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Statistics~—eriteria for assessing estimators

Recall that an estimator is a vandom variable. So it has a
distribvtion.  Owr eriteria for assessing estimators will be
based on characteristics of their distributions.
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Recall that an estimator is a vandom variable. So it has a
distribvtion.  Owr eriteria for assessing estimators will be
based on characteristics of their distributions.

An estimator is wblased for 6 i E(B) =0 for dll 6 in @,

1 VOF o 9 4 /‘<>vF of B
/\ S £ \ N\

5 6
wbiased biased




S’fa’fis’ﬁcsmexam‘;le
X i.i.d V0,.6]

n
6, - 2‘4\%;3%



S’fa’ﬁs’ﬁcs.”’example
X i.i.d V0,.6]



S’fa’ﬁs’ﬁcs.”’example
X i.i.d V0,.6]

= 0 So wibiased, for 6



S’fa’fis’ﬁcsmexam‘;le
X i.i.d V0,.6]



S’fa’fis’ﬁcsmexam‘;le
X i.i.d V0,.6]
§ - WEX()...)X“}

Cant vse properties of E like we et did To calevlate the
expectation here—well do it rfirec’dlj.



S’fa’ﬁs’ﬁcsmexam‘;le
X i.i.d V0,.6]

A

§ - WEX‘)“')X“S

Cant vse properties of E like we et did To calevlate the
expectation here-—well do it rfirec’dlj. First we need the

PDF: f{,é (%) = nfx(x)[ Fx(x)]n-‘
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So E) = [0 xn™% dx
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Not ¢ sw?\risinﬂ, i{ Wou
think abot it.  The
estimator will alwa“s be
< 0, = with zero

?robab'\li’f Y.



Statistics~—eriteria for assessing estimators

v The sample mean bor an 1.id sample is wbiased For
The population mean.

Pt AlrcaoM did it when we calodated the expectation of the

sam‘;le mean.

v The sample variance bor an i.id sample is wibiased
bor the popuation variance, where the sample variance is

— — 2
l -
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Statistics~—eriteria for assessing estimators

(ziven Two wibiased estimators, 8,486, 6 is more et Hicient
tan B, if, for a qiven sample size,

Vo (/6\,) < Var (@2)

Note that we have defined e%c\evmﬂ here just for wibiased

estimators.  The wotion of eﬁ'\c’\emﬁ en exist for
broader classes of estimators as well, bt we won't 4ive a
formal definition.



Statistics~—eriteria for assessing estimators

Sometimes we are interested in frading ott bias and
variance/ C‘H}\C\CV\%. I other words, we wight be willing
To accept a little bit of bias i owr estimator it we can
have one that has a much lower variance.  This is where

mean gq;mgd ervYor Comes w.

MSE(8) = E[(8-0)’] = Var(8) + (e®)-6]°
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Sometimes we are interested in frading ott bias and
variance/ e\[%ciemﬁ. In other words, we might be willing
To accept a little bit of bias in owr estimator if we can
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N _sguared evyor Comes I,
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Statistics~—eriteria for assessing estimators

Sometimes we are inferested, in trading off bias and
variance/’ c%dcmﬂ. In other words, we migt be willing
To accept a litfle Bt of bias i owr estimator it we can
have one that has a much lower variance.  This is where

mean gq;mgd ervor Comes w.

MSE (B) = EL(B-0)'] =Wm@)~ef
This is "bias” squared, = O for wibiased. estimators.
Choos'm? a mivimm mean squared. ervor estimator is an

exphat Wy Yo trade o\[ bias and variance in an
estimator. “Not the omlnﬁ way, bt a decent one.
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F'\V\alllj, | will wention one additional criterion.  © is a
consistent estimator for 6 if

lim P(1o-8,1<5) =1

n->0

0

Rovﬂhlﬂ, an estimator is consistent it its distribution collapses
Yo a s\mﬁlc point af the true paramefer as > .
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These criteria are Probablﬁ The most important reasons for
choosing an estimafor, bt we also gt consider how
easy The estimator is To compute, how robuwst it is Yo
assumpTions we've wade (i.e., whether The estimator will
still do a decent \ob ik we've assumed, the wrony
distribution), etc.
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These criteria are Probablﬁ The most important reasons for
choosing an estimafor, bt we also gt consider how
easy The estimator is To compute, how robuwst it is Yo
assumpTions we've wade (i.e., whether The estimator will
still do a decent \ob ik we've assumed, the wrony

distribution), etc.
For instance, it fums ot that the 2Yimesthe-sample-
median estimator | mentioned will have less bas than 2

fimes the sample mean if we've W\'\ss?ed\cied the fail
probubilities of the underlying distribution.
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We vow know how o \fiﬁwe of if an estimator is qood. once
we have one, bt how do we get one in the birst place?

