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Stafistics—-The linear model
A little bit of review:

Alter estoblishing foundation in probudality, we
proceeded To estimation of wiknown parameters. (We
Yalked, abovt criteria for assessing Them as well as where
thew miglat come from.) Most, if wot all, of that
fondational discussion was Yocused on estimat "
parameters of a wivariate distribution (like the mean or
The variance or some other parameter thal characterizes
). So much of what we care abovt in social science
(and many other se’f’ﬁV\ﬂs as well) involves \'\o'm’(

distributions, though.



Stafistics—-The linear model
A little bit of review:

Esther's discussion of cavsalify was the beginning of (and
a special case, reallﬁ) of our consideration of the ;\O'Wﬁ'
distribution of variables of interest and how we will
estimate parameters of these \'\o\ nt distributions.  You can
fhink of much of what she did as considering The Joint
distribution of fwo variables where one was simylﬁ A CoNn
{li{; (H: treatment, T control) and the other was the
ovteome of interest (e. 4 infant morfality, or website
etfectiveness).



Statistics—-the linear model

A little bit of review:

And, in \[ac’( - we were W\OST‘“ concerned with the
condtional distribvtion of the ovteome variable conditiona
on the coin 9’\?. We can (and did) think of the
Yreatment and contirol 4rovps bc'ma Two scyam’fe
populations, and we were interested in, S, ’res’rmﬁ
whether their means were ectval. We can dlso think
about having one population and a Joint distribution of
those Two vandom variables on that population.



Statistics—-the linear model

A little bit of review:

What if, instead of a coin \qu, the second, random
variable s confivous? ¥ can take on a whole ranqe of
valves. How do we analyze the conditional distribution of
our ovicome variable condifional on something like a

contivovs random variable? How do we estimate the
parameters of that conditional distribution?



Stafistics—-The linear model
A little bit of review:

What if, instead of a coin \qu, the second, random
variable s confivous? ¥ can take on a whole ranqe of
valves. How do we analyze the conditional distribution of
our ovicome variable condifional on something like a
continvovs vandom variable? How do we estimate the

parameters of that conditional distribution?

The workhorse model we vse 1s the linear model and the

Wy we estimate the Pammc’(ers 1% hmmm%msjm



Statistics—-the linear model

\I\/Mn do we care abovt \'\om’f distribvtions and estimating the
parameters associafed with them?

"'Prcdjc’ﬁ on
”’dﬁ’(&%’W\iV\ﬁ cavsali’ﬂﬁ

'”\'\vs’f wndersTand) ny the world better



Statistics—-the linear model

\I\/hﬂ do we care abovt \'\oivx’f distribvtions and estimating the

parameters associaf ed with them?

11 am the Type of person who veads wked, am | also the
Type of person who is likely Yo click on an ad for a t-shirt

bearing the Russian cover desiqn of Moby Dick?

"'Prcdjc’ﬁ on



Statistics—-the linear model

\I\/htj do we care about ;\OiV\‘\' distribvtions and estimating the
parameters associafed with them?

o d ok 11 am the Type of person who veads wked, am | also the
PYCd}C\'\OV\ Type of person who is likely Yo click on an ad for a t-shirt

bearing the Russian cover desiqn of Maby Dick?

KEEP IN MIND THAT T .. \JOUJ. IT'S LIKE A SALAD RECIPE. | | ITS LIKE SOMEONE TOOK A
SELF-TRUGHT, S0 MY CODE | 145 15 LIKE BeEnG IN | WRITTEN BY A CORPORATE. | | TRANSCRIPT OF A COUPLE
MAY BE A LITTLE. MESSY A HOUSE BUILT BY A LAWYER DSING A PHONE | | ARGUING AT IKEA AND MADE

(m SEE- CHILD USING NOTHING AUTDCORRECT THAT OMLY RANDOM EDITS UNTILIT

T™ SURE BUT A HATCHET AND A KNEW EACEL FORMULAS, COMPILED WITHOUT ERRCRS.
a OKAY, TLL READ
s F,.ig_ PICTURE. OF A HOUSE. ( \ o T

=tlle- 0l 0 = 4]

Courtesy of xked. LIcense: CC B?

VV% —Fa\/oy-'\‘\’e xked, Y-shirt {:Y om Ovt 0{ Prant ot Al i

content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

Moby-Dick: Russian Edition
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Statistics—-the linear model

\I\/Mn do we care abovt \'\om’f distribvtions and estimating the
parameters associafed with them?

