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Exploratory Data Analysis: Looking for 
Patterns before building models 

• With RCT, we (often) have a pretty clear hypothesis to test. 

• With observational data this may not be the case. 

• We want to start getting a sense of what is in our data set 

• Early in the semester we discussed how to visualize one 
distribution 

• And started to plot two together: we will start from there! 
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Combining a continuous distribution and a 
categorical variable 

• Reminder: the basketball players 

• We combined the data sets , we can compare pdf, cdf, box 
plots 
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Comparing two distributions: 
Kolmogorov-Smirnov Test 

• In analyzing RCT, we have seen how to test the sharp null, 
and how to test the hypothesis that the treatment has zero 
effect on average. 

• We may also be interested in testing the hypothesis that the 
distribution of Y (1) and Y (0) are different. 

• Kolmogorov-Smirnov statistic. let X1, .., Xn be a random 
sample, with CDF F and Y1, .., Ym be a random sample, with 
CDF G 

• We are interested in testing the hypothesis 

Ho : F = G 

against 
Ha : F 6= G 
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The statistic 

• Dnm = maxx |Fn(x) − Gm(x)| where Fn and Gm empirical CDF 
in the first and the second sample 

• Empirical CDF just counts the number of sample point below 
level x : 

nX1 
Fn(x) = Pn(X < x) = I (X < x) 

n 
i=1 
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Illustration 

6 / 25 



First order stochastic dominance: one 
sided Kolmogorov-Smirnov Test 

• We may want to know more, e.g. does the distribution in 
Treatment first order stochastically dominate the distribution 
in the control, 

• We are interested in testing the hypothesis 

Ho : F = G 

against 
Ha : F > G 

(which would mean that G FSD F ). 

• The one sided KS statistics is: D+ = maxx [Fn(x) − Gm(x)]nm 
(remove the absolute value). 
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Asymptotic distribution of the KS statistic 

Under Ho , the limit of KS as N and N 0 go to infinity is 0, so we 
want to compare the KS statistics to 0. So we will reject the 
hypothesis if the statistics is “large” enough. 
The key observation that underlies the KS testing is that, under 
the null, the distribution of 

nm 1 
( ) 2 Dnm 
n + m 

does not depend on the unknown distribution in the samples: it 
has a known distribution (KS) , with associated critical values. 

nmTherefore we reject the null of equality if Dnm > C (α)( ) ,n+m 
where C (α) are critical values which we find in tables (and R 
knows). 
We can test this with the Basketball players, using the ks.test 
command in R. 
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Note: you could use the KS test in ONE 
sample 

To test, for example, whether the sample follow some specific 
distribution (e.g. a normal one). 

|Fn(x) − F (x)|Dn = maxx 
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Figure 13.2: Kolmogorov-Smirnov test statistic. 

and, therefore, 

n 

I(F (Xi) � y) − y � t

1


P( sup |Fn(F −1(y)) − y| � t) = P sup
 .

n
0�y�1 0�y�1 

i=1 

The distribution of F (Xi) is uniform on the interval [0, 1] because the c.d.f. of F (X1) is 

P(F (X1) � t) = P(X1 � F −1(t)) = F (F −1(t)) = t. 

Therefore, the random variables 

Ui = F (Xi) for i � n 

are independent and have uniform distribution on [0, 1], so we proved that 

1

n 

P(sup |Fn(x) − F (x)| � t) = P I(Ui � y) − y � t
sup

n
0�y�1x�R 

i=1 

which is clearly independent of F . 

86 

p
Reject if (n)Dn > K (α) 
We can do this in R with ks.test, again we can test this with Steve 
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Representing joint distributions 

• Suppose we want to represent the distribution of successful 
attempts by location 

• There are actually two distances to consider: distance from 
baseline, and distance from the sideline 

• If we plot each of them separately, what do we get? 
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A basketball court 
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A histogram of the joint density–or the 
map of a basketball court? 
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Now we see pretty clearly that there is bunching at the 3pt line! 
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Two continuous variables 

• Refer to the R code NP.R for a way to approach two variables, 
using the relationship between earnings and wages. 

