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Xn

Probability---the sample mean 
The sample mean is the arithmetic average of the n random 

variables from a random sample of size n. We denote it 
= (1/n)(X1 + . . . + Xn) 

= 

We also call the arithmetic average of the realizations of 
those n random variables the sample mean. 
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Xn

Probability---the sample mean 
The sample mean is the arithmetic average of the n random 

variables (or realizations) from a random sample of size 
n. We denote it 

= (1/n)(X1 + . . . + Xn) 

= 

Why would such a function be useful? 
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Probability---the sample mean 

= 
The X’s are random variables, so is also a random variable 

(since it is a function of random variables). 
So let’s figure out how it’s distributed. 
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Probability---the sample mean 

= 
The X’s are random variables, so is also a random variable 

(since it is a function of random variables). 
So let’s figure out how it’s distributed. 
(Note that, if we knew how the X’s were distributed, we 

might be able to use something like the n-version of the 
convolution formula. For now, let’s just use properties of 
moments to figure out the moments of as functions of 
the moments of the X’s.) 
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Probability---the sample mean 

= 

Expectat
) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 
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Probability---the sample mean 

= 

Expectat
) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 

by definition by properties of E just changing notation 
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Probability---the sample mean 

= 

Expectat
) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 

Variance 
) 

of the sample mean: 
Var( = Var(1/n(ΣXi)) = 1/n2 ΣVar(X )i 

= 1/n2 Σσ2 = σ2/n 
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Probability---the sample mean 

= 

Expectat
) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 

by properties of Var 
Variance 

) 
of the sample mean: 

Var( = Var(1/n(ΣXi)) = 1/n2 ΣVar(X )i 
= 1/n2 Σσ2 = σ2/n 
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Probability---the sample mean 
Note that we used 
independence in the variance 
calculation but did not need it 
in the expectation calculation. 

Expectat
) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 

Variance 
) 

of the sample mean: 
Var( = Var(1/n(ΣXi)) = 1/n2 ΣVar(X )i 

= 1/n2 Σσ2 = σ2/n 
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Probability---the sample mean 
What do these calculations tell us? 

= 
Distribution of sample mean is centered 
around the mean, more concentrated 
than original distribution, becoming 
more concentrated as n gets large. Expectat

) 
ion of the sample mean: 

E( = E((1/n)(ΣX)) = 1/n ΣE(X) = 1/n Σµ = µi i 

Variance 
) 

of the sample mean: 
Var( = Var(1/n(ΣXi)) = 1/n2 ΣVar(X )i 

= 1/n2 Σσ2 = σ2/n 
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Probability---the Central Limit Theorem 
That brings us to one of the most important and useful 

results in all of probability theory, which really serves as 
the basis for statistics, the Central Limit Theorem. 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 

This is the sample mean, with its 
mean subtracted off and divided by 
the square root of its variance. 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 

This is the sample mean, with its 
mean subtracted off and divided by 
the square root of its variance. 
So it is now standardized---it has mean 
zero and variance one. 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 

This is special 
notation for the CDF 
of a standard normal 
random variable. 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 

So, basically, we take a standardized version of the sample 
mean from any old distribution, let the sample size go to 
infinity, and note that essentially the definition of the 
CDF of that thing is the standard normal CDF. 
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Probability---the Central Limit Theorem 
Let X1, . . ., Xn form a random sample of size n from a 

distribution with finite mean and variance. Then for any 
fixed number x, 

Practically speaking, if you have a sample mean from a 
reasonably large random sample from any distribution, it 
will have an approximate N(µ,σ2/n) distribution. 
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Probability---the Central Limit Theorem 
It’s remarkable. You can have any kind of crazy, almost 

degenerate, distribution. As long as the random sample 
taken from that distribution is reasonably large, the 
sample mean will be approximately normal. 
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Probability---the Central Limit Theorem 
It’s remarkable. You can have any kind of crazy, almost 

degenerate, distribution. As long as the random sample 
taken from that distribution is reasonably large, the 
sample mean will be approximately normal. 

It’s not just remarkable; it’s useful. We don’t need to know 
what distribution we’re sampling from to know a lot about 
the behavior of the sample mean from that distribution. 
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Probability---the Central Limit Theorem 
It’s remarkable. You can have any kind of crazy, almost 

degenerate, distribution. As long as the random sample 
taken from that distribution is reasonably large, the 
sample mean will be approximately normal. 

It’s not just remarkable; it’s useful. We don’t need to know 
what distribution we’re sampling from to know a lot about 
the behavior of the sample mean from that distribution. 

We will rely on this theorem (implicitly) for the rest of the 
semester. This also gives you some notion of why the 
normal distribution is so important. 
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Statistics 
For the first time this semester, the title on my slide does 

not begin with “Probability.” 
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Statistics 
So what is statistics? It’s the study of estimation and 

inference. We’ll get to inference a little bit later. For 
now, we’ll focus on estimation. 
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Statistics 
So what is statistics? It’s the study of estimation and 

inference. We’ll get to inference a little bit later. For 
now, we’ll focus on estimation. 

