14.310x Lectwre 13



Ofafistics

Where were we avuﬁhow?



Swnma\rn To date
Probab'\l\’ﬂj basics
lnirodueed concept and Talked abovt simple sample spaces,
independent events, conditional probubilities, Baﬂes Rule
Random variables

Defined a vandom variable, discussed ways Yo vepresent
distribvtions (PF, PDF, CDF), covered random variable

versions of concepts above
Functions of vandom variables

Saw some basic s’fm’feﬁi es and several important
examyles



Swnma\rn Yo date

Moments

Detined, moments of distributions and learved any
Techniques and. properfies Yo help compute moments of
fwnctions of random variables

Special distributions
Binomial, Wﬁ?erﬁeome’fric, 5eome’ﬂric, V\eﬁa’ﬁve binomial,
Poisson, exponential, wiform, vormal

Estimation
CLT, had general discussion and discussion abovt sample

mean, criteria for assessi ", brameworks for derivi "



Sfatistic ”’J(vaw’ﬁ{ﬁmﬁ \reliabil'\’ﬂj
We have seen variovs estimators, wmade observations abovt
their distributions, discussed, how we wi gt derive them

and also discussed, eriferia That we wi ﬁh’f ve Yo clhoose
among Yhem.

Tal's all well and ﬁood, bt when we actlly have Yo report
estimates, Peoglc will want Yo have some ob\'\ec’ﬁve measure
o\[ lhow ﬁooi or velioble, or precise, owr estimafes are.

Ove Wy we ctvan’ﬁ\[tﬁ this i bﬁ reporfing the variance (or
estimated, variance) of the estimator along with the
estimate.




S’fa’ﬁs’ﬁcsmqvaw’ﬁ{“mﬁ reliabili’rn
The standard ervor of an estimate is the standard deviation
(or estimated standard deviation) of the estimator.



S’m’ﬁs’ﬁcsmqvaw’ﬁ{“iwﬁ reliabili’rﬁ
The standard ervor of an estimate is the standard deviation
(or estimated standard deviation) of the estimator.

For examplc y s mean and variance 02/, so

SEC X Dk (7/@\ Cor G/m \\C You dont know 0% and, need

Yo es’ﬂma’(e ).
/ ?DF 0( x“




Sfatistic ”’J(vaw’ﬁ{ﬁmﬁ \reliabil'\’ﬂj
The standard ervor of an estimate is the standard deviation
(or estimated standard deviation) of the estimator.

For example, X, s mean K and variance 07/v, s0
N

SE( X“) = (7/@\ Cor (T/(V\ '\\C You dont know 0% and, need
Yo estimate 1t).

So we oben report an estimate along with its standard error.
Sometimes we put the standard ervor in parentheses right
abter the estimate.



Sfatistic ”’J(vaw’ﬁ{ﬁmﬁ \reliabil'\’ﬂj

The standard ervor certainly gives v some idea of how
figntly concentrated aromnd the wnkviown parameter the
distribution of the estimator is. That's wseful, but

sometimes it might be weful o report essenfially
equivalent information n a ditferent form, an interval



Sfatistic ”’J(vaw’ﬁ{ﬁmﬁ \reliabil'\’ﬂj

The standard ervor certainly gives v some idea of how
figntly concentrated aromnd the wnkviown parameter the
distribution of the estimator is. That's wseful, but

sometimes it might be weful o report essenfially
equivalent information n a ditferent form, an interval

In ofher words, we cold construet an interval sing
information abovt the distribution of the estimator. That
interval will be varrow when the estimator has a i 5%’(
distribution and wide when it has o dispersed distribution.

Well call it a contidence interval.