• Now we need to go under the hood– How does R estimate the 
non-parametric function between two variables. We will start 
with something ggplot does not do, but could.... Kernel 
regression. 
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Non Parametric (bi-variate) Regression 

You have two random variable, X and Y and express the 
conditional expectation of X given Y as : E [Y |X ] = g(X ) 
Therefore, for any x, and y, 

y = g(x) + � 

where � is the prediction error. 
You may think that this relationship is causal or not. Problem is to 
estimate g(x) without imposing a functional form. 
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The Kernel regression: A common 
non-parametric regression 

g(x) is the conditional expectation of y given x. 
Z 

E (Y |X = x) = yf (y |x)dy 

By Bayes’s rule: 

Z Z R 
yf (x , y)dy yf (x , y)dy

yf (y/x)dy = = 
f (x) f (x) 
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Kernel Estimator 
Kernel estimator replace f (x , y) and f (x) by their empirical 
estimates. 

R 
y f̂ (x , y)dy 

ĝ(x) = 
f̂ (x) 

• Denominator: estimating the density of x (we have seen this!) 

nX1 x − xi
f (̂x) = K ( ),

N ∗ h h 
i=1 

where h is a positive number (the bandwith) is the kernel 
estimate of the density of x. K (.) is a density, i.e. a positive 
function that integrates to 1 
It is a weighted proportion of observations that are within a 
distance h of the point x. 
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Kernel Estimator 

Kernel estimator replace f (x , y) and f (x) by their empirical 
estimates. 

ĝ(x) = 

R 
y f̂ (x , y)dy 

f̂ (x) 

• Numerator 

1 
N ∗ h 

nX x − xi 
yi K ( 

h 
) 

i=1 
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Combine the two 

P n 
i=1 yi K ( x− 

h
xi ) 

ĝ(x) = P (1)n K ( x−xi )i=1 h 

ĝ(x) is a weighted average of Y over a range of points close to x. 
The weights are declining for points further away from x. 
In practice, you choose a grid of points (ex. 50 points) and you 
calculate the formula given in equation 1 for each of these points. 
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Large sample properties 

• as h goes to zero, bias goes to zero 

• as nh goes to infinity, variance goes to zero. 

• So as you increase the number of observation, you “promise” 
to decrease the bandwidth 
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Choices to make 

• Choice of Kernel 
Histogram: K (u) = 1/2 if | u |≤ 1, K (u) = 0 otherwise.1 

2 

3 

3Epanechnikov K (u) = (1 − u2) if | u |≤ 1 K (u) = 0 otherwise 4 
Quartic 
K (u) = ( 3 (1 − u2))2 if (u ≤ 1), K (u) = 0 otherwise4 

• Choice of bandwidth : Trade off Bias, and Variance 
• A large bandwidth will lead to more bias (as we are missing 

important features of the conditional expectation). 
• A small bandwidth will lead to more variance (as we start to 

pick up lots of irrelevant ups and downs) 
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Cross Validation 
One way to formalize this choice is cross validation. 
First, define for each observation i define the prediction error as: 

ˆei = yi − g(xi ) 

and the leave out prediction error as: 

ˆei ,−i = yi − g−i (xi ) 

ˆwhere g−i (xi ) is the prediction of y based on kernel regression 
using all the observations except i . 
An optimal bandwidth will minimize 

NX1 2CV = ei ,−iN 
i=1 

PN(or often in practice CV = 1 2 M(X )) where M(X ) is aN i=1 ei ,−i 
trimming function to avoid influence of boundary points) 

21 / 25 



Kernel regression with optimal bandwidth 
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Confidence bands 

yi = g(Xi ) + ei and E [ei |Xi ] = 0 
2e = σ2(Xi ) + ηi and E [ηi |Xi ] = 0i i 

So a Kernel estimate of σ2(Xi ) is :i 

Pn 2K ( x−xi )ˆ i=1 ei hσ2(x) = P (2)n K ( x−xi i=1 h ) 

Point-wise confidence interval can be drawn using this estimate. 
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Kernel regression with confidence bands 
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Other non parametric methods 

• Series estimation (approximate the curves by polynomes); 
splines (polynomes with knots) 

• Local linear regression(instead of taking the mean, in each 
interval, take predicted value from a regression (Loess). 
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