
  14.310x Lecture 13 
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Statistics 
Where were we anyhow? 
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Summary to date 
Probability basics 

Introduced concept and talked about simple sample spaces, 
independent events, conditional probabilities, Bayes Rule 

Random variables 
Defined a random variable, discussed ways to represent 
distributions (PF, PDF, CDF), covered random variable 
versions of concepts above 

Functions of random variables 
Saw some basic strategies and several important 
examples 
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Summary to date 
Moments 

Defined moments of distributions and learned many 
techniques and properties to help compute moments of 
functions of random variables 

Special distributions 
Binomial, hypergeometric, geometric, negative binomial, 
Poisson, exponential, uniform, normal 

Estimation 
CLT, had general discussion and discussion about sample 
mean, criteria for assessing, frameworks for deriving 
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Statistics---quantifying reliability 
We have seen various estimators, made observations about 

their distributions, discussed how we might derive them, 
and also discussed criteria that we might use to choose 
among them. 

That’s all well and good, but when we actually have to report 
estimates, people will want to have some objective measure 
of how good, or reliable, or precise, our estimates are. 
One way we quantify this is by reporting the variance (or 
estimated variance) of the estimator along with the 
estimate. 
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Statistics---quantifying reliability 
The standard error of an estimate is the standard deviation 

(or estimated standard deviation) of the estimator. 
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Statistics---quantifying reliability 
The standard error of an estimate is the standard deviation 

(or estimated standard deviation) of the estimator. 

For example, has mean µ and variance σ2/n, so 
SE( ) = (or if you don’t know σ2 and need 
to estimate it). 
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Statistics---quantifying reliability 
The standard error of an estimate is the standard deviation 

(or estimated standard deviation) of the estimator. 

For example, has mean µ and variance σ2/n, so 
SE( ) = (or if you don’t know σ2 and need 
to estimate it). 

So we often report an estimate along with its standard error. 
Sometimes we put the standard error in parentheses right 
after the estimate. 
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Statistics---quantifying reliability 
The standard error certainly gives us some idea of how 

tightly concentrated around the unknown parameter the 
distribution of the estimator is. That’s useful, but 
sometimes it might be useful to report essentially 
equivalent information in a different form, an interval. 
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Statistics---quantifying reliability 
The standard error certainly gives us some idea of how 

tightly concentrated around the unknown parameter the 
distribution of the estimator is. That’s useful, but 
sometimes it might be useful to report essentially 
equivalent information in a different form, an interval. 

In other words, we could construct an interval using 
information about the distribution of the estimator. That 
interval will be narrow when the estimator has a tight 
distribution and wide when it has a dispersed distribution. 
We’ll call it a confidence interval. 
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Statistics---confidence intervals 
We want to find functions of the random sample A(X1, . . . 

, Xn) and B(X1, . . . , Xn) such that 
P(A(X1, . . . , Xn) < θ < B(X1, . . . , Xn)) = 1 - α 
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Statistics---confidence intervals 
We want to find functions of the random sample A(X1, . . . 

, Xn) and B(X1, . . . , Xn) such that 
P(A(X1, . . . , Xn) < θ < B(X1, . . . , Xn)) = 1 - α 

random functions desired “degree of 
confidence” 

true parameter---
fixed but unknown 
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Statistics---confidence intervals 
We want to find functions of the random sample A(X1, . . . 

, Xn) and B(X1, . . . , Xn) such that 
P(A(X1, . . . , Xn) < θ < B(X1, . . . , Xn)) = 1 - α 

random functions desired “degree of 
confidence” 

true parameter---
fixed but unknown 

(Compare this 
E( 

with point estimation: want a function such 
that (X1, . . . , Xn)) = θ, for instance.) 

13



 
        

        
        

Statistics---confidence intervals 
If you can find such functions A&B, then 

[A(x1, . . . , xn), B(x1, . . . , xn)] 
is said to be a 1-α confidence interval for θ. 
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Statistics---confidence intervals 
If you can find such functions A&B, then 

After we plug in the realizations, these are just numbers now. 

[A(x1, . . . , xn), B(x1, . . . , xn)] 
is said to be a 1-α confidence interval for θ. 
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Statistics---confidence intervals 
If you can find such functions A&B, then 

[A(x1, . . . , xn), B(x1, . . . , xn)] 
is said to be a 1-α confidence interval for θ. 