Statisties—-confidence intervals

We want Yo find fwnctions ot the random sample ACK, . . .
KD and BCK, L. L K,) suth that
PLACK, . . ., X) <o <B¥X, ..., K) =1 -



Statisties—-confidence intervals

We it Yo find functions ot the vandom sample ALK, . . .
KD and BCK, L. L K,) such that
PLAK, . . ., K) <o <B®X, ..., K) =1 -

rawdpmm desived, degree of
contidence”

True ?ammd' er—"

fixed, Dot wiknown



Statisties—-confidence intervals

We it Yo find functions ot the vandom sample ALK, . . .
KD and BCK, L. L K,) such that
PLAK, . . ., K) <o <B®X, ..., K) =1 -

rawdpmm desived, degree of
contidence”

True ?ammd' er—"

fixed, Dot wiknown

(Comyare This with point estimation:  want fnction sueh
Hhat ECOCK, . . ., X)) = 8, for instance.)



Statisties—-confidence intervals
£ You can find such fnctions AgB, then

Alx, .. ., x,) Ox, ..., X
i said Yo be a 1= confidence nterval for 6.



Statisties—-confidence intervals
£ Yov can find such fnctions AgB, then

Alx, ..., x) Bx, ..., x)]
i said, o be a 1-oConkidenceNutervl for 6.

After we ?\Vﬁ wn The realizations, these are \'\vs’f numbers now.



Statisties—-confidence intervals
£ You can find such fnctions AgB, then

Alx, ..., x) Bx, ..., x)]
i said Yo be a 1= confidence nterval for 6.

Notes: -—These fwctions are not wiique. S0 how do we
choose Them? Tﬂg callﬁ, we choose AQB such That ot/2

of the ?\robabili’f“ lls on each side of the interval,

”'Keep n mind that Alx, ..., x) and Ox, . . .,
Xa) are st numbers, so probobility statements involving
those quantities and © dont make sense.



Statisties—-confidence intervals
Where do we find those fctions? You can find them

“from scrateh.”  In most cases Tt yov will encounter in
everﬂdaﬁ dota amlﬁsis, ﬂnovﬁh, others have fownd, those
fnctions and & vesting formda for a “5% contidence
interval for the mean o} an wknown distribution with
samyle 512¢ ﬂrea’fer Yhan 30" Cor whatever).



Statisties—-confidence intervals
Where do we find those fctions? You can find them

“from scrafch.”  In wost cases Yhat yov will enconter in
everﬂdaﬁ dota amlﬁsis, ﬂnovﬁh, others have fownd those
fnctions and, a resvl’ﬁv& Formda for a "95% contidence

interval for the mean of an wiknown distribution with
samyle 512¢ ﬂrea’fer Yhan 30" Cor whatever).

Important Yo vote: in order Yo find those fnctions and
devive the formdae, one veeds Yo know how an estimator
for Yhe wiknown parameter is distributed (’ﬁj?icallﬁ not
\'\vs’f the mean and, variance).



Stafistics—%% ¥ and F distributions

This is Prcdselﬁ where owr friends, the %2 t and F
distribvtions, come . These are all distributions that
wilike other special distribvtions we've encomtered, dont
realhj appear in vafure, dont reallnﬁ deseribe stochastic
phenomena we observe. Rather, they were “invented”
becavse estimators or fnckions of estimators had
distributions that veeded Yo be described and Tabulated.



Stafistics—%% ¥ and F distributions

K2

Recall that we b\r'\e\qlﬁ mevtioned an estimator called the
sample variance, 5%

— —_ 2
l -
SI = Y’\:lz_ (X& Xn)

We said, that it was an wibiased, estimator for the variance

of a distribwtion.
Well, (n1)s2/02 las one o\f Yhese distributions, in ?a\r’ﬁcvlar,
1 )2/02 ~ X2



Stafistics—%% ¥ and F distributions

K2

Recall that we b\ric\q“ mevtioned an estimator called the
sample variance, 5%

LT (Y
Sl = V\'IZ‘(X" n)

We said, that it was an wibiased, estimator for the variance
of a distribwtion.
Well, (n1)s2/02 las one o\f Yhese distributions, in Par’ﬁcv\ar,
(V\'erl

This™is & parameter of the X2 distribution——-it's called “degrees of {reedsim’



Stafistics—%% ¥ and F distributions
|

£X ~NOD and Z ~ %2 and ’dneldre independent, then
KAZ/ )72 ~ 1,

\l\/!mﬁ is that a veetdl fact? S\J\){)ose we are sam?lmﬁ from a
[\K/w‘ D) distribution.  We know that (77«)/ (02/n) /2
~ N(OI) and that (n-1)2/0% ~ %2 . (We do wot

know that ’ﬂ/\cﬁ're independent bt in fack, ’d/\e,ﬁ are.)