"’dc’(erm'mivxﬁ cavsali’fﬁ

£ give my doq a treat every fime
he does not bark at another dog
walkmﬁ bij our house, will he stop
barking at other dpﬁs'z



Statistics—-the linear model

WM do we care abovt \'\o'm’r distribvtions and estimating the

parameters associafed with them?

£ give my doq a treat every fime
he does not bark at another doﬁ
walki\nﬁ bn our house, will he stop
barkmﬁ at other dpﬁs'l

”’dz’fcwniV\iV\ﬁ cavsali’ﬂj
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Statistics—-the linear model

\I\/hﬂ do we care abovt \'\oivx’f distribvtions and estimating the
parameters associafed with them?

st wderstanding The world better
Are people only inflvenced by price, quality,

characteristics, and expected weather when the

purchase . convertible, or are ’ﬂnaj also inflvenced
by the weather on that particdar daﬁ?



Statistics—-the linear model

\I\/!mj do we care about \'\oivx’f distribvtions and estimating the
parameters associafed with them?

'"\'\vs’f wnderstand; ny the world better

The Psychological Effect of Weather on Car

Purchases® Are people only inflvenced bﬂ price, quality,
Meghan % Busse, Devn . Fope, Jare C. Pope and Joge Siva-so characteristics, and expected weather when the

+ Author Affiliations

o purchase . convertible, or are ‘W\C!j also inflvenced
When buying durable goods, consumers must forecast how much utility ' b“ “/\C WC&“/\CY OV\ “/\a“’ ?ﬂY‘hC\/‘(W dﬂﬂfz

they will derive from future consumption, including consumption in

different states of the world. This can be complicated for consumers

because making intertemporal evaluations may expose them to a variety

of psychological biases such as present bias, projection bias, and salience

effects. We investigate whether consumers are affected by such

intertemporal biases when they purchase automabiles. Using data for

more than 40 million vehicle transactions, we explore the impact of

weather on purchasing decisions. We find that the choice to purchase a

convertible or a four-wheel-drive is highly dependent on the weather at

the time of purchase in a way that is inconsistent with classical utility QJE 20' 4'
theory. We consider a range of rational explanations for the empirical !
effects we find, but none can explain fully the effects we estimate. We then
discuss and explore projection bias and salience as two primary
psychological mechanisms that are consistent with our results. JEL Codes:
DO3: D12.

© Author(s) 2014. Published by Oxford University Press. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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Statistics—-the linear model

\I\/h'j do we care about ;\OiV\‘\' distribvtions and estimating the
parameters associafed with them?

"'\'\vs’( wnderstand; ny the world better

The Psychological Effect of Weather on Car
Purchases*

Meghan R. Busse, Devin G. Pope, Jaren C. Pope and Jorge Silva—Risso
+ Author Affiliations

Abstract
Y

When buying durable goods, consumers must forecast how much utility
they will derive from future consumption, including consumption in
different states of the world. This can be complicated for consumers
because making intertemporal evaluations may expose them to a variety
of psychological biases such as present bias, projection bias, and salience
effects. We investigate whether consumers are affected by such
intertemporal biases when they purchase automabiles. Using data for
more than 40 million vehicle transactions, we explore the impact of
weather on purchasing decisions. We find that the choice to purchase a
convertible or a four-wheel-drive is highly dependent on the weather at
the time of purchase in a way that is inconsistent with classical utility
theory. We consider a range of rational explanations for the empirical
effects we find, but none can explain fully the effects we estimate. We then
discuss and explore projection bias and salience as two primary
psychological mechanisms that are consistent with our results. JEL Codes:
DO3: D12.

Are ?coylc ovxln 'm\clvc\nced bn price, ol\)ali’fﬁ,
characteristics, and expected weather when the

purchase . convertible, or are ﬂ/\e\ﬁ also inflvenced
by the weather on that particdar dwﬂ?

GJE, 2014

Image by Mario Lehmann. CC BY-NC-SA

© Author(s) 2014. Published by Oxford University Press. All rights reserved. This content is excluded from o
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use



ttps://ocw.mit.edu/help/faq-fair-

Statistics—-the linear model

n each of those examples, There were fwo or more vandom
variables, \'\oiw’dﬁ distribvied, and we would like To kvow

characteristics of their \oint distribution in order Yo
answer the questions.



