Pr}(X=0) \cdot 0^2 = p \cdot 1^2 + q \cdot 0^2 = p$$

and

$$Var[X] = E[X^{2}] - E[X]^{2} = p - p^{2} = p(1 - p) = pq$$

4

Binomial

Results: If X_1, \ldots, X_n are independent, identically distributed (i.i.d.) random variables, all Bernoulli distributed with success probability p, then $X = \sum_{k=1}^{n} X_k \sim B(n, p)$ (binomial distribution). The Bernoulli distribution is simply B(1, p)The binomial distribution is number of successes in a sequence of nindependent (success/failure) trials, each of which yields success with probability p.

 $f(x; n, p) = \Pr(X = x) = {n \choose x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, 2, 3, \dots, n$ f(x; n, p) = 0 otherwise.where ${n \choose x} = \frac{n!}{x!(n-x)!}$ Since the binomial is a sum of i.i.d Bernoulli, the mean and variance follows from what we know about these operators:

$$E(X) = np$$

 $Var(X) = npq$

Binomial

<ロ> <四> <四> <四> <三</td> ~~6

Does the number of Steph Curry's successful shot follows a binomial distribution?

Shots made in first 20 attempts (over 56 games)

But it is not likely-3pt success

Three-point shots made in first 10 attempts (over 56 games)

But it is not likely-2pt success

Two-point shots made in first 10 attempts (over 56 games)

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ > < ◎ <

Hypergeometric

- The binomial distribution is used to model the number of successes in a sample of size *n* with replacement
- If you sample *without* replacement, you get the hypergeometric distribution (e.g. number of red balls taken from an urn, number of vegetarian toppings on pizza)

let A be the number of successes and B the number of failure (you may want to define N = A + B), n the number of draws, then:

$$f(X|A, B, n) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}},$$

$$E(X) = \frac{nA}{A+B} \text{ and } V(X) = n(\frac{A}{A+B})(\frac{B}{A+B})(\frac{A+B-n}{A+B-1})$$

Notice the relationship with the binomial, with $p = \frac{A}{A+B}$ and $q = \frac{B}{A+B}.$

• Note that if *N* is much larger than *n*, the binomial becomes a good approximation to the hypergeometric distribution

Negative Binomial

(ロ) (四) (主) (主) (三)

Consider a sequence of independent Bernouilli trials, and let X be the number of trials necessary to achieve r successes $f_X(x) = \binom{x-1}{r-1} p^r q^{x-r}$ if x = r, r+1..., and 0 otherwise. $p^{r-1}q^{x-r}$ is the probability of any sequence with r-1 success and x - r failures.

p is the probability of success after r-1 failures. $\binom{x-1}{r-1}$ is the number of possibility of sequences where r-1 are success

$$E(X) = \frac{rq}{p}$$
$$V(X) = \frac{rq}{p^2}$$

(Alternatively, some textbooks/people can define is at the number of failures needed to achieve r successes.)

Geometric

- A negative binomial distribution with r = 1 is a geometric distribution [number of failures before the first success]
- $f(x; p) = pq^x$ if x = 0, 1, 2, 3, ...; 0 otherwise $E(X) = \frac{q}{p} V(X) = \frac{q}{p^2}$
- The sum of *r* independent Geometric (p) random variables is a negative binomial (*r*, *p*) random variable
- By the way, if X_i are iid, and negative binomial (r_i, p) , then $\sum X_i$ is distributed as a negative binomial $(\sum r_i, p)$
- Memorylessness: Suppose 20 failures occured on first 20 trials. Since all trials are independent, the distribution of the *additional* failures before the first success will be geometric.

The poisson distribution expresses the probability of a given number of events occuring in a fixed interval of time if (1) the event can be counted in whole numbers (2) the occurences are independent and (3) the average frequency of occurrence for a time period is known.