We form Y0 1/0 caneel 0 few tivngs, and. 4t
Z((X;=%)/0)* Y -
\j c'ﬁ?m(r W\_%X_ [ )




Stafistics—%% ¥ and F distributions

I
So we have that W\,g_‘f” ~ % for Xotid (\K/«,O‘ ).



Stafistics—%% ¥ and F distributions

I
So we have that W‘,g:f*) ~ % for Xotid (\K/«,O‘ ).

agein, ) deqees of {reedom”



Stafistics—%% ¥ and F distributions

The T distribution was formulated
b'ﬂ William Seallj (osset n lais
\ob as Chiet Brewer in the
?:MV\V\CSS Brewcrﬂ in Diblin,  He
derived and tabated this
distribution Yo aid n his avalysis
of data for qulity contirdl across
butches of beer. 1‘6 {)vbl'\shed i
wder the pseudonum “Student” n
1908.



Stafistics—%% ¥ and F distributions

The T distribution was formulated
by William Seallj (rosset n b
\ob as Chiet Brewer in the
?:MV\V\CSS Brewcrﬂ in Diblin,  He
derived and Yobated this
distribution Yo aid n his avalysis
of data for qulity contirdl across
butches of beer. 1‘6 {)vbl'\shed i
wder the pseudonum “Student” n
1908.

Yook Pl«\o’fo dwinﬁ my recent visit to the brewe\rﬁ ,



Stafistics—%% ¥ and F distributions
F

£ X~ %2 and Z ~ %2 and ’fl/\eﬁ're independent, then
KA Z/m) ~ F,,,

\l\/!/uj is that a veetdl fact? vaose we have samples brom
two different poplations. We i gt want Yo know
whether the distributions in the two populations weve, in
fack, the same. 4 thew are, we can Form the vatio of
the sample variances divided by their deqrees of freedom

(frve variances cancel'mﬁ becavse ﬂneﬁ're the same) and
the vatio then has the above distribution.



Statisties—-confidence intervals

So let's construek some contidence intervals. We will foous
'\V\i’ﬁallij on two cases. These are not the owllﬂ cases Yo
will ever encowter, but W\e\j are, blj \[aur, the most
im?or’fam’f .

Cose I: We are sampling from a vormal distribution with
kown variance and we want a confidence inferval for the
mean.

Case 22 We are sampling from a vormal distribution with an
wkviown variance and we want a contidence inferval tor
the mean,



Statistics——-contidence interwals, case |

We have an estimator {or Yhe wean, X, which has a vorma
distribution with mean f and variance 0 /.

- X~ : - -
So PB(oA/2) < 7_/% < B/ = 1ok




Statistics——-contidence interwals, case |

We have an estimator {or Yhe wean, X, which has a vorma

distribvtion with mean H and, variance 02/ w. We st ot o

mﬁa’ﬁve siﬁ\n n
Y- Yoot if fo qet
o PIE/D) ¢ S DU ok b
/M other ail dve Yo
stjmme\'nj.

This is the wnverse CDF
of the standard normal

evalvated at ot/2.
£e)




Statistics——-contidence interwals, case |

We have an estimator {or Yhe wean, X, which has a vorma
distribution with mean f and variance 0 /.

- X~ : - -
So PB(oA/2) < —0_;% < B/ = 1ok

o, reanranging we have, Pi ¥+ &t /2) Ui < M < X -
G /2) Ui = 1o,



Statistics——-contidence interwals, case |

We have an estimator {or Yhe wean, X, which has a vorma
distribution with mean f and variance 0 /.

- X~ : - -
So PB(oA/2) < _0_;% < B/ = 1ok

o, reanranging we have, Pi ¥+ &t /2) Ui < M < X -
G /2) Ui = 1o,

Ow 1=t Cl is (X + & /2) 05, X (et /2) 045, T



Statistics——-contidence interwals, case |

We have an estimator for the mean, ¥, which has a vorma
distribution with mean f and variance 0 /.

