14.310x Lecture Il



Probabili’fﬂ””f‘/\e sam?le mean

The sample wean is The arithmetic average of the v vandom
variables from a random sample of size n. We denote it

Xn=(l/w)0(| 0t K)

n
/V\ {(;‘ t

We also call the arithmetic average of the realizations ot
Those n random variables the sample mean.



Probubility=—the sample mean
The sample mean is The arithmetic average of the v vandom

variables Cor veaizations) from a vandom sample of size
n. We denote it

X = /MK + ..+ X))
T

=k
|

\J\/hﬁ wold, sueh & fwckion be vseful?



Probabili’fﬂ””f‘/\e sam?le mean
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The X are mwiom variables, o x is also a random variable
(sinee it is a function of mwiom variables).

o lets {\3\#@ out how if's distributed.



Probabili’fﬂ””f‘/\e sam?le mean

_ n
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The Xs are random variables, so >—<n s also a random variable

(sinee it is a funckion of random variables).
Do let's Wciﬂwe out how if's distributed.

(Note that "\C we kvew how the K's were distributed, we
might be able o vse something like the n-version of the
convolvtion formda.  For viow, lef's \wst use properties of
moments Yo fiaure ot the moments of Xnas fnctions of
the moments ot the Xs.)



Probabili’fﬂ””f‘/\e sam?le mean
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Expectation of the sample mean:
E( >—<,\) = EU/mXZK)) = 1/n 2EK) = 1/ Z}« = K



Probabili’fﬂ”"ﬂ/\e savvu?le mean

e n

Ky - l/y\ %;‘Xi

Expectation of the sample mean:
ECX,),= BU/XZXO) = 1/ ZEXK) = 1/0 Zp = K

[/

by definition by properties of E Just changing notaction



Probabili’fﬂ””f‘/\e sam?le mean
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Expectation of the sample mean:
E( Xn) = EU/mXZK)) = 1/n 2EK) = 1/ Z}« = K

Variance of the sample mean:

Var( >—§n) = Varll /(X)) = 1/ ZVarlX)
=|/wt 267 = 02/n



Probabili’fﬂ””f‘/\e sawu?le mean

N
L X,
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Xy - &

Expectation of the sample mean:
E( >—<,\) = EU/mXZK)) = 1/n 2EK) = 1/ Z}« = K
by properfies of Var

Variance of the sample mean:

Var( >—<n) = Varll /(X)) = 1/ ZVarlX)
=|/wt 267 = 02/n



P\robabili’fﬂ”"ﬂ/\e savvu?le mean

_ n Note that we vsed

Ky = ‘/V, %;‘Xi independence n The variance
calelation but did wot veed it

n The expec’fa’ﬁ on calevlation.

Expectation of the sample mean:
ECX,) = BU/XZXO)) = 1/ ZEXK) = 1/n Zp = k1

Variance of the sample mean:

Var X,) = Varll/W(2X)) = 1/ ZVarlX)
= |/t 207 = 6%/n



P\robabili’fﬂ”"flf\e sample mean
What do these caledations Tell vs?
5{“ ) —i X, Distribution of sample mean s centered
ni arowmd the mean, more concentrated
than origival distribution, becommﬁ
ore concentrated as v 3@’(5 larﬂc.

Expectation of the sample mean
ECX,) = BU/XZXO)) = 1/ ZEXK) = 1/n Zp = k1

=f

Variance of the sample mean:

Var X,) = Varll/W(2X)) = 1/ ZVarlX)
= |/t 207 = 6%/n



Probabili’fﬂ'”’dne Central Limit Theorem

That bri ngs v Yo one of the most imporfant and wetu
restts n all of Probabili’(ﬁ theory, which veally serves as
the busis for statistics, the Cenfral Limit Theorem.



Probubility——the Central Limit Theorem
Let X, .. ., X, torm a random sample of size n from a

distribviion with fivite mean and variance.  Then for any

fixed nber x,
im T | W‘,@.:Ms xq : ?f(x)

nN-200 \ vl




Probubility——the Central Limit Theorem
Let X, .. ., X, torm a random sample of size n from a

distribviion with fivite mean and variance.  Then for any

fixed nber x,
im T | W_@.—’Ms xq : 3@“)

n-> 00 L/ 0

his is The sam?le mean, with its

mean subtvacted off and divided by

The square root of it variance.




Probubility——the Central Limit Theorem
Let X, .. ., X, torm a random sample of size n from a

distribviion with fivite mean and variance.  Then for any

fixed nber x,
im P | Wg_—ms f;(1 = ?ﬁ(x)

n-> 00 L/ 0

his is The sam?le mean, with its

mean subtvacted off and divided by

The square root of it variance.
So it is now standardized-—-iF has mean
2er0 and variance one.