Notes: ---These functions are not unique. So how do we 
choose them? Typically, we choose A&B such that α/2 
of the probability falls on each side of the interval. 
---Keep in mind that A(x1, . . . , xn) and B(x1, . . . , 
xn) are just numbers, so probability statements involving 
those quantities and θ don’t make sense. 

16



 
           

         
     
     

         
     

Statistics---confidence intervals 
Where do we find those functions? You can find them 

“from scratch.” In most cases that you will encounter in 
everyday data analysis, though, others have found those 
functions and a resulting formula for a “95% confidence 
interval for the mean of an unknown distribution with 
sample size greater than 30” (or whatever). 
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Statistics---confidence intervals 
Where do we find those functions? You can find them 

“from scratch.” In most cases that you will encounter in 
everyday data analysis, though, others have found those 
functions and a resulting formula for a “95% confidence 
interval for the mean of an unknown distribution with 
sample size greater than 30” (or whatever). 

Important to note: in order to find those functions and 
derive the formulae, one needs to know how an estimator 
for the unknown parameter is distributed (typically not 
just the mean and variance). 
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Statistics---χ2, t, and F distributions 
This is precisely where our friends, the χ2, t, and F 

distributions, come in. These are all distributions that, 
unlike other special distributions we’ve encountered, don’t 
really appear in nature, don’t really describe stochastic 
phenomena we observe. Rather, they were “invented” 
because estimators or functions of estimators had 
distributions that needed to be described and tabulated. 
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Statistics---χ2, t, and F distributions 
Χ2 

Recall that we briefly mentioned an estimator called the 
sample variance, s2. 

We said that it was an unbiased estimator for the variance 
of a distribution. 

Well, (n-1)s2/σ2 has one of these distributions, in particular, 
(n-1)s2/σ2 ~ χ2 

n-1 
20



  

         
  

           
    
        

          

Statistics---χ2, t, and F distributions 
Χ2 

Recall that we briefly mentioned an estimator called the 
sample variance, s2. 

We said that it was an unbiased estimator for the variance 
of a distribution. 

Well, (n-1)s2/σ2 has one of these distributions, in particular, 
(n-1)s2/σ2 ~ χ2 

n-1 

’s called “degrees of freedom” This is a parameter of the χ2 distribution---it 21



  

           

            
     

       
        

                           

Statistics---χ2, t, and F distributions 
t 
If X ~ N(0,1) and Z ~ χ2 and they’re independent, then n 

X/(Z/n)1/2 ~ tn 
Why is that a useful fact? Suppose we are 

(X-µ)/(
sampling from a 

N(µ,σ2) distribution. We know that σ2/n) 1/2 
~ N(0,1) and that (n-1)s2/σ2 ~ χ2 (We do not n-1. 
know that they’re independent but, in fact, they are.) 
We form , cancel a few things, and get 
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Statistics---χ2, t, and F distributions 
t 
So we have that ~ tn-1 for Xi i.i.d. N(µ,σ2). 
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Statistics---χ2, t, and F distributions 
t 
So we have that ~ tn-1 for Xi i.i.d. N(µ,σ2). 

again,“degrees of freedom” 
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Statistics---χ2, t, and F distributions 
The t distribution was formulated 
by William Sealy Gosset in his 
job as Chief Brewer in the 
Guinness Brewery in Dublin. He 
derived and tabulated this 
distribution to aid in his analysis 
of data for quality control across 
batches of beer. He published it 
under the pseudonym “Student” in 
1908. 
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Statistics---χ2, t, and F distributions 
The t distribution was formulated 
by William Sealy Gosset in his 
job as Chief Brewer in the 
Guinness Brewery in Dublin. He 
derived and tabulated this 
distribution to aid in his analysis 
of data for quality control across 
batches of beer. He published it 
under the pseudonym “Student” in 
1908. 

took photo during my recent visit to the brewery 26



  

        
  

           
      

         
           

       
   

      

Statistics---χ2, t, and F distributions 
F 
If X ~ χ2 and Z ~ χ2 and they’re independent, then n m 

(X/n)/(Z/m) ~ Fn,m 

Why is that a useful fact? Suppose we have samples from 
two different populations. We might want to know 
whether the distributions in the two populations were, in 
fact, the same. If they are, we can form the ratio of 
the sample variances divided by their degrees of freedom 
(true variances canceling because they’re the same) and 
the ratio then has the above distribution. 
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Statistics---confidence intervals 
So let’s construct some confidence intervals. We will focus 

initially on two cases. These are not the only cases you 
will ever encounter, but they are, by far, the most 
important. 