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

1
$$N_0 = 0$$

2 for s < t, N_s and $N_t - N_s$ are independent

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

- 1 $N_0 = 0$
- 2 for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

- 1 $N_0 = 0$
- 2 for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]
- **3** N_s and $N_{t+s} N_t$ have identical distribution

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

- 1 $N_0 = 0$
- 2 for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]
- 3 N_s and $N_{t+s} N_t$ have identical distribution [the number of arrivals depend only on period length]

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

1 $N_0 = 0$

- 2 for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]
- **3** N_s and $N_{t+s} N_t$ have identical distribution [the number of arrivals depend only on period length]

 $4 \lim_{t \to 0} \frac{P(N_t=1)}{t} = \gamma$

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

1 $N_0 = 0$

- 2 for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]
- **3** N_s and $N_{t+s} N_t$ have identical distribution [the number of arrivals depend only on period length]

3 lim_{t→0} $\frac{P(N_t=1)}{t} = \gamma$ [γ is the arrival rate, and it is constant for small interval]

Formally, for $t \ge 0$, let N_t be an integer-valued random variables. If it satisfies the following properties

1 $N_0 = 0$

- **2** for s < t, N_s and $N_t N_s$ are independent [arrival are independent in disjoint intervals]
- **3** N_s and $N_{t+s} N_t$ have identical distribution [the number of arrivals depend only on period length]

④ $\lim_{t\to 0} \frac{P(N_t=1)}{t} = \gamma$ [γ is the arrival rate, and it is constant for small interval]

3
$$\lim_{t\to 0} \frac{P(N>1)}{t} = 0$$
 No simultaneous arrival

If N_t satisfies:

1
$$N_0 = 0$$

- 2 for s < t, N_s and $N_t N_s$ are independent
- 3 N_s and $N_{t+s} N_t$ have identical distribution

$$4 \lim_{t \to 0} \frac{P(N_t=1)}{t} = \gamma$$

5
$$\lim_{t\to 0} \frac{P(N>1)}{t} = 0$$

then for any non-negative integer k

$$P(N_t = k) = \frac{(\gamma t)^k e^{-\gamma t}}{k!}$$

Note: γ and t always appear together so we combine them into one parameter, $\lambda = \gamma t$. γ is the propensity to arrive per unit of time. t is the number of units of time, and λ is the propensity to arrive in some amount of time.

If N_t satisfies:

1
$$N_0 = 0$$

2 for s < t, N_s and $N_t - N_s$ are independent

3 N_s and $N_{t+s} - N_t$ have identical distribution

$$4 \lim_{t \to 0} \frac{P(N_t=1)}{t} = \gamma$$

5
$$\lim_{t\to 0} \frac{P(N>1)}{t} = 0$$

then for any non-negative integer k

$$P(N_t = k) = \frac{(\gamma t)^k e^{-\gamma t}}{k!}$$

Note: γ and t always appear together so we combine them into one parameter, $\lambda = \gamma t$. γ is the propensity to arrive per unit of time. t is the number of units of time, and λ is the propensity to arrive in some amount of time.

Some properties

- $E[N_t] = \lambda$
- $V[N_t] = \lambda$
- It is asymetrical –skewed–(it cannot be negative!), but closer and closer to being symmetric as λ increases

Relationship between Poisson and Binomial

- Divide the interval [0, t] into n subintervals so small that the probability of two occurences in each subinterval is approximately zero.
- The probability of success in each subinterval is now $\frac{\gamma t}{n} = \frac{\lambda}{n}$, and the probability of $n_t = k$ successes in [0, t] is approximately binomial

•
$$P(N_t = k) \approx {n \choose k} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^{n-k}$$

- we could prove that the limit of this as the number of subintervals goes to infinity is $\frac{\lambda^k e^{-\lambda}}{k!}$
- In other words, for each nonnegative integer k,

$$\lim_{n\to\infty}p^k(1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!}$$

where $p = \frac{1}{\lambda}$, λ is fixed, *n* is positive.

• For small values of *p*, the Poisson distribution can simulate the Binomial distribution and it is easier to compute

When do we use a Poisson distribution?

- Poisson distributions are useful with count data: Number of goals in a soccer match; Number of ideas that a researcher has in a month; number of accidents
- The parameter λ governs both the mean and the variance, so some times that it not what you want (you cannot increase the mean without increasing the variance)
- The negative binomial can be thought of as a generalization that does not have this property
- Some count data won't work well with Poisson: e.g. number of students who arrive at the coop (students arrive together; the events are not independent).