There are two wain trameworks tor deriving estimafors, the

Method of Moments and, Maximum Likelihood Estimation,
(We've seen examples of both.)

A third framework is Yo fhink of something clever. (We've
seen o covple of examples of this, Y00.)
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The Method of Moments (de\/eloyed n 6% bﬂ Karl Pearson,
the father of mathematical statistics):

First have o define moments.

population moments (about the origin ) ECX), ECKD),

EQG), . ..
sample woments:  U/)2X, U/mZKE, UMLK, ..
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The Method of Moments (de\/eloyed n 6% bﬂ Karl Pearson,
the father of mathematical statistics):

First have o define moments.

population moments (about the origin ) ECX), ECKD),

0
EQC), . ..

sample woments:  U/)2X, U/mZKE, UMLK, ..
To estimate a paramefer, equate the \C'nrs’f poplafion

moment (& function of the parameter), fo the first

sample moment, and solve bor the parameter.



Statistics——method. of moments

We've seen an example, 6, in the wiform example.
The tirst population moment, E(X), of a (0,67, 1s 6/2.

The first sample moment is U/m2X.

So ectva’fe Yhe Po?vla’ﬁon and sawq)le moments, stick a hat on
B, and sdve for 3.

52 - U/mIX
50,

5 = (/)X



Statistics——method. of moments

What i wov have more Than one parameter o estimaf e?7 No
Problemm\'\vs’f Use 05 many sample and, population
moments as viecessary.  Each one is called a “moment
condition.”  1£ you have k. parameters fo estimate, you will
have k moment condifions. In other words, you will have
k equations in k. wiknowns Yo <olve.



Statistics—frameworks for find ny estimators

Maximum Likelihood Estimation (ot wclear oriin ﬂow\ﬁ bock
centiries, bt idea vsually attributed Yo Lagrange, cirea
1770, and amlﬁ’ﬂcs to R.A. Fisher, cirea 1930):

The maxnmww likelihood estimator of a paramefer B is fhe
valve 8 which most hkel\j wolld, lhave 3@V\erod’ed the
observed sample.



Statistics——-maximum likelihood
Here's a bistogram of ow data

(Remenber we think. of the histoqram
as Yhe emyirical covn’feryar’( Yhe
PDF of a random variable. )

a—
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Statistics——-maximum likelihood
Here's a bistogram of ow data

(Remenber we think. of the histoqram }tﬁj
as the emyirical covn’fcryar’( Yhe -
PDF of a vandom variable. ) h'\—m >

Here are some options of PDFs that
cold have given rise Yo our data:

(Where did we Al these? Well, we
assumed, o particdar “\[amilﬂ” of
distributions and varied the
paramet er(s).)

YV o




Statistics——-maximwm likelihood

Which of those possible PDFs s most
likellﬁ fo have produced our dota?

e paramef er(s) which describe it

are Yhe maximum likelihood
estimate(s).

/N

A4



Statistics——-maximwm likelihood

Which of those possible PDFs s most
likellﬁ fo have produced our dota? )

e paramef er(s) which describe it

are The maximum likelilood -
estimate(s).

N
7

B is the value of the paramefer
associated with this parficuar "best
£Y" member of the \Camilﬂ of
distribvtions.
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the one of a bunch of PDFe that is most likely Yo have
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Cowcq)’fvallﬂ, makes sevise. Opem’ﬁomllﬁ, how do we find
the one of a bunch of PDFe that is most likely Yo have

Prodvceol ow data?

We have Yo sort of reinferpret the Joint PDF of the data,
or vandom sample.  We have Yo think of it as a
fnction of its parameters and maximize it over those
parameters.

v other words, we define a function LBk, the likelihood
fnction, which is simply the Joint PDF of the data,
THx0) for an 1.i.d. vandom sample.