Probubility——the Central Limit Theorem
Let X, .. ., X, torm a random sample of size n from a

distribviion with fivite mean and variance.  Then for any

fixed nber x,
im T | W\_@_‘f‘)s xq : ?é(x)

n-2 00 | 0 { /

This is special
notation {i\r the CDF
of a standard vormal

random variable.




Probubility—the Central Limit Theorem
Let K, .. ., X, form a random sample of size n from a

distribviion with fivite mean and variance.  Then for any

fixed nber x,
im T | W\_@_’_MS xq : ?é(x)

N-200 \ 0

So, busically, we fake a standardized, version of the sample
mean Trom any old distvibution, let the sample size 4o Yo
infivitu, and vote that essentially the defivition of the
CDF E‘F that thing is the standard viormal CDF.



Probubility——the Central Limit Theorem
Let X, . . ., X, form a vandom sample of size n from a

dts’mb\/’ﬂon with fivite mean and variance.  Then for a

fixed nber x,
im T W,@_—.ﬁ ) <
N-200 \ 0

= Zﬁ(x)

Pmc’ﬁcallﬁ speaking, i1 you have a samyle mean trom a
reasomblﬂ larﬁe random samylc om any distribution, f
will have an awroxwm’fe N(/« 02/wn) distribution.



Probabili’fﬂ'”’dne Central Limit Theorem

I¥s vemarkable. You can have any kind of crazy, almost
degeverate, distribution. As long as The random sample
faken from that distribution is reasonably large, the

savv\{)le mean will De awroxima’felﬂ normal.
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I¥s vemarkable. You can have any kind of crazy, almost
degeverate, distribution. As long as The random sample
faken from that distribution is reasonably large, the

savv\{)le mean will De awroxima’felﬂ normal.

[*s not just remarkable; if's wetd.  We dont vieed, Yo know
what distribution we re sampling brom Yo know a lot about
the behavior of the sample mean from that distribvtion.



Probabili’fﬂ'”’dne Central Limit Theorem

I¥s vemarkable. You can have any kind of crazy, almost
degeverate, distribution. As long as The random sample
faken from that distribution is reasonably large, the

savv\{)le mean will De awroxima’felﬂ normal.

[*s not just remarkable; if's wetd.  We dont vieed, Yo know
what distribution we re sampling brom Yo know a lot about
the behavior of the sample mean from that distribvtion.

We will relﬂ on This Theorem (’\mplid’dﬂ) for the vest of the
semester.  This also 4ives yov some viotion of why The
normal disfribuion is so important.



Ofafistics

For the first time this semester, the fitle on my slide does
not begin with Probabth’fﬁ



Ofafistics

So what is statisties? [ts the study of estimation and
inference.  Well 4et Yo inference a little bit later. For

now, well foovs on estimation.
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now, well foovs on estimation.

Weve seen examples of estimators (sample mean, ~guess” of
the size of the butfiehead {)oyvla’fion), bt a more 3eV\eml
discussion would, be helﬁd.



Ofafistics

So what is statisties? [ts the study of estimation and
inference.  Well 4et Yo inference a little bit later. For

now, well foovs on estimation.

We've seen examples of estimators (.samgle mean, “ﬂvess” of

the size of the butfiehead {)oyvla’fion), bt a more 3eV\eml
discussion would, be helﬁd.

An estimator s a fwction of the random variables in a
random sample.  The spedjﬁc fnction is chosen Yo have
properfies el for 4iving vs information abot the
distribvtion of those vandom variales.



Statistics
First, a defivition:

A parameter is a constant indexing family of distributions.
Examples of parameters are { and 0™ Erom the vormal
distribution, A from the exponentiol distribution, a and b
from the wikorm distribution, v and p brom the Binomia
distribtion.  We will often we 0 as a 3@V\eml notation
&r o parameter.



Statistics
First, a defivition:

A parameter is a constant indexing family of distributions.
Examples of parameters are { and 0™ Erom the vormal
distribution, A from the exponentiol distribution, a and b
from the wikorm distribution, v and p brom the Binomia
distribtion.  We will often we 0 as a 3@V\eml notation
&r o parameter.

We ’ﬁﬁyicalllj want fo determive the volves of parameters that
qovern an observed stochastic process or ?Menomenow:
estimading wikviown parameters. We will often we ©
as ﬁeV\eml nofation tor an estimator.




Ofafistics

And an important distinction:

We veed Yo think. of random variables in fwo Ways, 05 the
mathematical construct | introduced, several weeks agqo, i.c.,
a fwction from the sample space Yo The veal wubers,
and, as a stochastic dbiect that can “take on” ditferent
realizations with different probubilities. We wee the
notation X Yo stand for the vandom variable, as always,
and, vse x o stand for the realization Cor possible
realizations).

