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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 
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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 

An estimator is unbiased for θ if = θ for all θ in Θ. 
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Statistics---criteria for assessing estimators 
Recall that an estimator is a random variable. So it has a 

distribution. Our criteria for assessing estimators will be 
based on characteristics of their distributions. 

An estimator is unbiased for θ if = θ for all θ in Θ. 

biased unbiased 
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Statistics---example 
X i.i.d. U[0,θ]i 

= 2 
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X i.i.d. U[0,θ]i 

= 2 
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Statistics---example 
X i.i.d. U[0,θ]i 

= 2 

So unbiased for θ 
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Statistics---example 
X i.i.d. U[0,θ]i 
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Statistics---example 
X i.i.d. U[0,θ]i 

Can’t use properties of E like we just did to calculate the 
expectation here---we’ll do it directly. 
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Statistics---example 
X i.i.d. U[0,θ]i 

Can’t use properties of E like we just did to calculate the 
expectation here---we’ll do it directly. First we need the 
PDF: 
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Statistics---example 
X i.i.d. U[0,θ]i 

So, 
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Statistics---example 
X i.i.d. U[0,θ]i 

So, 

So biased for θ 
12



   

    
    

   
   

Statistics---example 
X i.i.d. U[0,θ]i 

So, 

So biased for θ 

Not so surprising, if you 
think about it. The 
estimator will always be 
<= θ, = with zero 
probability. 
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Statistics---criteria for assessing estimators 
Thm The sample mean for an i.i.d. sample is unbiased for 

the population mean. 
Pf Already did it when we calculated the expectation of the 

sample mean. 

Thm The sample variance for an i.i.d. sample is unbiased 
for the population variance, where the sample variance is 
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Statistics---criteria for assessing estimators 
Given two unbiased estimators, , is more efficient 

than if, for a given sample size, 
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Statistics---criteria for assessing estimators 
Given two unbiased estimators, , is more efficient 

than if, for a given sample size, 

efficient inefficient 
16



   
                 

          

          
        

           
 

Statistics---criteria for assessing estimators 
Given two unbiased estimators, , is more efficient 

than if, for a given sample size, 

Note that we have defined efficiency here just for unbiased 
estimators. The notion of efficiency can exist for 
broader classes of estimators as well, but we won’t give a 
formal definition. 
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Statistics---criteria for assessing estimators 
Sometimes we are interested in trading off bias and 

variance/efficiency. In other words, we might be willing 
to accept a little bit of bias in our estimator if we can 
have one that has a much lower variance. This is where 
mean squared error comes in. 
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Statistics---criteria for assessing estimators 
Sometimes we are interested in trading off bias and 

variance/efficiency. In other words, we might be willing 
to accept a little bit of bias in our estimator if we can 
have one that has a much lower variance. This is where 
mean squared error comes in. 

This is “bias” squared. = 0 for unbiased estimators. 
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Statistics---criteria for assessing estimators 
Sometimes we are interested in trading off bias and 

variance/efficiency. In other words, we might be willing 
to accept a little bit of bias in our estimator if we can 
have one that has a much lower variance. This is where 
mean squared error comes in. 

This is “bias” squared. = 0 for unbiased estimators. 

Choosing a minimum mean squared error estimator is an 
explicit way to trade off bias and variance in an 
estimator. Not the only way, but a decent one. 
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Statistics---criteria for assessing estimators 
Finally, I will mention one additional criterion. is a 

consistent estimator for θ if 
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Statistics---criteria for assessing estimators 
Finally, I will mention one additional criterion. is a 

consistent estimator for θ if 

Roughly, an estimator is consistent if its distribution collapses 
to a single point at the true parameter as n . 
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Statistics---criteria for assessing estimators 
These criteria are probably the most important reasons for 

choosing an estimator, but we also might consider how 
easy the estimator is to compute, how robust it is to 
assumptions we’ve made (i.e., whether the estimator will 
still do a decent job if we’ve assumed the wrong 
distribution), etc. 
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Statistics---criteria for assessing estimators 
These criteria are probably the most important reasons for 

choosing an estimator, but we also might consider how 
easy the estimator is to compute, how robust it is to 
assumptions we’ve made (i.e., whether the estimator will 
still do a decent job if we’ve assumed the wrong 
distribution), etc. 