Three-point shots made in game

Number of shots made

<ロ><=>、=>、<=>、<=>、<=>、<=>、<=>、<=>、<=>27

Two-point shots made in game

Number of shots made

Exponential

Waiting time between two events in a Poisson process: $f_x = \lambda e^{-\lambda x}$ if x > 0 and 0 otherwise

$$E(X) = \frac{1}{\lambda}$$
$$V(X) = \frac{1}{\lambda^2}$$

The exponential distribution is Memoryless: $(P(X \ge t) = e^{-\lambda t})$ therefore $P(X \ge t + h | X \ge t) = P(X \ge h)$ It is a special case of an **Gamma** distribution the "waiting time" before a number (not necessary an integer number) of occurences. We are skipping the mathematical description of the gamma distribution for now...

Continuous distributions

- Uniform
- Normal

Uniform distribution

The probability that X is in a certain sub-interval [a; b] depends only on the length of that interval.

$$f_x(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b, \\ 0 & \text{for } x < a \text{ or } x > b \end{cases}$$
$$F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } a \le x \le b \\ 1 & \text{for } x > b \end{cases}$$

Uniform distribution: density

Properties

• Mean $E(X) = \frac{1}{2}(a+b)$ • $E(X^2) = \frac{1}{3}\frac{b^3 - a^3}{b-a}$

Variance

$$V(X) = \frac{1}{12}(b-a)^2$$

• Set a = 0 and b = 1. The resulting distribution U(0, 1) is called standard uniform distribution. Note that if u_1 is standard uniform, so is $1 - u_1$.

Applications

- Many many: very useful in hypothesis testing for example.
- An important one: Quasi-random number generators. Computers don't really know random numbers... Many programming languages have the ability to generate pseudo-random numbers, which are really draw from a standard uniform distribution
- So the uniform distribution is very useful for example when you want to create a sample of treated and control observations (an example in R follows in one slide).
- As we have learnt, from a uniform distribution, you can use the inverse CDF method to get a sample for many (not all) distributions you are interested in

Applications

- Many many: very useful in hypothesis testing for example.
- An important one: Quasi-random number generators. Computers don't really know random numbers... Many programming languages have the ability to generate pseudo-random numbers, which are really draw from a standard uniform distribution
- So the uniform distribution is very useful for example when you want to create a sample of treated and control observations (an example in R follows in one slide).
- As we have learnt, from a uniform distribution, you can use the inverse CDF method to get a sample for many (not all) distributions you are interested in
- ... or you can just directly sample from the relevant distribution in R. [note that R does not always use the inverse transform method...]

sampling from an exponential using the inverse sampling method

```
## Random draws from uniform distribution
u <- runif(100000,0,1)
## Plot the inverse of CDF of the exponential
pdf("runiform_inverse_exponential.pdf")
inverse_exponential_cdf <- function(x,lambda) -log(x)/lambda
y <- inverse_exponential_cdf(u,3)
density_y <- density(y)
plot(density_y,type="l",xlim=c(0,2),
    main="PDF of inverse exponential function",
    lwd=3,col="navyblue",xlab="")
hide<-dev.off()</pre>
```

sampling from an exponential using the inverse sampling method

PDF of inverse exponential function

OR...