Case 1: We are sampling from a normal distribution with a 
known variance and we want a confidence interval for the 
mean. 

Case 2: We are sampling from a normal distribution with an 
unknown variance and we want a confidence interval for 
the mean. 
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Statistics---confidence intervals, case 1 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n. 

So P{Φ-1(α/2) < < -Φ-1(α/2)} = 1-α 
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Statistics---confidence intervals, case 1 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n. We just put a 
negative sign in 
front of it to get So P{Φ-1(α/2) < /2)} 
other tai 
symmetry. 

< -Φ-1(α = 1-α the value for the 
l due to 

This is the inverse CDF 
of the standard normal 
evaluated at α/2. 
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Statistics---confidence intervals, case 1 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n. 

So P{Φ-1(α/2) < < -Φ-1(α/2)} = 1-α 

ng we have, P{ X + Φ-1(α/2) < µ < X -
} = 1-α. 

So, rearrangi 
Φ-1(α/2) 

31



  
              

     

              

             
     

                

Statistics---confidence intervals, case 1 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n. 

So P{Φ-1(α/2) < < -Φ-1(α/2)} = 1-α 

ng we have, P{ X + Φ-1(α/2) < µ < X -
} = 1-α. 

So, rearrangi 
Φ-1(α/2) 

Our 1-α CI is [X + Φ-1(α/2) , - Φ-1(α/2) ] 
32



  
              

     

              

             
     

                

      
 

Statistics---confidence intervals, case 1 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n. 

So P{Φ-1(α/2) < < -Φ-1(α/2)} = 1-α 

So, rearranging P{ X we have, + Φ-1(α/2) < µ < 
Φ-1(α/2) } = 1-α. We plug realizations in and our CI 

is just two numbers. 

X -

Our 1-α CI is [X + Φ-1(α/2) , - Φ-1(α/2) ] 
33



  
              

         
                 

             

    
   

  

Statistics---confidence intervals, case 2 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n, but we do 
not know σ2. We do know, though, that ~ tn-1. 

So P{tn-1 -1(α/2) < < -tn-1 -1(α/2)} = 1-α 

This is the inverse 
of the tn-1 CDF 
evaluated at α/2. 
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Statistics---confidence intervals, case 2 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n, but we do 
not know σ2. We do know, though, that ~ tn-1. 

So P{tn-1 -1(α/2) < < -tn-1 -1(α/2)} = 1-α 

So, rearranging we have, P{X + tn-1 -1(α/2) < µ < X -
tn-1 -1(α/2) } = 1-α 

35



  
              

         
                 

             

        
  

             

Statistics---confidence intervals, case 2 
We have an estimator for the mean, , which has a normal 

distribution with mean µ and variance σ2/n, but we do 
not know σ2. We do know, though, that ~ tn-1. 

So P{tn-1 -1(α/2) < < -tn-1 -1(α/2)} = 1-α 

Our 1-α CI is [X + tn-1 -1(α/2) , - tn-1 -1(α/2) ] 

So, rearranging we have, P{X + tn-1 -1(α/2) < µ < X -
tn-1 -1(α/2) } = 1-α 

36



 
     

           
           

Statistics---confidence intervals 
Comparison of cases 1 and 2: 

tn-1 -1(α/2) Φ-1(α/2) 

The t distribution is similar to the normal but has “fatter 
tails.” It converges to the normal as n . 
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Statistics---confidence intervals 
Comparison of cases 1 and 2: 
-tn-1 -1(α/2) Φ-1(α/2) as n 
The t gives you a wider interval than the normal for finite 

n. The intuition is that you are less sure of the 
ion of your estimator because you don’t know 