For instance, it turns out that the 2-times-the-sample-
median estimator I mentioned will have less bias than 2 
times the sample mean if we’ve misspecified the tail 
probabilities of the underlying distribution. 
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Statistics--frameworks for finding estimators 
We now know how to figure out if an estimator is good once 

we have one, but how do we get one in the first place? 
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Statistics--frameworks for finding estimators 
We now know how to figure out if an estimator is good once 

we have one, but how do we get one in the first place? 
There are two main frameworks for deriving estimators, the 

Method of Moments and Maximum Likelihood Estimation. 
(We’ve seen examples of both.) 
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Statistics--frameworks for finding estimators 
We now know how to figure out if an estimator is good once 

we have one, but how do we get one in the first place? 
There are two main frameworks for deriving estimators, the 

Method of Moments and Maximum Likelihood Estimation. 
(We’ve seen examples of both.) 

A third framework is to think of something clever.  (We’ve 
seen a couple of examples of this, too.) 
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Statistics--frameworks for finding estimators 
The Method of Moments (developed in 1894 by Karl Pearson, 

the father of mathematical statistics): 
First have to define moments. 

population moments (about the origin): E(X), E(X2), 
E(X3), . . . 
sample moments: (1/n)ΣX , (1/n)ΣX2, (1/n)ΣX 3, . .i i i 
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Statistics--frameworks for finding estimators 
The Method of Moments (developed in 1894 by Karl Pearson, 

the father of mathematical statistics): 
First have to define moments. 

population moments (about the origin): E(X), E(X2), 
E(X3), . . . 
sample moments: (1/n)ΣX , (1/n)ΣX2, (1/n)ΣX 3, . .i i i 

To estimate a parameter, equate the first population 
moment (a function of the parameter), to the first 
sample moment, and solve for the parameter. 
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Statistics---method of moments 
We’ve seen an example, in the uniform example. 
The first population moment, E(X), of a U[0,θ], is θ/2. 
The first sample moment is (1/n)ΣXi. 
So equate the popul on and sample moments, stick a hat on 

θ, and solve for 
ati

. 

/2 = (1/n)ΣXi 

so, 
= (2/n)ΣXi 
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Statistics---method of moments 
What if you have more than one parameter to estimate? No 

problem---just use as many sample and population 
moments as necessary. Each one is called a “moment 
condition.” If you have k parameters to estimate, you will 
have k moment conditions. In other words, you will have 
k equations in k unknowns to solve. 
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Statistics--frameworks for finding estimators 
Maximum Likelihood Estimation (of unclear origin going back 

centuries, but idea usually attributed to Lagrange, circa 
1770, and analytics to R.A. Fisher, circa 1930): 

The maximum likelihood estimator of a parameter θ is the 
value which most likely would have generated the 
observed sample. 
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Statistics---maximum likelihood 
Here’s a histogram of our data: 
(Remember we think of the histogram 

as the empirical counterpart of the 
PDF of a random variable.) 
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Statistics---maximum likelihood 
Here’s a histogram of our data: 
(Remember we think of the histogram 

as the empirical counterpart of the 
PDF of a random variable.) 

Here are some options of PDFs that 
could have given rise to our data: 

(Where did we get these? Well, we 
assumed a particular “family” of 
distributions and varied the 
parameter(s).) 
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Statistics---maximum likelihood 
Which of those possible PDFs is most 

likely to have produced our data? 
The parameter(s) which describe it 
are the maximum likelihood 
estimate(s). 
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Statistics---maximum likelihood 
Which of those possible PDFs is most 

likely to have produced our data? 
The parameter(s) which describe it 
are the maximum likelihood 
estimate(s). 

is the value of the parameter 
associated with this particular “best 
fit” member of the family of 
distributions. 
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Statistics---maximum likelihood 
Conceptually, makes sense. Operationally, how do we find 

the one of a bunch of PDFs that is most likely to have 
produced our data? 
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Statistics---maximum likelihood 
Conceptually, makes sense. Operationally, how do we find 

the one of a bunch of PDFs that is most likely to have 
produced our data? 