Statistics——maximum likelilood

So L(Blx) = T\i{:(xle) and we \'\vs’f maximize L over © n
€. (We can vse any monotonic transformation of L
and it will sTill be wmaximized bﬁ the same O.
Compv’fa’ﬁomllﬂ, it is often easier Yo Yake the log of L
and, maximize That becavse then the product becomes a
sum, which is easier Yo deal with.)
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So L(Blx) = T\i{:(xle) and we \'\vs’f maximize L over © n
€. (We can vse any monotonic transformation of L
and it will sTill be wmaximized bﬁ the same O.
Compv’fa’ﬁomllﬂ, it is often easier Yo Yake the log of L
and, maximize That becavse then the product becomes a
sum, which is easier Yo deal with.)

I¥s qood practice Yo write down joint PDF, maube Take the
loas, Yoke the derivatives with respect o D, set the
devivafives equl To 2ero, and solve for Yhe maximom
likelihood estimators. You may do that it you wauld, like,
bt we wont do it here.



Statistics——maximum likelilood

Instead we will do a cople of examples that do not involve
seriovs compuiation Yo \C'W\d the maximum but rather \'\vs’f
some Clever reasoning.



S’m’fis’ﬁcsmexam‘;le
X i.i.d V0,.6]
£ - _—I/ 6 xin(00]

O otherwise

For the MLE, obviously woudn ¥ pick ay 8 < Koy WW\/}?.



S’m’fis’ﬁcsmexam‘;le

X i.i.d V0,.6]

)= [1/60 xin(08]
) O otherwise

For the MLE, obviovsly watdn T pick an 6 < Ky Decavee
such a valve wolld be impossible (prczgabili’fﬁ 0), s0 cant
maximize the likelihood twction.




S’m’fis’ﬁcsmexam‘;le

X i.i.d V(00T
{:)((.)O N _—|/9
0

x in (0,0]

otherwise

So, write down the likelihood fwnction:

L(P) =

-

- (/0)

. O

x, n (0,07, i

otherwise

l, ..



oy In qeneral, how do we et
Sfafistics CX“W‘P‘@ the likelihood fnction when
X iid V0,67 we have an i.i.d. vandom

sam?le'z

() = 176 xn(00]
O otherwise

So, write down the likelihood fwnction:
L(®) = U/e) x. n(00]i=1..mn

-

. 0 otherwise



In qeneral, how do we et

Statish CS'"‘X“W‘P‘@ the likelihood function when
X i.i.d V06T we have an i.i.d random

_ , sample?
¥X(-X> il 176 xin (0] IYs the product of the n 4.
0] otherwise

So, write down the likelihood fwnction:
(D) = U/0) x in (0BT i=1, .. n

-

. 0 otherwise
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X i.i.d V(00T
{:)((.)O N _—|/9
0
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otherwise

So, write down the likelihood fwnction:

L(P) =

-

- (/0)

. O

x, n (0,07, i

otherwise
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S’fa’ﬁs’ﬁcs.”’example

K iid V0,67 _—
T , 15 15 The same as
() = 176 xn(00] sang tat the it

0, otherwise order stafistic is
less than O.

So, write down the likelilood, fction /
(D) = U/e) x in (0BT i=1, .. n

-

. 0 otherwise



S’fa’ﬁs’ﬁcsmexample

X i.i.d V(00T

)= [1/60 xin(08]
) O otherwise

So, write down the likelihood fwnction:
L(B) - U/e) Koy < O

-

. 0 otherwise

Can wrife in Yerms of
order sYatistics nstead.
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X i.i.d VI00]

)= [1/60 xin(08]
) O otherwise

So, write down the likelihood fwnction:
L(®) - U/e) Koy < O

. 0 otherwise




S’fa’ﬁs’ﬁcsmexample

LeXs look af if 3m§>hica|hﬁ.

The likelihood fwnction is O vp wifil the with order statistic
the smallest valve it cold be.  Then it las this (/0

sb\aye"

[_(9) N L Reaches its max here.

A
=
\Z
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X i.id V0-1/2,6+1/2]

KO = [ 1 xin(©4/2,641/2]
0 otherwise

So, write down the likelihood fwnction:
L®) = ] 1 0 in 0172, Key*1/2]

-

. 0 otherwise



S’fa’ﬁs’ﬁcsmexample

X iid V[®-I/2 0+1/2]
D= [ 1 xin(04/26%1/2]
0 otherwise

gﬁam can write n Yerms

order stafistics instead.
S0, write down the likelihood \C\Mc’ﬁom

L(.e> = i | D in [X(vo"/?. X(J>+ /?.]