- X~ : - -
So PB(oA/2) < 7_;% < B/ = 1ok

o, reanranging we have, Pst ¥+ &t /2) Ui < M < X -
1ot/ 7—) Oyfn} = |-k We P\\)ﬁ realizations n and ow CI
i \'\vs’r fwo vumbers.

Owr 1=t C i (X + & /2) V5, % B /2) 04 T



Statistics~—contidence ntervals, case 2

We have an estimator {or Yhe mean, X, which has a normal
distribvtion with mean H and, variance 0%/, bt we do
not know 02, We do kvow ’d/\ovﬁh, Yhat wﬁg“ ) w Y

So P, 1(ot/2) « "o ¢ 1ot /2) = 1ok

[

This is the nverse
of the t CDF
evalvated at o4/2.



Statistics~—contidence ntervals, case 2

We have an estimator {or Yhe wean, X, which has a vorma
distribvtion with mean H and, variance 0%/, bt we do
not know 02, We do kvow ’d/\ovﬁh, Yhat wﬁg“ ) w Y

So P, 1(ot/2) « "o ¢ 1ot /2)E = 1ok

o, rearvanging we have, PSDZ + 1o/ < < X -
b o72) 70 = 1



Statistics~—contidence ntervals, case 2

We have an estimator {or Yhe mean, X, which has a normal
distribvtion with mean H and, variance 0%/, bt we do
not know 02, We do kvow ’d/\ovﬁh, Yhat Wx%m ) w Y

So P, 1(ot/2) « "o ¢ 1ot /2)E = 1ok

o, rearranging we have, PT)Z + 1o/ < M < X -
b o72) 70 = 1

Ow 1-ot Ol is (X + 1 o/2) 54, ¥ 1, et/2)5 ]



Statisties—-confidence intervals
Comparison of cases | and 2:

e ol/2) B(n/2)
The T distvibution is similar Yo the vormal bt bas “fatter

”

Yals.” 1Y conver4es Yo the vormal as n — @,



Statisties—-confidence intervals

Comparison of cases | and 2

+ /2) — /) s v — o

The ¥ qives yov a wider interval than the normal bor Linite
n. The wntifion is That you are less sure of the
distribution of your esfimator becasse yov dont kvow
Varl X) and must estimate it. The t “?evmlms” Your
contidence interval bﬂ makmﬁ it wider, re\qec’ﬁnﬁ your
Yreater W\cer’fam’f“. As n qoes Yo imfivﬁ’%, Wowr
wicerfainty becomes relatively less important.



Statisties—-confidence intervals

We dont always Ll into ease | or case 2. What do we do
then?

\si ny facks Yhat Yo know abovt how fnctions of vandom

variales are distriputed, wou can consfruet contidence
interval “from scratch” on Your o,

In practice, we vsvalllﬁ aweal Yo CLTHike resuts Yo arque
That The estimator bas an approximate normal distribution,
and Then st vse the ¥ comgdcvu interval formda with
an estimated variance. (For large w, the ¥ and vormal
contidence intervls are the same.)



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

Well, now we know what an estimator is, how To estimate
wiknown parameters, and a couple of different wavs o
express how contident we are n owr estimates. ‘p\na’(

efs s along way and 4ives us & very good fowdation
?ov studying all kinds oe estimation qoing forward.

Ovie wore fowdational Bit is quite. important: hm)o’(hes'\s
Yesti ng.



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

I social science (as well as other settings for data aV\al\ﬁs'\s),
we offen encowter questions that we want To answer.
(Some of you have starfed \Cormvla’ﬁnﬁ them for Your
empirical ?ro\'\ec’f ) Do the lijfcsyaws of popes fdlow a
lognormal disfributi on?  Does the income tax vate affect
the wber of hours emplovees are willing Yo work? Do
used books cost more on the infervet than theu do in
brick avd, mortar stores? Has NAFTA bt US

manviactori nq workers?