Var(X) and must estimate it. The t “penalizes” your 
confidence interval by making it wider, reflecting your 
greater uncertainty. As n goes to infinity, your 
uncertainty becomes relatively less important. 

distribut
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Statistics---confidence intervals 
We don’t always fall into case 1 or case 2. What do we do 

then? 
Using facts that you know about how functions of random 
variables are distributed, you can construct a confidence 
interval “from scratch” on your own. 
In practice, we usually appeal to CLT-like results to argue 
that the estimator has an approximate normal distribution, 
and then just use the t confidence interval formula with 
an estimated variance. (For large n, the t and normal 
confidence intervals are the same.) 
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Statistics---hypothesis testing 
Well, now we know what an estimator is, how to estimate 

unknown parameters, and a couple of different ways to 
express how confident we are in our estimates. That 
gets us a long way and gives us a very good foundation 
for studying all kinds of estimation going forward. 

One more foundational bit is quite important: hypothesis 
testing. 
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Statistics---hypothesis testing 
In social science (as well as other settings for data analysis), 

we often encounter questions that we want to answer. 
(Some of you have started formulating them for your 
empirical project.) Do the lifespans of popes follow a 
lognormal distribution? Does the income tax rate affect 
the number of hours employees are willing to work? Do 
used books cost more on the internet than they do in 
brick and mortar stores? Has NAFTA hurt US 
manufacturing workers? 
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Statistics---hypothesis testing 
The tool that statisticians have invented to help answer such 

questions (and quantify how confident we are in the 
answers) is the hypothesis test. 

Purpose: Given a random sample from a population, is there 
enough evidence to contradict some assertion about the 
population? 

42



 
          

         
      

          
     

       

Statistics---hypothesis testing 
The tool that statisticians have invented to help answer such 

questions (and quantify how confident we are in the 
answers) is the hypothesis test. 

Purpose: Given a random sample from a population, is there 
enough evidence to contradict some assertion about the 
population? 

Let’s build the structure underlying the hypothesis test. 

43



 
      

         
    

         

         
  

         
        

    

Statistics---hypothesis testing 
First, we’ll need a bunch of definitions: 
An hypothesis is an assumption about the distribution of a 

random variable in a population. 
A maintained hypothesis is one that cannot or will not be 

tested. 
A testable hypothesis is one that can be tested using evidence 

from a random sample. 
The null hypothesis, H0, is the one that will be tested. 
The alternative hypothesis, HA, is a possibility (or series of 

possibilities) other than the null. 
44



 
          

    
  
     

 
        
  

      
           

Statistics---hypothesis testing 
For instance, we might want to perform a test concerning 

unknown parameter θ where Xi ~ f(x|θ). 
H0: θ in Θ0 

HA: θ in ΘA, where Θ0 and ΘA disjoint. 
More definitions: 
A simple hypothesis is one characterized by a single point, 

i.e., Θ0 = θ0. 
A composite hypothesis is one characterized by multiple 

points, i.e., Θ0 is multiple values or a range of values. 
45



 
          

    
  
     

 
        
  

      
           

       

Statistics---hypothesis testing 
For instance, we might want to perform a test concerning 

unknown parameter θ where Xi ~ f(x|θ). 
H0: θ in Θ0 

HA: θ in ΘA, where Θ0 and ΘA disjoint. 
More definitions: 
A simple hypothesis is one characterized by a single point, 

i.e., Θ0 = θ0. 
A composite hypothesis is one characterized by multiple 

points, i.e., Θ0 is multiple values or a range of values. 
usual set-up: simple null and composite alternative 
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Statistics---example set-up 
Xi i.i.d. N(µ,σ2), where σ2 known. 

Interested in testing whether µ = 0. 

H0: µ = 0 
HA: µ = 1 
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Statistics---example set-up 
X i.i.d. N(µ,σ2), where σ2 known. maintained hypotheses i 

Interested in testing whether µ = 0. testable hypothesis 

H0: µ = 0 null hypothesis, simple 
HA: µ = 1 alternative hypothesis, simple 

48
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Statistics---example set-up 
X i i.i.d. N(µ,σ2), where σ2 known. 

Interested in testing whether µ = 0. 