-

. 0 otherwise



S’m’fis’ﬁcsmexam‘;le

X i.id V0-1/2,6+1/2]

KO = [ 1 xin(©4/2,641/2]
0 otherwise

So, write down the likelihood fwnction:
L®) = ] 1 0 in 0172, Key*1/2]

-

. 0 otherwise

So, maximized, or any valve n Tt interval.



S’m’fis’ﬁcsmexam‘;le

Lets look at this one ﬁra?hicalhj, Yo0.
£

random sample ~_

(L1 | I S B S
l" LI >

%o Yoo
The nterval that is leV\?ﬂ/\ | centered at © is here
somewhere.  And it must encompass of the data.




S’fa’ﬁs’ﬁcsmexample

Let's look at this one 3m‘>hicall|j, Yoo.

4 terval codd be here

random sample ~_

[ I R N S N 2 AN
T | R B N W

X{l ) X(w)
\ |

| inkerval of lengtha |
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Let's look at this one 3m‘>hical|3, Yoo.

A or here

random sample ~_

(L1 | I S B S
l" | R B N W

X(l ) X{w)
\ |

.iV\’fe\rval of lengtha |




S’fa’ﬁs’ﬁcsmexample

Let's look at this one 3m‘>hical|3, Yoo.

A or here

random sample ~_

(L1 | I S B S
l" | R B N W

X(l ) X{w)
\ |

M’fcrval of lengtha |




S’fa’ﬁs’ﬁcsmexample

Let's look at this one graphically, Yoo.

4 or bere
and, in fact, all of
random sample ~__ These possibilities are
TR RN atvalln likclﬂ.
X{l) X(\r\)

\ |
inkerval of lengtha |
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Let's look at this one 3m‘>hical|3, Yoo.

A no, not here

random sample ~_

(L1 | I S B S
l" | R B N W

X(l ) X{w)
\ |

interval o\c lengtha |




S’fa’ﬁs’ﬁcsmexample

Let's look at this one 3m‘>hical|3, Yoo.

A no, not here

random sample ~_

(L1 | I S B S
l" | R B N W

X(l ) X{w)
\ |
inkerval of lengtha |




S’fa’ﬁs’ﬁcsmexample

Do, in ofher words,

‘f 1
—+ % > { b
— ——
O can be at most 1/2 above D can be at most 1/2 below

Yhe Ist order statistic. the wth order statistic.

65



S’fa’ﬁs’ﬁcsmexample

So, that gives vs a window in which © can live, and all valves
of 6 in that window ave equally likely,

7

L1 [
T ]

\ 7
%\,

Xy % X
9 can be am valve in (K172, Ky+1/2]

0 can live here




Statistics——maximum likelilood

Maximum likelihood estimators have some tavorable
properfies;
. 1% there is an etficient estimator n a class of
consistent estimators, MLE will produce if.

2. VUnder cerfain requarity conditions, MLEs will have
asympofically viormal distributions (like & CLT for
Es).



Statistics——maximum likelilood

Does this mean that maximum likelihood, is always The vight
MMEM

. They can be biased (we saw an example).

2. They might be difbiett Yo compute.

3, q—b\eﬂ can be sensitive Yo incorrect assumptions about
the W\olerl\ﬁmﬂ distribution, wore so than other

estimators.




Swnma\rn To date
Probab'\l\’ﬂj basics
lnirodueed concept and Talked abovt simple sample spaces,
independent events, conditional probubilities, Baﬂes Rule
Random variables

Defined a vandom variable, discussed ways Yo vepresent
distribvtions (PF, PDF, CDF), covered random variable

versions of concepts above
Functions of vandom variables

Saw some basic s’fm’feﬁi es and several important
examyles



Swnma\rn Yo date

Moments

Detined, moments of distributions and learved any
Techniques and. properfies Yo help compute moments of
fwnctions of random variables

Special distributions
Binomial, Wﬁ?erﬁeome’fric, 5eome’ﬂric, V\eﬁa’ﬁve binomial,
Poisson, exponential, wiform, vormal

Estimation
CLT, had general discussion and discussion abovt sample

mean, criteria for assessi ", brameworks for derivi "
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