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBKte, 1=l ..., 0

N

random variables (on which we have repeat ed observations)



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBK e, 1=l ..., 0

the dependent variable Cor explained variable or regressomd)



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBK e, 1=l ..., n

/

the reqressor or exylam’fonj variable Cor Mdcywdc\n’f variable )



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

Yi=BotBK e, 1=l ..., 0w

e

wiobserved, random variable, the ervor



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBK e, 1=l ..., 0

parameters Yo be estimated, the regression coeﬁicievﬂ' 3



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBK e, 1=l ..., 0

?ammef ers Yo be estimated

This model allows vs Yo consider the mean of a random

variable Y as a function of another (random) variable X,
1§ we dbtain estimates for B, and B, we Than have an
estimated conditional mean function for Y.



Stafistics——-the linear model bivariate s’ﬂjle

Livear model:

YVi=BotBK e, 1=l ..., 0

Add busic assumptions o 3@’( dmmujmm%nﬁjmm

1) K, € wcorrelated
i) identification=—U/mZK-X)2 > O
i) 2er0 mean-——E(¢.) = O

) homoskedas’ﬁci’(n”’E(t}) = 02 Yor all i

V) no serial correla’ﬁow”E(f,‘tj) =0 '\{ i ;f;\



Statistics—-the linear model

Linear model:
YVi=BotBK e, 1=l ..., 0
Noftes:

We sometimes impose an alfervafive assumption To ) or
our convenience: K are \[ixcd n rq;ca’(col samples, or
nonstochastic.

Assvmp’ﬁons ii)~v) cold be subsumed wder a stronger
assumption=- ¢, i.i.d N(O o2).



Stafistics——-the linear model
i) identifieation=—-U/mZO-X )2 > 0

i)

—
%, X

0

We rie ot a case like this becavse it doesnt give vs the
variation in X that we veed o idcw’ﬁ\fiﬁ the mean of Y
conditional on X,



Statistics—-the linear model

i) 2er0 mean—E(g) = O

37

N

s

e

We rde out something like this, but we dont have any
information that would help vs & qure oot whether the
mean was von-zero and the infercept was st ditferent.




Stafistics——-the linear model
V) homoskcolas’ﬁci’fﬂ”'E(Ql) = 0L ¥or all |

This is a picture of what b\e’feroskedas’ﬁci’rﬁ might look. like.
We assume for vow that we dont have it



Stafistics——-the linear model
V) Momoskcolas’ﬁci’ﬂﬁ”'E(t}) = o2 {or all |

This is a picture of what hc’feroskcdas’ﬂd’f“ might look like.

We assume for vow that we dont have it

Ri Al about vow Uov'rc ’d/\iV\kinﬁ, “what is The et WV\O‘Ofm of "homo/ ‘/\c’fcroskedas’ﬁci’rﬁ,' and,
15 she even syellinﬂ i riﬁh’f'z ’ (Mn avtocorrect kcc?s ’wnmﬁ Yo vcplacc k with ¢.)



Statistics—-the linear model

V) vo serial cowela’ﬁon”’E(f,‘tj) =0 '\¥ i #\'\

Ve

]

l Y
- g
%

This is a picture of what positive serial correlation mi Al
look. like. We assume ior now that we dont have it.



Statistics—-the linear model

Assvm?’ﬁovxs i)-v) colld be subsumed wder a s’frowﬁer
assumplion=- €, i.i.d N 2.

J

7

7
[



Statistics—-the linear model

Livear model:

Properfies of model:

ECYD = By + pX €)= o + pXK + Ele) -
Bo * BX

VarlY;) = BULY, - ECYD)S) = BB, + BX * & By, -
b)) - Ele?) - 07

Cov(Y-‘,Yj) =0, i f\’\ (can show vs'mﬁ ?roycr’ﬁcs 01c € )



Statistics—-the linear model

Livear model:

Properfies of model:
ECYD = By + pX €)= o + pXK + Ele) -
Po * ﬁ)(-‘ The fs are parameters in the conditional mean fnction.
VarlY) = ELLY, - ECVOR) = E(@y + B+ €,- B, -
b ) - Ele?) - o
Cov(Y-‘,Yj) =0, i #3 (can show vs'mﬁ ?roycr’ﬁcs oj(‘ € )



Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

How do we {ind estimates for B, and 2
“east squarest wing LY - B - B

“least absolvte deviations: v 1Y, - B, - B

\

“reverse least squares: wing LUK - /B - /B



Statistics——-the linear model
“east squarest wing LY - B - BK)?

~~least absolvte deviations: v, Ll - Po - @l)(.‘l

We mivimize the

SUM o\f sqUares or sum
of absolvte valves of
these thi ngs.




Statistics——-the linear model
~reverse least squares: ming LUK - /B - Y/B)?

We minimize the
som of squares of

these ’d/{mﬁs.




Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

Well foevs on least squares (sometimes called ~ord; vary least
squaves,” or OLS). Whﬁ? Under the assumptions of
the Classical Linear Reﬁrcssi on Model, OLS provides the
mivimum variance (most etficient) wibiased. estimator of

Bo and B, it is the MLE under normality of ervors, and
the estimates are consistent and asljmy’fo’ﬁ calltj normal.



Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

Do we have Yo do a vumerical wivimization every time we
want To solve for the least squares estimat es?

No, we have lovely, closed—form solutions:

3= JU/MZK - XY, - PIAU/MZK - X

o ]
b= Y B X



Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

Do we have Yo do a vumerical wivimization every time we
want To solve for the least squares estimaf es?

No, we have lovely, closed—form solutions:

B=30/ W)_?}_O(i =YX, - OI0/mZOK - X

—

~ o A~

E’u =Y b, X How do we 4t these? Pages
of Yediovs caleviations, vp on The
website or your Viewing pleasure.



Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

Do we have Yo do a vumerical wivimization every time we
want To solve for the least squares estimaf es?

No, we have lovely, closed—form solutions:

3= JU/MZK - XY, - PIAU/MZK - X

ﬁ —
E:n =Y - @: X1 dont wank you Yo 4et the idea That OLS estimators are
horvible, complicated Things. TM% are very eleqant and
intuitive, bt this summation-dased votation is vot vp o

Yhe Task.



Statistics—-the linear model

Livear model:

YVi=BotBK e, 1=l ..., 0

And they codd be lovelier stil it we weren’t oo atraid, of
Using matrix votafion . . .



Statistics—-the linear model

A couple ot important defivitions:

fivved, valve——-

%{ ) Eu t A X

J

M
.-L

A

o

residval-—- "f':{ = Y- g ;

YCﬁYCSS\OV\ live, or £itted line

%‘jl/ TRt Bx

Fa

x..

L



Statistics—-the linear model

What do we alwaﬁs ask. when we learn about a view
esTimator (and whﬂ do we ask it)?



Statistics—-the linear model

What do we always ask. when we learn abovt a view
esTimator (and whﬂ do we ask )7 We want Yo know
how is it distributed (becavse we cannot Per\[orm
inference, like creafing confidence ntervals and running

Wﬁyo’dncsis Yests, wiless we know some’fhmﬁ abovt its
distribution).



Statistics—-the linear model

What do we always ask. when we learn abovt a view
esTimator (and whﬂ do we ask )7 We want Yo know
how is it distributed (becavse we cannot Per\[orm
inference, like creafing confidence ntervals and running

Wﬁyo’d/\csis Yests, wiless we know some’fhmﬁ abovt its
distribution).

Let X < £2x; and 0 - L2 %) (For convenience).



Statistics—-the linear model

What do we always ask. when we learn abovt a view
esTimator (and whﬂ do we ask )7 We want Yo know
how is it distributed (becavse we cannot ?er\[orw\
inference, like creafing confidence ntervals and running

hﬂyo’fb\esis Yests, wiless we know some’fhmﬁ abovt its
distribution).

— ’ ~2
Let X - ‘[ﬁZX{ and ()':JﬁZ(XL'K] .
mean Variance covariance

A vl ’~ 2

%n E,a Ul?(/,n 0'?3 + G-/“

~0tX
~ // fl
F>‘ U'l/lno‘;- HU;(



Statistics—-the linear model

What do we always ask. when we learn about a view
esTimator (and whﬂ do we ask )7 We want to know
how is it distributed (becavse we cannot Per{orw\
inference, like creafing confidence ntervals and running
htﬁ?o’d/\esis Yests, wiless we know some’fhmﬁ abovt its

distributi 0V‘>- How do we 3e’f these? Paﬁcs

— I —~ a7 1 g
| ek : Jﬁ 5 X aV\d 0—: _ '!ﬁ Z(XL' K] o\C ’re.d\ovs calcvla’ﬂqns,' vp on Yhe
website tor Your viewing pleaswe.

mean Variance /\Qfar‘: ance
02

A =1 ,

%n E’a Glx/ﬁaﬁ ¥ /” n) S

1 ~ O >§/ T2
B, B, 0/ n G2 "0,



Statistics—-the linear model

What do we always ask. when we learn about a view
esTimator (and whﬂ do we ask )7 We want to know
how is it distributed (becavse we cannot Per{orw\
inference, like creafing confidence ntervals and running
htﬁ?o’d/\esis Yests, wiless we know some’fhmﬁ abovt its

olis’wibv’ﬁovx). These You knew becavse | Told
Let X135y and G2-L Z(X-?Ef you that OLS estimates were
n =" x N ¢ wbiased.
mean \Var covayiance
b -7 .
! 0 0 N N - 0.1&/ A,
Y 0%/ no} n0x