PDF of inverse exponential function

OR

Density 1.0 1.5 2.0

Random variable drawn from exponential distribution

<ロト < 回 ト < 臣 ト < 臣 ト 三 ・ ? Af

```
## Poisson simulation
poisson<-numeric(1000000)
lambda<-2
c <- (0.767-0.336/lambda)</pre>
beta <- pi/sart(3.0*lambda)</pre>
alpha <- beta*lambda
k \leftarrow (\log(c) - \text{lambda} - \log(\text{beta}))
set.seed(20)
u <- runif(100000.0.1)
x \ll (alpha-log((1.0-u)/u)/beta)
n \leftarrow floor(x+0.5)
set.seed(42)
v <- runif(100000.0.1)</pre>
y <- alpha-beta*x
lhs <- y + log(v/(1.0+exp(y)^2))
rhs <- k + n*log(lambda)-log(factorial(n))</pre>
```

```
j <- 1
for (i in 1:100000) {
    if (n[i]>=0) {
        if (lhs[i]<=rhs[i]) {
            poisson[j] <- n[i]
                 j <- j+1
            }
        }
        poisson <- poisson[1:j]</pre>
```

```
## Plot the simulated Poisson random variable
pdf("runiform_poisson_simulation.pdf")
hist<-hist(poisson,
    main="Simulated Poisson Distribution",
    xlim=c(0,10),breaks=0:(max(poisson)+1),
    freq=FALSE,
    xlab="", ylab="",
    col="lightblue",
    xaxt="n")
axis(1,at=hist$mids,labels=0:max(poisson))
hide<-dev.off()</pre>
```

Simulated Poisson Distribution

<ロト < 回 ト < 目 ト < 目 ト 目 の A C 44

```
## Compare to random draws from the Poisson distribution
pdf("random_from_poisson.pdf")
y_rpois <- rpois(100000,3)
hist <- hist(y_rpois,
    main="Random variable drawn from Poisson distribution",
    xlim=c(0,10),breaks=0:(max(y_rpois)+1),
    freq=FALSE,
    xlab="",ylab="",
    col="lightcoral",
    xaxt="n")
axis(1,at=hist$mids,labels=0:max(y_rpois))
hide<-dev.off()</pre>
```

45

Random variable drawn from Poisson distribution

Choosing a random sample

Sample 25 of 50 States Code, with and without replacement

```
## Read in list of state names
states <- read.csv("states.csv")</pre>
```

```
## Sample 25 without replacement, 25 with replacement
states_without_replacement <- list(sample(states$state_name,25,replace=FALSE))
states_with_replacement <- sample(states$state_name,25,replace=TRUE)</pre>
```

Print output
print(states_without_replacement)
print(states_with_replacement)

Choosing a random sample

```
> ## Sample 25 of 50 States Code, with and without replacement
>
> ## Read in list of state names
> states <- read.csv("states.csv")</pre>
>
> ## Sample 25 without replacement, 25 with replacement
> states_without_replacement <- list(sample(states$state_name.25.replace=FALSE))</pre>
> states_with_replacement <- sample(states$state_name.25,replace=TRUE)</pre>
>
> ## Print output
> print(states_without_replacement)
[[1]]
 [1] Alaska
                    North Carolina New Jersey
                                                   Missouri
                                                                   Louisiana
                                                                                  Virginia
                                                                                                 Massachusetts
                                                                                  South Dakota
 [8] Mississippi
                    Idaho
                                    Delaware
                                                   California
                                                                   Towa
                                                                                                  South Carolina
[15] Illinois
                    Wyoming
                                    New Mexico
                                                   Georgia
                                                                  Michigan
                                                                                  Indiana
                                                                                                  Ohio
[22] Utah
                    West Virginia Minnesota
                                                   Arizona
50 Levels: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia ... Wyoming
> print(states with replacement)
 [1] Missouri
                    North Carolina Massachusetts Texas
                                                                  South Carolina Maryland
                                                                                                 Wyoming
 [8] South Carolina Massachusetts South Carolina Alabama
                                                                   Vermont
                                                                                  California
                                                                                                 Mississippi
[15] Nebraska
                    Tennessee
                                    New Hampshire South Dakota
                                                                   North Carolina Colorado
                                                                                                  South Carolina
[22] Maryland
                    Oklahoma
                                                   Oklahoma
                                    Oklahoma
```

50 Levels: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia ... Wyoming

Continuous distributions

- Uniform
- Normal

The Normal distribution

Theorem Lex $X \sim B(n, p)$, for any number c and d:

$$\lim_{n \to \infty} P(c \leq \frac{X - np}{\sqrt{np(1 - p)}} < d) = \int_c^d \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} dx$$

 $rac{X-np}{\sqrt{np(1-p)}}$ is the standardized version of the binomial. Keeps mean at zero and variance at 1. We note: $f_z(y) = \phi(y) = rac{1}{\sqrt{2\pi}}e^{rac{x^2}{2}}$ and $F_Z(y) = \Phi(y) =$ for $-\infty < y < \infty$ E(Z) = 0 and V(Z) = 1

50

<ロ> (四) (四) (注) (注) (注) (注)

now standardize

now standardize

now standardize

Standard Normal distribution

<ロ> (四) (四) (注) (日) (日) 臣

Normal distributions

We call any random variable $X = \mu + \sigma Z$ where Z is standard normal with $\sigma \neq 0$ normal as well.