H0: µ = 0 
HA: µ 0 

maintained hypotheses 

testable hypothesis 

null hypothesis, simple 
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Statistics---example set-up 
X i.i.d. N(µ,σ2), where σ2 known. maintained hypotheses i 

Interested in testing whether µ = 0. testable hypothesis 

H0: µ = 0 null hypothesis, simple 
HA: µ 0 alternative hypothesis, composite, two-sided 
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Statistics---example set-up 
X i.i.d. N(µ,σ2), where σ2 known. i maintained hypotheses 

Interested in testing whether µ = 0. testable hypothesis 

H0: µ = 0 
HA: µ > 0 

null hypothesis, simple 



  

    

 

 

 

  
   

Statistics---example set-up 
X i.i.d. N(µ,σ2), where σ2 known. maintained hypotheses i 

Interested in testing whether µ = 0. testable hypothesis 

H0: µ = 0 null hypothesis, simple 
HA: µ > 0 alternative hypothesis, composite, one-sided 
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Statistics---example set-up 
X i.i.d. N(µ,σ2), where σ2 known. i 

Interested in testing whether µ = 0. 

H0: µ = 0 
HA: µ = 1 

We then either “accept” or “reject” the null hypothesis based 
on evidence from our sample. 

53



 
          

              
         
    

  

   

Statistics---hypothesis testing 
Obviously, mistakes can be made---we can “reject” a null that 

is true or “accept” a null that is false. We want to set 
up our hypothesis test to analyze and control these errors. 
We first need a taxonomy. 

H0 true H0 false 

accept H0 

reject H0 

No error Type II error 

Type I error No error 

54



 

         
    

        
   

        

  

   

Statistics---hypothesis testing 
H0 true H0 false 

accept H0 

reject H0 

No error Type II error 

Type I error No error 

The significance level of the test, α, is the probability of 
type I error. 

The operating characteristic of the test, β, is the probability 
of type II error. 

We call 1-α the confidence level. We call 1-β the power. 
55



 
           

           
  

Statistics---hypothesis testing 
Finally, we define the critical region of the test, C or CX, as 
the region of the support of the random sample for which we 
reject the null. 
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Statistics---example 
X i.i.d. N(µ,σ2), where σ2 

i 
known. 
H0: µ = 0 
HA: µ = 1 

Suppose, first, that n = 2. 
Think about what kind of sample 

would lead you to believe the 
null or doubt the null in favor 
of the alternative. 

57



  

 
     

      
      

      
  

Statistics---example 
Xi i.i.d. N(µ,σ2), where σ2 

known. 
H0: µ = 0 
HA: µ = 1 

Suppose, first, that n = 2. 
Think about what kind of sample 

would lead you to believe the 
null or doubt the null in favor 
of the alternative. 

58



  

 
     

      
      

      
  

Statistics---example 
X i.i.d. N(µ,σ2), where σ2 

i 
known. 
H0: µ = 0 
HA: µ = 1 

Suppose, first, that n = 2. 
Think about what kind of sampl 

would lead you to believe the 
null or doubt the null in favor 

e 

of the alternative. 
59



  

 
     

      
      

      
  

Statistics---example 
Xi i.i.d. N(µ,σ2), where σ2 

known. 
H0: µ = 0 
HA: µ = 1 

Suppose, first, that n = 2. 
Think about what kind of sampl 

would lead you to believe the 
null or doubt the null in favor 
of the alternative. 

e 

60



  

 
     

      
      

      
  

    
  

   
 

Statistics---example 
Xi i.i.d. N(µ,σ2), where σ2 

known. 
H0: µ = 0 
HA: µ = 1 

Suppose, first, that n = 2. 
Think about what kind of sampl 

would lead you to believe the 
null or doubt the null in favor 
of the alternative. 

e 

All three of these are 
equivalent and 
will result in 

identical procedures. 

61



       
            

      
      

   
      
      

    
  

   
 

Statistics---example 
So do we prefer one over the 

others? Not really, but 
when n gets big, we don’t 
want to have to worry about 
n-dimensional spaces, so we 
would just as soon base the 
test on the sum or the samp 
mean. 

le 

All three of these are 
equivalent and 
will result in 

identical procedures. 