We have to sort of reinterpret the joint PDF of the data, 
or random sample. We have to think of it as a 
function of its parameters and maximize it over those 
parameters. 
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Statistics---maximum likelihood 
Conceptually, makes sense. Operationally, how do we find 

the one of a bunch of PDFs that is most likely to have 
produced our data? 

We have to sort of reinterpret the joint PDF of the data, 
or random sample. We have to think of it as a 
function of its parameters and maximize it over those 
parameters. 

In other words, we define a function L(θ|x), the likelihood 
function, which is simply the joint PDF of the data, 
Π f(x|θ) for an i.i.d. random sample. i 
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Statistics---maximum likelihood 
So L(θ|x) = Π f(x|θ) and we just maximize L over θ ini 

Θ. (We can use any monotonic transformation of L 
and it will still be maximized by the same θ. 
Computationally, it is often easier to take the log of L 
and maximize that because then the product becomes a 
sum, which is easier to deal with.) 
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Statistics---maximum likelihood 
So L(θ|x) = Π f(x|θ) and we just maximize L over θ ini 

Θ. (We can use any monotonic transformation of L 
and it will still be maximized by the same θ. 
Computationally, it is often easier to take the log of L 
and maximize that because then the product becomes a 
sum, which is easier to deal with.) 

It’s good practice to write down joint PDFs, maybe take the 
logs, take the derivatives with respect to θ, set the 
derivatives equal to zero, and solve for the maximum 
likelihood estimators. You may do that if you would like, 
but we won’t do it here. 
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Statistics---maximum likelihood 
Instead we will do a couple of examples that do not involve 

serious computation to find the maximum but rather just 
some clever reasoning. 
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Statistics---example 
X i.i.d. U[0,θ]i 

fX(x) = 1/θ x in [0,θ] 
0 otherwise 

For the MLE, obviously wouldn’t pick any < X(n). Why? 
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Statistics---example 
X i.i.d. U[0,θ]i 

fX(x) = 1/θ x in [0,θ] 
0 otherwise 

For the MLE, obviously wouldn’t pick any < X(n) because 
such a value would be impossible (probability 0), so can’t 
maximize the likelihood function. 
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Statistics---example 
X i.i.d. U[0,θ]i 

fX(x) = 1/θ x in [0,θ] 
0 otherwise 

So, write down the likelihood function: 
L(θ) = (1/θ)n x in [0,θ], i = 1, . ., ni 

0 otherwise 
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In general, how do we get Statistics---example the likelihood function when 
X i.i.d. U[0,θ] we have an i.i.d. random 

i sample? fX(x) = 1/θ x in [0,θ] 
0 otherwise 

So, write down the likelihood function: 
L(θ) = (1/θ)n x in [0,θ], i = 1, . ., ni 

0 otherwise 
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In general, how do we get Statistics---example the likelihood function when 
X i.i.d. U[0,θ] we have an i.i.d. random 

i sample? fX(x) = 1/θ x in [0,θ] It’s the product of the n fX’s. 
0 otherwise 

So, write down the likelihood function: 
L(θ) = (1/θ)n x in [0,θ], i = 1, . ., ni 

0 otherwise 
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Statistics---example 
X i.i.d. U[0,θ]i 

fX(x) = 1/θ x in [0,θ] 
0 otherwise 

So, write down the likelihood function: 
L(θ) = (1/θ)n x in [0,θ], i = 1, . ., ni 

0 otherwise 
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Statistics---example 
X i.i.d. U[0,θ]i This is the same as fX(x) = 1/θ x in [0,θ] saying that the nth 

0 otherwise order statistic is 
less than θ. 

So, write down the likelihood function: 
L(θ) = (1/θ)n x in [0,θ], i = 1, . ., ni 

0 otherwise 
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Statistics---example 
X i.i.d. U[0,θ]i 

fX(x) = 1/θ x in [0,θ] 
0 otherwise 

So, write down the likelihood function: Can write in terms of 
order statistics instead. L(θ) = (1/θ)n X(n) <= θ 

0 otherwise 
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Statistics---example 
Xi i.i.d. U[0,θ] 
fX(x) = 1/θ x in [0,θ] 

0 otherwise 

So, write down the likelihood function: 
L(θ) = (1/θ)n X(n) <= θ 

0 otherwise 

So, 
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Statistics---example 

Let’s look at it graphically. 
The likelihood function is 0 up until the nth order statistic, 
the smallest value it could be. Then it has this (1/θ)n 

shape: 
Reaches its max here. 