We’ve seen examples of estimators (sample mean, “guess” of 
the size of the bufflehead population), but a more general 
discussion would be helpful. 
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Statistics 
So what is statistics? It’s the study of estimation and 

inference. We’ll get to inference a little bit later. For 
now, we’ll focus on estimation. 

We’ve seen examples of estimators (sample mean, “guess” of 
the size of the bufflehead population), but a more general 
discussion would be helpful. 

An estimator is a function of the random variables in a 
random sample. The specific function is chosen to have 
properties useful for giving us information about the 
distribution of those random variables. 
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Statistics 
First, a definition: 
A parameter is a constant indexing a family of distributions. 

Examples of parameters are µ and σ2 from the normal 
distribution, λ from the exponential distribution, a and b 
from the uniform distribution, n and p from the binomial 
distribution. We will often use θ as a general notation 
for a parameter. 
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Statistics 
First, a definition: 
A parameter is a constant indexing a family of distributions. 

Examples of parameters are µ and σ2 from the normal 
distribution, λ from the exponential distribution, a and b 
from the uniform distribution, n and p from the binomial 
distribution. We will often use θ as a general notation 
for a parameter. 

We typically want to determine the values of parameters that 
govern an observed stochastic process or phenomenon---
estimating unknown parameters. We will often use 
as general notation for an estimator. 
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Statistics 
And an important distinction: 
We need to think of random variables in two ways, as the 

mathematical construct I introduced several weeks ago, i.e., 
a function from the sample space to the real numbers, 
and as a stochastic object that can “take on” different 
realizations with different probabilities. We use the 
notation X to stand for the random variable, as always, 
and use x to stand for the realization (or possible 
realizations). 

Before, I defined a random sample as an i.i.d. collection of 
random variables. We can also call the realizations of 
those random variables a random sample. Or just data. 
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Statistics 
In other words, we know (or assume) that a set of random 

variables, a random sample, is distributed i.i.d. normal, or 
i.i.d. uniform, or i.i.d. exponential. Estimation is trying 
to determine the specific µ and σ2, or a and b, or λ. 
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Statistics 
For instance, we might choose a function whose result, when 

applied to the random sample, is a random variable tightly 
distributed around the mean of the distribution of those 
random variables. 

Then we plug the realizations of the random sample, or data, 
into the function to obtain a number, a realization of the 
function. 

The function of the random sample is the estimator. The 
number, or realization of the function of the random 
sample, is the estimate. (We use to stand for both.) 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Want to estimate θ. What could you do? 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Two reasonable procedures come to mind: 
Gather a random sample, compute the sample mean, and 

multiply by 2. Use that as . 
Gather a random sample, compute the max (nth order 

statistic) of the random sample. Use that as . 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

In other words, 
= max{X1, X2, . . . Xn} 

= 2 
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Statistics---example 

= max{X1, X2, . . . Xn} 
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Statistics---example 

= max{X1, X2, . . . Xn} 

It’s getting to be a better estimator as n gets larger. 
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Statistics---example 

= 2 

2x this would be here 2x this would be here 
2x this would be here 
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Statistics---example 

= 2 

2x this would be here 2x this would be here 
2x this would be here 

Also a better estimator as n gets larger (but bounces around). 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Here’s another procedure: 
Gather a random sample, compute the sample median (the 

number above and below which half of the sample falls), 
and multiply by 2. Use that as . 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Here’s another procedure: 
Gather a random sample, compute the sample median (the 

number above and below which half of the sample falls), 
and multiply by 2. Use that as . 

Also seems reasonable. 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Here’s another procedure: 
Gather a random sample, throw the whole thing away, and 

have R generate a random value for you. Use that as . 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 

Here’s another procedure: 
Gather a random sample, throw the whole thing away, and 

have R generate a random value for you. Use that as 
We can guess that this procedure does not have good 

properties. 

. 
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Statistics---example 
Suppose X ~ U[0,θ] 
fX(x) = 1/θ 0 < x < θ 

0 otherwise 
= max{X1, X2, . . . Xn} 

= 2 
How did we come up with these functions? How do we know 

if they’re reasonable? How do we choose among them? 
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Statistics 
For the rest of this lecture and some of next, we will talk 

about two topics, criteria for assessing estimators and 
frameworks for choosing estimators. These topics will 
answer those questions I just posed. 
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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 
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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 

An estimator is unbiased for θ if = θ for all θ in Θ. 
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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 

An estimator is unbiased for θ if = θ for all θ in Θ. 

biased unbiased 
46



 
 

 
 
 

  
 

 
 
 

     
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

14.310x Data Analysis for Social Scientists 
Spring 2023 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