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

The Yool that statisticans have nvented o bel P answer such
questions (and a(van’ﬁ\% how confident we are n the
answers ) 1s the Wﬁpoﬂnesis Yest.

Purpose:  Given a random sample brom a popvlation, is there
enovgh evidence To contradict some asserfion about the
?opvla’ﬁow?



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

The Yool that statisticans have nvented o bel P answer such
questions (and a(van’ﬁ\% how confident we are n the
answers ) 1s the Wﬁpoﬂnesis Yest.

Purpose:  Given a random sample brom a popvlation, is there
enovgh evidence To contradict some asserfion about the
?opvla’ﬁow?

Lets Duild the structure W\dzrlﬁmﬂ the ‘mﬁ?o’dx\esis Yest,



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

First, well need a bunch of defivitions
An hupothesis is an assumption about the distripution of a

random variable in a Poyvla’ﬁon.

A maiviained bg?oﬂagg\g is one that canot or will vot be

Yested.

A mim%m is one that can be tested sing evidence

brom a vandom sample.
The il upothesis, Ho, is the one that will be Yested
The altervative hupothesis Hy, 15 a ?ossibili’ﬂﬁ (or series of
Possibil'\’ﬁes) other than the vl



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

For instance, we mi 3%’( want Yo {)er\[orm a Yest concerning
wknown parameter © wheve X ~ {xb).

. 0 in &,
O in &), where &, and &, dis)oint.
More definitions

A MMM 15 ove characterized b\j i s'w\ﬂle point,

ie., &, =0,

A composite bupothesis is one chavacterized by mitfiple
paints, i.e., &, 1 mitiple valves or a range of valves.




S’fa’ﬁs’ﬁcsm‘mj?o’d/\esis ’fes’ﬁ\nﬁ

For instance, we mi 3‘1\’( want Yo {)cr\[orm a Yest concerning
wknown parameter © wheve X ~ {xb).

. 0 in &,
O in &), where &, and &, dis)oint.
More definitions

A simple_hupathesis is one characterized b\j & single poin,

ie., &, =0,

A composite bupothesis is one characteri 2¢d b“ mifiple

paints, i.e., & is mitiple valves or a range of valves.
voual st “p! SiW\PlC vl and composite alternative




S’m’fis’ﬁcsmexam‘;le set-up
X tid. [\K/(,O' 23, where 02 kviown,

Interested in ’fes’ﬁV\ﬂ whether He 0.




Statistics——-example set-up
K tid. [\K/«, 02), where 072 kown.  wainfained hypotheses

Interested in ’fcs’ﬁV\ﬁ whether He 0. Testable ypothesis

o /4 =0 w hﬂyo’fhcsis, simple
)y }4 =  aternative lnmm’fhcsis, simple




Statistics——-example set-up
X tid. [\K/&, 02), where 072 kown.  wainfained hpotheses

Interested in ’fes’ﬁV\ﬁ whether He 0. festable lypothesis

o /4 =0 w hﬂpo’fhcsis, simple
"‘A" }47“ O




Statistics——-example set-up
K tid. [\K/«, 02), where 072 kown.  wainfained hypotheses

Interested in ’fcs’ﬁV\ﬁ whether He 0. Testable ypothesis

o /4 =0 w hﬂyo’fhcsis, simple
4 A }4 # 0O  afernative lnmm’fhcsis, com‘;osi’fe, Ywo-sided




Statistics——-example set-up
K tid. [\K/«, 02), where 072 kown.  wainfained hypotheses

Interested in ’fcs’ﬁV\ﬁ whether He 0. festable lypothesis

o /4 =0 w hﬂpo’fw,sis, simple
"‘A" }4 >0




Statistics——-example set-up
K tid. [\K/«, 02), where 072 kown.  wainfained hypotheses

Interested in ’fcs’ﬁV\ﬁ whether He 0. Testable ypothesis

o /4 =0 w hﬂyo’fhcsis, simple
4 A }4 > O afernative lnmm’fhcsis, composife, one-sided




S’m’fis’ﬁcsmexam‘;le set-up
K tid. [\K/&,O' 23, where 02 kviown,

Interested in ’fes’ﬁV\ﬂ whether He 0.