62



        
        

               
      

Statistics---example 
So we’ll base our testing procedure on the test statistic 

T = and reject for “large” values. 
In other words, critical region C will take the form > k 

for some k yet to be determined. 
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Statistics---example 
So we’ll base our testing procedure on the test statistic 

T = and reject for “large” values. 
In other words, critical region C will take the form > k 

for some k yet to be determined. 
How do we choose k? Trade off two types of error. 

64



        
        

               
      

           

Statistics---example 
So we’ll base our testing procedure on the test statistic 

T = and reject for “large” values. 
In other words, critical region C will take the form > k 

for some k yet to be determined. 
How do we choose k? Trade off two types of error. 

αβ 65



            
       

        
    
    

Statistics---example 

Choice of any one of α, β, or k determines the other two. 
Furthermore, choosing them involves an explicit trade-off 
between the probability of type I and type II errors. 
increasing k means α and β 
decreasing k means α and β 
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Statistics---example 

Let’s compute α and β using some specific numbers. If σ2 

= 4 and n = 25, then T ~ N(0,4/25) under H0 and 
N(1,4/25) under HA. 
α = P(T>k|µ=0) = 1 - Φ((k-0)/(2/5)) 
β = P(T<k|µ=1) = Φ((k-1)/(2/5)) 
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Statistics---example 

α = P(T>k|µ=0) = 1 - Φ((k-0)/(2/5)) 
β = P(T<k|µ=1) = Φ((k-1)/(2/5)) 

If you plugged in different values of k, you would get a 
graph in α-β space that looked like this: 
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Statistics---example 

α = P(T>k|µ=0) = 1 - Φ((k-0)/(2/5)) 
β = P(T<k|µ=1) = Φ((k-1)/(2/5)) 

What happens as n increases or decreases? 
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Statistics---example 

α = P(T>k|µ=0) = 1 - Φ((k-0)/(2/5)) 
((k-1)/(2/5)) β = P(T<k|µ=1) = Φ

this changes 
What happens as n increases or decreases? 
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As n increases, the two Statistics---example distributions get tighter 
around their means---can 

do better on both 

β = P(T<k|µ=1) = Φ((k-1)/(2/5)) 
α = P(T>k|µ=0) = 1 - Φ((k-0)/(2/5)) 

α and β. 

this changes 
What happens as n increases or decreases? 

71



 

           
           
             

            
           

        
           

  

Statistics---hypothesis testing 
Notes: 

How do we know which hypothesis should be the null and 
which should be the alternative? Well, we are free to 
choose. We often choose so that the type I error is the 
more serious of the errors. Then we will choose k so 
that α is at an acceptably low level, such as .05 or .01. 
(Of course, if n is really large and we keep α fixed, 
then β might be very small, which might not be what we 
want.) 
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Statistics---hypothesis testing 
Notes: 

What if µ is not either 0 or 1? Well, much of the 
time we set up a hypothesis test so that Θ0 U ΘA is 
the entire parameter space. So either the null or the 
alternative must be true. That means that one or both 
of the hypotheses are composite. When we have 
composite hypotheses, the test becomes more difficult to 
analyze. In particular, α and β may no longer be values 
but could be functions of the unknown parameter(s) θ. 
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Statistics---hypothesis testing 
Notes: 

What if our hypotheses were 
H0: µ = 0 
HA: µ 0? 
We could use the same test statistic , but what should 
the critical region look like? 
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Power calculations 

• For a sample of size N, we will observe W
1

...W
N , and  

Y obs ...Y obs 
1 

N 

• Suppose we are interested in testing: 
H
o = E [Y

i (1) Y
i (0)] = 0 against H

a : E [Y
i (1) 6Y

i (0)] = 0  

• A reminder:  Statistics---hypothesis testing

The significance level of the test, α, is the probability of 
type I error.  

The operating characteristic of the test, β, is the probability 
of type II error.

We call 1-α the confidence level.  We call 1-β the power.

H0 true H0 false

accept H0 No error Type II error

reject H0 Type I error No error
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What ingredients goes into the power 
calculation? 

• We tend to pick ↵ low because society does not want to 
conclude that some treatment work when it fact it really does 
not. 

• Following Fisher, it is often ↵ = 0.05 
• We want to pick N = N

c + N
t such that , if the average 

treatment e↵ect is in fact some value ⌧ , the power of the test 
will be at least 1 - for some , given that a fraction of 
the units are assigned to the treatment group. 