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma} \phi\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x - \mu}{\sigma})^2}$$

for $-\infty < x < \infty$ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$

Normal distributions

We call any random variable $X = \mu + \sigma Z$ where Z is standard normal with $\sigma \neq 0$ normal as well.

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma} \phi\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x - \mu}{\sigma})^2}$$

for $-\infty < x < \infty$ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$ X distributed normal with parameters μ and σ^2

$$E(X) = E(Z) + \mu = \mu$$
$$Var(X) = \sigma^{2} * Var(Z) = \sigma^{2}$$

<ロト < 団ト < 国ト < 国ト < 国ト 国 90000

Some properties

• If X_1 is normal, and $X_2 = a + bX_1$ is also normal, with mean $a + bE(X_1)$ and variance $b^2 Var(X_1)$

Theorem

Let $X_1..X_n$ are iid and $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, then

$$Y = \sum_{i} X_{i} \sim \mathcal{N}(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2})$$

We already knew the mean and the variance (by general properties of these operators) but we now also know that the pdf of a sum of normal remains normal.

- Normal distribution are symmetric, unimodal, "bell-shaped", have thin tails, and the support is $\ensuremath{\mathbb{R}}$

Same mean, different variances

<ロト</th>
 ・<</th>
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<ロ> (四)、<四)、<注>、<注)、<注)、<

- The integral of $\phi(x)$ over regions of $\mathbb R$ cannot be expressed in closed-form
- Therefore we use tables (or software...) to figure out the answer we are looking for.
- For example, from the standard normal table, suppose you want P(Z < -1.23).
 - go down the left column to -1.2
 - and the top row to 0.03
 - the answer is

イロト イポト イヨト イヨト 一日

- The integral of $\phi(x)$ over regions of $\mathbb R$ cannot be expressed in closed-form
- Therefore we use tables (or software...) to figure out the answer we are looking for.
- For example, from the standard normal table, suppose you want P(Z < -1.23).
 - go down the left column to -1.2
 - and the top row to 0.03
 - the answer is 1.093

イロト イポト イヨト イヨト 一日

65

- The integral of $\phi(x)$ over regions of $\mathbb R$ cannot be expressed in closed-form
- Therefore we use tables (or software...) to figure out the answer we are looking for.
- For example, from the standard normal table, suppose you want P(Z < -1.23).
 - go down the left column to -1.2
 - and the top row to 0.03
 - the answer is 1.093

• what if you wanted P(Z > -1.68)

(ロ)、<部()、<定()、<定()、<定()、<定()、<定()、<定()、<定()、<2()、</p>

67

- what if you wanted P(Z > -1.68)
 - P(Z > -1.68) = 1 P(Z < -1.68)

- what if you wanted P(Z > -1.68)
 - P(Z > -1.68) = 1 P(Z < -1.68)
- What if you wanted positive numbers and I had not given you the positive numbers, e.g. P(Z < 1.45)

- what if you wanted P(Z > -1.68)
 - P(Z > -1.68) = 1 P(Z < -1.68)
- What if you wanted positive numbers and I had not given you the positive numbers, e.g. P(Z < 1.45)
 - Exploit symmetry: P(Z < 1.45) = P(Z > -1.45) = 1 - P(Z < -1.45)
- What if you wanted P(-1.23 < Z < 1.45)

- what if you wanted P(Z > -1.68)
 - P(Z > -1.68) = 1 P(Z < -1.68)
- What if you wanted positive numbers and I had not given you the positive numbers, e.g. P(Z < 1.45)
 - Exploit symmetry: P(Z < 1.45) = P(Z > -1.45) = 1 - P(Z < -1.45)
- What if you wanted P(-1.23 < Z < 1.45)
 - P(-1.23 < Z < 1.45) = P(Z < 1.45) P(Z < -1.23)