We then either “acce?’r " or “re\'\ec’f " the vl ht\?o’f‘nesis based,
on evidence from our sample.



S’fa’ﬁs’ﬁcsm\mj?o’dnesis ’fes’ﬁ\nﬁ

Ol?viovslﬂ, mistakes can be wade——-we can “re\'\ec’f" a il Yt
is trve or “accept” a nil that is folse. We want fo set
Up o Mm)oﬂnesis Yest Yo avwdgze and control these ervors.
We first vieed a Taxonomy,

He true Ho false
am\;\' H, No ervor Type Il evror
reject H, Type [ ervor No ervor



S’fa’ﬁs’ﬁcsm\mj?o’dnesis ’fes’ﬁ\nﬁ

He true Ho false
am\;\' H, No ervor Type Il evror
n\'\gd' H, Tm;c | ervor No error

The s%n_\{mj&d of the Yest, o, is the ?robabili’% of

hi ype | error,

The mm%_ch&@mﬁ\_c o\[ fhe test, B, is the {)robabili’fﬁ
of fype I ervor.

We call 1-oL the confidence level. We cal - the power.



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

F'w\allﬁ, we detine the critical region of the test, C or Cy, as
The reqion of the support of the vandom sample for which we
reyect the vl.




S’m’fis’ﬁcsmexam‘;le
K tid. N(/&,O‘Z), where 072

known,

fot U= 0

tp pos |

vaose, Eirst, fhat n = 2.

Think. abovt what kind of sample
wold. lead you Yo believe the

dl or dobt the wil in favor
of the alfervafive.




S’fa’ﬁs’ﬁcsmexam‘;le
X tid. N(/(,O‘Z), where 07

known.

fot U= 0

"A" /’( = |

vaose, Eirst, fhat n = 2.

Think. abovt what kind of sample

would, lead yov Yo believe the
dl or dobt the wil i favor
of the alfervafive.

A
I<  refect
N

not \\
N\

0 N7
I f\ )(2
XK, = k



. . e N N
Statistics example [ v
K tid. N(/{,O‘Z), where 07 \
known, donot O N
reted RN
o }{ =0 \ 0 | ‘f\\ﬂxz
Hye M=
A XX, = k

vaose, Eirst, fhat n = 2.
Think abovt what kind, of sample IR
wold lead wou o believe the reject

do not Y‘CJCCT
dl or dobt the wil in favor
of the alfervafive.




S’fa’ﬁs’ﬁcsmexample
X tid. [\K}(,O'Z), where 07

known,
fot U= 0

"A" /’( = |
vaose, Eirst, fhat n = 2.

Think. abovt what kind of sample

wold lead you Yo believe the
dl or dobt the wil i favor

of the alfervafive.

N re‘[co’[
AN

AN
do[not

re'\edo : NN
s

XX, = k

0 | L 2 'X'af)(z:‘[
\__,_.-\,_-_J\_/W
do not Y‘CJCCT re|ect

1 i )
0 % 1 X
—

Ao nof reled
rej cct



a N All taree of these are

Statistics——-example [ e ielent and
K iid NG o), where 0 b 7l st n
! k " Ho=) I no‘r \ identical procedyres.
oW, N
rejed
_‘O: }’( = O 0 : \ ‘>
X
"A" /’( = | f b :
XK, = k

vaose, Eirst, fhat n = 2.
Think abovt what kind of sample O 2 T

would, lead you fo believe the do wof refect ejec

ndl or dowt the il in favor N
of the alfernative. o 2% 1 X
—_—

Ao nof Wlw

rej cct



Xy N All taree of these are

Statistics——-example Ty e o
N\ will resuf in
Qo do we P\re\fcr one over the N idertial procebres,
others? Not realllﬁ, bt dofnot
when n gefs biﬁ, we don’t rejed : : = ‘>X
want Yo have o worry about [~ ™
n-dimensional spaces, so we XX, = k
would st as soon base the e
fest on the sum or the sample © Tkt K
WMeaw. do not NJCCT reject
. h% 1 X
—_—
Ao not rele,d,'

rej cct



S’m’fis’ﬁcsmexam‘;le
So well base owr Tes’ﬁwa Procedwe o the fest statistic
T =X and reject For Targe” valves.