Betore, | detined a random sample as an i.i.d. collection
random variables. We can also call the realizations
those random variables a vandom sam‘)le. Or \'\vs’( dafa.



Ofafistics

v other words, we know Cor assume) that a set of vandom
variales, a random sample, is distvibuted i.i.d. vormal, or
Li.d wikorm, or 1i.d. exponential.  Estimation is trying
Yo defermine the syecij{ic H and 02 or a and b, or A,



Ofafistics

For instance, we mi 3%’( choose a J(‘\Mc’ﬁ on whose vesut when
applied Yo the vandom sample, is a random variable ’ﬁﬁh’dnﬁ
distributed arownd, the wean of the distribtion of those

random variables.

hen we plug the reaizations of the random sample, or data,
into the ixxmc’ﬁon Yo obain a vumber, a realization of the

fnction.

The fwnction of the random sample is The estimator.  The
number, or veaization ot the tuncti on of the vandom
sample, is The estimafe. (We use © to stand for both.)



Statistics——-example
Suppose X ~ V[0,6]

D= (1760 0<x<®
-_ O otherwise

Want Yo estimate ©. What cold Yyov do?



Statistics——-example
Suppose X ~ V[0,6]

K= [I/6 0<x«<b
0 otherwise

Two reasonable Procedwes come Yo mind:

(ather a vandom sample, compute the sample mean, and
W\\A’ﬁ\?l\j bﬁ 2. Vee Yt as 6 .

(uther a random sample, compute The max (n order
statistic) of the vandom sample.  Vse Hhat as Y



Statistics——-example
Suppase X ~ V(0,67

)= [I/6 0<x«<b
-_ O otherwise

In other words,



S’fa’ﬁs’ﬁcsmexample

6 = mdX, Xy, K]

"“—H‘"\@-‘}l ) —— i Hf“HHHH@
0 |



S’fa’ﬁs’ﬁcs.”’example

6 = mdX, Xy, K]

I¥'s ﬁe’f’ﬁvxﬂ Yo be a better estimator as v ﬂe’fs larﬂer.



S’fa’ﬁs’ﬁcs-”exam‘;le

ﬂ—Q'H-Hi Li—pipis O ,
Lx Yhis wold be here / 2x this wold be here

2x this wodd be here



S’fa’ﬁs’ﬁ&”’example

i

J l > WL%
HH""i 0 ; 9 |
2x this wold be here /

2x this wodd be here
2x this wodd be here
Also a better estimator as v ﬁe’(s larﬂcr (bt bownces aromnd).




Statistics——-example
Suppose X ~ V[0,6]

K= [I/6 0<x«<b
0 otherwise

Heve's another ?rocedwe=

(uther a random sample, compute the sample median (the
wiber above and below which Mal/f of the sample fls),
and mvl’ﬁ{)l\j bﬁ 2. Vse that as 6 .



Statistics——-example
Suppose X ~ V[0,6]

K= [I/6 0<x«<b
0 otherwise

Heve's another ?rocedwe=

(uther a random sample, compute the sample median (the
wiber above and below which Mal/f of the sample fls),
and mvl’ﬁ{)l\j bﬁ 2. Vse that as 6 .

Also seems reasonable.



Statistics——-example
Suppose X ~ V[0,6]

K= [I/6 0<x«<b
0 otherwise

Heve's another ?rocedwe=

(uther a random sample, Tarow the whole thing away, and
have R qeverate a random valve or Yov. Vse it as 6 .



Statistics——-example
Suppose X ~ V[0,6]

K= [I/6 0<x«<b
0 otherwise

Heve's another ?rocedwe=

(uther a random sample, Tarow the whole thing away, and
have R qeverate a random valve or Yov. Vse it as 6 .

We can quess that this procedure does not have 3ood
Proyer’ﬁ ¢s.



Statistics——-example
Suppose X ~ V[0,6]
K= [I/6 0<x«<b

0 otherwise

B, = madX, Xy LK

n
6, = 2% LK

How did we come vp with these fnctions?  How do we kviow
it theyre veasonable? How do we choose among them?



Ofafistics

For the rest of this lectre and some of next, we will falk
abovt Two Yopics, criteria {or assessing estimators avnd
brameworks Eor choosing esfimators.  These Yopics will
answer Those questions ?

\’\vs’f posed.



Statistics~—eriteria for assessing estimators

Recall that an estimator is a vandom variable. So it has a
distribvtion.  Owr eriteria for assessing estimators will be
based on characteristics of their distributions.
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Statistics~—eriteria for assessing estimators

Recall that an estimator is a vandom variable. So it has a
distribvtion.  Owr eriteria for assessing estimators will be
based on characteristics of their distributions.

An estimator is wblased for 6 i E(B) =0 for dll 6 in @,

1 VOF o 9 4 /‘<>vF of B
/\ S £ \ N\

5 6
wbiased biased
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