X(n) 
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Statistics---example 
X i.i.d. U[θ-1/2,θ+1/2] i 

fX(x) = 1 x in [θ-1/2,θ+1/2] 
0 otherwise 
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Statistics---example 
Xi i.i.d. U[θ-1/2,θ+1/2] 
fX(x) = 1 x in [θ-1/2,θ+1/2] 

0 otherwise 

So, write down the likelihood function: 
L(θ) = 1 θ in [X(n)-1/2,X(1)+1/2] 

0 otherwise 
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Statistics---example 
X i.i.d. U[θ-1/2,θ+1/2] i 

fX(x) = 1 x in [θ-1/2,θ+1/2] 
0 otherwise 

Again, can write in terms 
of order statistics instead. 

So, write down the likelihood function: 
L(θ) = 1 θ in [X(n)-1/2,X(1)+1/2] 

0 otherwise 
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Statistics---example 
Xi i.i.d. U[θ-1/2,θ+1/2] 
fX(x) = 1 x in [θ-1/2,θ+1/2] 

0 otherwise 

So, write down the likelihood function: 
L(θ) = 1 θ in [X(n)-1/2,X(1)+1/2] 

0 otherwise 

So, maximized for any value in that interval. 
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Statistics---example 

Let’s look at this one graphically, too. 

random sample 

X(1) X(n) 

The interval that is length 1 centered at θ is here 
somewhere. And it must encompass all of the data. 
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Statistics---example 

Let’s look at this one graphically, too. 

interval could be here 

random sample 

X(1) X(n) 

interval of length 1 
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Statistics---example 

Let’s look at this one graphically, too. 

random sample 

X(1) X(n) 

or here 

interval of length 1 
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Statistics---example 

Let’s look at this one graphically, too. 

random sample 

X(1) X(n) 

or here 

interval of length 1 
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Statistics---example 

Let’s look at this one graphically, too. 

or here 
and, in fact, all of 
these possibilities are 
equally likely. 

X(1) X(n) 

random sample 

interval of length 1 
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Statistics---example 

Let’s look at this one graphically, too. 

random sample 

X(1) X(n) 

no, not here 

interval of length 1 
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Statistics---example 

Let’s look at this one graphically, too. 

no, not here 

random sample 

X(1) X(n) 

interval of length 1 
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Statistics---example 

So, in other words, 

θ can be at most 1/2 above θ can be at most 1/2 below 
the 1st order statistic. the nth order statistic. 
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Statistics---example 

So, that gives us a window in which θ can live, and all values 
of θ in that window are equally likely. 

θ can live here 

X(1) X(n) 

can be any value in [X(n)-1/2,X(1)+1/2] 
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Statistics---maximum likelihood 
Maximum likelihood estimators have some favorable 

properties: 
1. If there is an efficient estimator in a class of 
consistent estimators, MLE will produce it. 
2. Under certain regularity conditions, MLEs will have 
asymptotically normal distributions (like a CLT for 
MLEs). 
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Statistics---maximum likelihood 
Does this mean that maximum likelihood is always the right 

thing to do? 
1. They can be biased (we saw an example). 
2. They might be difficult to compute. 
3. They can be sensitive to incorrect assumptions about 
the underlying distribution, more so than other 
estimators. 
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Summary to date 
Probability basics 

Introduced concept and talked about simple sample spaces, 
independent events, conditional probabilities, Bayes Rule 

Random variables 
Defined a random variable, discussed ways to represent 
distributions (PF, PDF, CDF), covered random variable 
versions of concepts above 

Functions of random variables 
Saw some basic strategies and several important 
examples 
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Summary to date 
Moments 

Defined moments of distributions and learned many 
techniques and properties to help compute moments of 
functions of random variables 

Special distributions 
Binomial, hypergeometric, geometric, negative binomial, 
Poisson, exponential, uniform, normal 

Estimation 
CLT, had general discussion and discussion about sample 
mean, criteria for assessing, frameworks for deriving 
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