I other words, critical vegion C will fake the form X » k
for some k yet o be determined.



S’m’fis’ﬁcsmexam‘;le

So well base owr festing procedure on the fest statistic
T =X and reject For Targe” valves.

In other words, critical reqion C will fake the form X > k
for some k yet o be determined.

How do we choose k7 Trade off two fypes of ervor.



S’m’fis’ﬁcsmexam‘;le

So well base owr festing procedure on the fest statistic
T =X and reject For Targe” valves.

In other words, critical reqion C will fake the form X > k
for some k yet o be determined.

How do we choose k7 Trade off two fypes of ervor.

™
\\\\\\



S’m’fis’ﬁcsmexam‘;le

Chaice ot any one of oA, B, or k determines the other two.
Furthermore, choosing them invalves an explicit trade-ott
betueen the probubility of fype | and type |l ervors.

ncreasing k means L | and @T
decrens: nq k means oLl and @1



S’m’fis’ﬁcsmexam‘;le

Le¥s compute ok and B vsing some speci\[ic nwvbers. |} 02
=& and v = 25, then q' ~ N(O,4’/25> wdey Ho ond
NU,4/25) wder H,,.

ok = PTokpe0) = 1 - Ak-0)/(2/5))
p = PCTklel) = Alk4)/(2/5))




S’fa’fis’ﬁcsmexam‘;le

ok = PTok=0) = | - Ak-0)/(2/5))
p = PCTddue) = AkA)2/5))

£ you plugged in different vales of k, you wald 4ef a
3m§>‘n n olp space That looked like this:

1N

(4




S’fa’ﬁs’ﬁcsmexample

ok = PTok=0) = | - Ak-0)/(2/5))
p = PCTddue) = AkA)2/5))

What ‘na‘)?ews a5 W increases or decreases?

i {
0 |

‘MBQ(‘ n




S’fa’ﬁs’ﬁcs.”’example

A = P(T>l</«=o) = | - &(k-0)/2/5))

p = P(Tepel) = BkA)/ (2//37/

Yhis cb\amﬂes
What Mawews as W increases or decreases?

i {
0 |

‘M‘Sﬂ‘ n




S’fa’ﬁs’ﬁ&”’example

& = P(T>

As v increases, The Two
distributions ﬁe’f ’fiﬁ\n’rer
aromd Their means——-can

/«=O> - | - B(k-0)/2/5)) do better on both

B = P(Tek

el ) = kA )/(2//33/ ot

s dz\awﬂes

What lna??ews 05 W increases or decreases?

\awger n

{ {
0 |



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

Notes:

How do we kviow which bupothesis shod be the wil and
which shodd be the alternative? Well, we are free to
choose.  We often choose o That the Type | ervor is the
more serios of the errors. Then we will choose k so
Yhat oL 15 af an accey’fablﬁ low level, such as .05 or .Ol.
(Of course, i n is really large and, we keep oL fixed,
then p i 3l4’f be very small - which mi ﬁh’r ot De what we
want,)




S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

Notes:

What if Wis wot either O or 17 Well, much of the
fime we set vp a h\j{)o’d/\esis Yest <o that &, V @, is
the entire parameter space.  So either the wil or the

altervative must be trve.

Tat means That one or botha

of the hwpotheses are composite.  When we have
composite hypotheses, the Test becomes more dithiadt Yo
avalyze. In g;r’ﬁwlar, ok and p may o longer be valves

bt cod be

ctions of the wnkvown parameter(s) ©.



S’fa’ﬁs’ﬁcsm\mj?o’fb\esis ’fes’ﬁ\nﬁ

Notes:

What if our hupotheses were
ot U= 0
tp p# 07

We codd vse the same test statistic X, bt what shavld
Yhe critical reﬁiow look. like?