・ロト ・四ト ・ヨト ・ヨト 三臣

- what if you wanted P(Z > -1.68)
 - P(Z > -1.68) = 1 P(Z < -1.68)
- What if you wanted positive numbers and I had not given you the positive numbers, e.g. P(Z < 1.45)
 - Exploit symmetry: P(Z < 1.45) = P(Z > -1.45) = 1 - P(Z < -1.45)
- What if you wanted P(-1.23 < Z < 1.45)
 - P(-1.23 < Z < 1.45) = P(Z < 1.45) P(Z < -1.23)
- what if you had a non standard normal?
 - First normalize it. Then use the table.

Useful R command about the Normal distribution

	PURPOSE	SYNTAX	EXAMPLE
NORM	Generates random numbers from normal distribution	morm(n, mean, sd)	rnorm(1000, 3, .25) Generates 1000 numbers from a normal with mean 3 and sd=.25
DNORM	Probability Density Function (PDF)	dnorm(x, mean, sd)	dnorm(0, 0, 5) Gives the density (height of the PDF) of the normal with mean=0 and sd=5.
IORM	Cumulative Distribution Function (CDF)	pnorm(q, mean, sd)	pnorm(1.96, 0, 1) Gives the area under the standard normal curve to the left of 1.96, i.e. ~0.975
	Quantile Function	qnorm(p,	qnorm(0.975, 0, 1) Gives the value at which the
2NORM	pnorm	mean, sd)	CDF of the standard normal is .975, i.e. ~1.96

Compute probabilities from normal distribution

```
## Characterize distribution
x_mean <- 2
x sd <- 0.5
## Set inputs
x1 <- 1.2
x2 <- 1.34
x3 <- 1.46
x4 <- 2.08
## Probability less than x1?
pnorm(x1,x_mean,x_sd)
## Probability between x2 and x3?
pnorm(x3,x_mean,x_sd)-pnorm(x2,x_mean,x_sd)
## Probability greater than x4?
pnorm(x4,x_mean,x_sd,lower.tail=FALSE)
```

<ロ> < 団> < 団> < 目> < 目> 目 の23

```
> ## Characterize distribution
> x_mean <- 2
> x_sd <- 0.5
>
> ## Set inputs
> x1 <- 1.2
> x2 <- 1.34
> x3 <- 1.46
> x4 <- 2.08
>
> ## Probability less than x1?
> pnorm(x1,x_mean,x_sd)
F17 0.05479929
> ## Probability between x2 and x3?
> pnorm(x3,x_mean,x_sd)-pnorm(x2,x_mean,x_sd)
F17 0.04665358
>
> ## Probability greater than x4?
> pnorm(x4,x_mean,x_sd,lower.tail=FALSE)
[1] 0.4364405
```

Sampling from a normal distribution in R

- In theory you can use the inverse sampling methods.
- In practice this would take much longer than using the built in command in R that uses a different algorithm.

```
## Inverse of CDF of normal using qnorm
pdf("runiform_inverse_normal_qnorm.pdf")
y_qnorm <- qnorm(u)
density_y_qnorm <- density(y_qnorm,bw=1)
plot(density_y_qnorm,type="l",xlim=c(-5,5),
    main="PDF of inverse normal function",
    lwd=3,col="navyblue",xlab="")
hide<-dev.off()</pre>
```

PDF of inverse normal function


```
## Compare to random draws straight from the normal distribution
pdf("random_from_normal.pdf")
y_rnorm <- rnorm(10000,0,1)
density_y_rnorm <- density(y_rnorm,bw=1)
plot(density_y_rnorm,type="l",xlim=c(-5,5),
    main="Random variable drawn from normal distribution",
    lwd=3,col="darkred",xlab="",ylab="")
hide<-dev.off()</pre>
```

・ロト ・四ト ・ヨト ・ヨト 三臣

Random variable drawn from normal distribution

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.310x Data Analysis for Social Scientists Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.