• In addition we must assume (know) something about the 
variance of the outcome in each treatment arm: for simplicity 
we often assume it is the same, and some parameter 2 . 

• In summary we know, impose, or assume ↵, , ⌧, , and  , 
and we are looking for N. 

• Alternatively, we could be interested in the power for a given 
sample size: we know ↵, , ⌧, , and  N and look for — . 76
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Guess work 

• ↵ and are imposed and we can decide (if this was just 
power what would we pick?) 

• Problem: how do we know/determine ⌧ and ? 
• ⌧ : could be known from a pilot, from a previous study, or 

could be picked as a value of interest. 
• 

For example: the lowest value such that, if we could reject 
zero when the e↵ect is really ⌧ , the  program  would  be  worth  
doing. 

• 
This is more about optics than about statistics... (rejecting 
zero is not “accepting” the point estimate...) 

• 
But it has the merit to remind us that we may be interesting 
in ‘detecting’ a small e↵ect, we will work with large sample. If 
the program is very expensive such that it won’t be adopted 
unless the e↵ects are very large anyway, we can go with a 
smaller sample. 

• : Need to get that from prior data, with similar outcomes. 
• Some item it is wide guess work! 77
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Now for the formulas 

• This is of course in practice the easy part: many software will 
give you power curves as you tinker with the parameters and 
the sample size. 

• But it is worth working through the logic. 
Y obs _Y obs Y obs _Y obs 
t

c 
t

c• T = p ⇡ q q
ˆ ;2 ;2

V

Neyman +

N

t N

c 
↵• We reject this hypothesis if |T | > !(1 
2 ), e.g. if ↵ = 0.05, 

if |T | > 1.96 

• What is the probability that this occurs? 

• By the central limit theorem, the di↵erence in means minus 
the true treatment e↵ect, scaled by the true standard error of 
that di↵erence, has distribution that is approximately N(0, 1) : 

Y obs _Y obs _⌧
t

c ⌧• q ⇡ N (0, 1) and hence T ⇡ N ( q q , 1)
;2

+ ;
2 ;2 ;2

+

N

t

N

c N

t N

c 78



Statistical Power 
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So 

↵ ↵ ⌧
P |T | > <(1 ) ⇡ < ( <-1(1 ) +  q + 

2 2 2 2 
+

N

t N

c 

↵ ⌧ 
< <-1(1 ) q

2 2 2 
+

N

t N

c 

The second term is very small, so we ignore it. 
So we want the first term to be equal to 1 , which  requires:  

p p
↵ ⌧ N (1 )

<-1(1 ) =  <-1(1 ) +
2 

Which leads to the required sample size: 

↵(<-1(1 ) +  <-1(1 
2 ))

2 

N = 
⌧2 

2 . .(1 ) 
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Other considerations to take into account 
when you do power calculations 

• If you have stratified or not: with stratified design, variance of 
estimated treatment e↵ect is lower. 

• If you have clustered or not: with clustered design, variance of 
estimated treatment e↵ect is larger 
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Analysis of a stratified design 

• Take the di↵erence in means within each strata 

• Take a weighted average of the treatment e↵ect with the P 
N

gweight the size of the strata ( 
N )⌧bgg 

• This will be an unbiased estimate of the average treatment 
e↵ect 

P 
• And the variance will be calculated as 

g (
N

N

g )2Vc 
g 

• Special case: probability of assignment to control group stays 
the same in each strata. Then this coe cient is equal to the 
simple di↵erence between treatment and control, but the 
variance is always weakly lower. 

• Stratification will lower the required sample size for a given 
power. 
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Analysis of a clustered design 

• The opposite happens with a clustered design (all the unit 
within a same unit are either treated or control). 

• We need to take into account the fact that the potential 
outcomes for units within a randomization clusters are not 
independent. 

• Conservative way to do this: just average the outcome by 
unit, and treat each as an observation (like we did for 
classrooms in the Duflo-Hanna data. 

• Then the number of observations is the number of clusters, 
and you can analyze this data exactly as a completely 
randomized experiment but with clusters as the unit of 
analysis. 

• For example, this tells you that a randomization with two 
clusters is unlikely to go very far!! 83
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