Power calculations

e For a sample of size N, we will observe W;...Wy, and
obs obs
YPLLYE

e Suppose we are interested in testing:
Ho = E[Yi(1) Yi(0)] =0 against H, : E[Yi(1) Yi(0)] #0

e A reminder:

H, frve Ho flse
m‘;f Ho No ervor me. Il ervor
veject H, Tope [ ervor No ervor

The siﬂni{'\mwu level of the Test, o, is The ?vobabilﬁ'ﬂ of
type | ervr.

The o?cm’ﬁnﬂ characteristic o( the fest, §, is the ?robabili’ﬁj
o type (M error.

We call -0t e confidence level. We call 1B the power.
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What ingredients goes into the power
calculation?

We tend to pick « low because society does not want to
conclude that some treatment work when it fact it really does
not.

Following Fisher, it is often o = 0.05

We want to pick N = N, + N; such that , if the average
treatment effect is in fact some value 7, the power of the test
will be at least 1 — for some , given that a fraction of
the units are assigned to the treatment group.

In addition we must assume (know) something about the
variance of the outcome in each treatment arm: for simplicity
we often assume it is the same, and some parameter

In summary we know, impose, or assume «, ,7, ,and ,
and we are looking for N.

Alternatively, we could be interested in the power for a given
sample size: we know «, ,7, , and N and look for — . &



Guess work

e «wand are imposed and we can decide (if this was just
power what would we pick?)

e Problem: how do we know/determine 7 and  ?

e 7: could be known from a pilot, from a previous study, or
could be picked as a value of interest.

e For example: the lowest value such that, if we could reject
zero when the effect is really 7, the program would be worth
doing.

e This is more about optics than about statistics... (rejecting
zero is not “accepting” the point estimate...)

e But it has the merit to remind us that we may be interesting
in ‘detecting’ a small effect, we will work with large sample. If
the program is very expensive such that it won't be adopted
unless the effects are very large anyway, we can go with a
smaller sample.

e : Need to get that from prior data, with similar outcomes.

e Some item it is wide guess work! 77



Now for the formulas

This is of course in practice the easy part: many software will
give you power curves as you tinker with the parameters and
the sample size.
But it is worth working through the logic.

\/VNeyman \/j’vjtJr e
We reject this hypothesis if [T| > ®(1  §), e.g. if a = 0.05,
if |T| > 1.96
What is the probability that this occurs?

By the central limit theorem, the difference in means minus
the true treatment effect, scaled by the true standard error of
that difference, has distribution that is approximately N(0,1) :

o wz/\f(o,l) and hence T ~ N

.
52 | o2 ( -2 2 ’1)
Nt \/Niﬁﬁ 78



Statistical Power
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So

PITI>o1 5) =@ (071 S)+ =+
N: T Ne
o o1 3) =
Vet
The second term is very small, so we ignore it.
So we want the first term to be equal to 1 , which requires:
N 1
o1 )= el )+ TNV @)

Which leads to the required sample size:

(@11 )+l %))

oo )

N =

80



Other considerations to take into account
when you do power calculations

o If you have stratified or not: with stratified design, variance of
estimated treatment effect is lower.

e |f you have clustered or not: with clustered design, variance of
estimated treatment effect is larger
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Analysis of a stratified design

Take the difference in means within each strata

Take a weighted average of the treatment effect with the
weight the size of the strata Zg(%)?g
This will be an unbiased estimate of the average treatment
effect

. . N 2/\
And the variance will be calculated as >, ()" Vg
Special case: probability of assignment to control group stays
the same in each strata. Then this coe cient is equal to the
simple difference between treatment and control, but the
variance is always weakly lower.
Stratification will lower the required sample size for a given
power.
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Analysis of a clustered design

The opposite happens with a clustered design (all the unit
within a same unit are either treated or control).

We need to take into account the fact that the potential
outcomes for units within a randomization clusters are not
independent.

Conservative way to do this: just average the outcome by
unit, and treat each as an observation (like we did for
classrooms in the Duflo-Hanna data.

Then the number of observations is the number of clusters,
and you can analyze this data exactly as a completely
randomized experiment but with clusters as the unit of
analysis.

For example, this tells you that a randomization with two
clusters is unlikely to go very far!!
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