Statistics—-the linear model

mean Variance covayriance
[ 02X 52« T
%“ Po /no_x " “017—5/ ~
N 2

Some comparative statics:
-—A arger O 2 means laurﬁer Varl @)

—-A arger 01 means smaller Var(@)

-—A arer v wmeans smaller Var(@)

---IJ{ X > 0, Cov(@o,ﬁ) <0



Statistics—-the linear model

mean Variance covariance
2 0—1 '5(1 ~ 5 1l 2
%D Po /no-x " "0155} ~
B, b, 0%/ no} noe
the vector of
Some comparative stafics: v parameters

A arqer 02 means Iaurﬁer Varl @)

—-A arger 01 means smaller Var(@)

-—A arqer v means smaller Var(@)

”’l{: )( 7 O, COV(?O,?O <O



Statistics—-the linear model

-—A larger 0. 2 yeans larger Var(.@)

variance of the ervor

=
RV

less sure of our estimates
n s case==~hiqher variance



Statistics—-the linear model

A larﬂcr ij meavs smaller Var( @)

N\

how much variation we have wn ovr cxylam’forg variable

ljf“\ 5/"‘

N/

X

w

less sure of our estimates
n s case==~hiqher variance



Statistics—-the linear model

A larger v means smaller Var( @)

| won draw & picture, bt well st note Hhat this

comparative stafic follows from consisk ency of @



Statistics—-the linear model
1 750, ColyB) < 0

a mechanical relati onshiy
between The Two estimates



Statistics—-the linear model

Ove step borther: 15 we vse the stronger assumption that
the errors are 1.i.d. N(O.02), we obtain the result tat

Eﬂ and @, will also have vormal distributions.



Statistics—-the linear model

Note that the distributions of Eﬂ and, 5, are fnctions of 02
But we often dont know 0. So we estimate if.

Let's vse 52« L 227 becavse it's wbiased for 0 (Whﬁ
the -2 n the denominator? Becavse we've estimating
fwo parameters, By and B, and it Turns out that's what
we need for T2 Yo be wibiased. )



Statistics—-the linear model

What happened when we were olo'mﬁ wivariate inference and
we replaced an wknown variance with an estimate of
the variance?



Statistics—-the linear model

What happened when we were oloi\nﬁ univariate inference and
we replaced an unkvown variance with an estimate of
the variance?

Same ’d/\ivsﬁ is qoing fo happen here.



Statistics—-the linear model

Now it we have all of the pieces (model, estimators,
intormation abovt the distribution of estimators, efc.),
we cod proceed with inference, but we're qoing To put
fat otk for a little while. For viow, let's Yake a quick
defour:  avalysis of variance.



Statistics—-the linear mode

We want some Wy Yo indicate how coselﬂ associated X and
Y are, or how wuch of Y's variation is explained” by

Ks variation. We ?cr\[orm an analysis of variance and
fhat leads vs Yo a measure of ﬂoodmssm\f'\f'\’f .




Statistics—-the linear mode

We want some Wy Yo indicate how coselﬂ associated X and
Y are, or how wuch of Y's variation is explained” by

Ks variafion. We ?cr\[orm an analysis of variance and
fhat leads vs Yo a measure of 3oodwe55'o\f'\fi’f .

Let's start by dc\[ivﬂ% the sum of squared vesiduals, SSK.

SR = LY.~ B X ) = L(E®



Statistics—-the linear mode

We want some Wy Yo indicate how coselﬂ associated X and
Y are, or how wuch of Y's variation is explained” by

Ks variafion. We ?cr\[orm an analysis of variance and
fhat leads vs Yo a measure of 3oodwe55'o\f'\fi’f .

Let's start by dc\[iv(\% the sum of squared vesiduals, SSK.

/s

NN i~ j
SR = 20V - BB )2 = 2(E,) |

RV



Statistics—-the linear model

SSR = 2V Bopx ) = LB
This is, n some sevse, a measure of ﬂoodmess'o\['\fi’f, but it
is ot wnit-tree, which is inconvenient, | we divide by

the Total sum of squares, Thal qives vs a unit ~bree
measwre:

SST = LY, -Y)



Statistics—-the linear model

SR = Z{Y - g-b. X ) = Z(E®
This is, n some sevse, a measure of ﬂooolV\esvo\['\fi’f, but it
is ot wit-free, which is nconvenient, |5 we divide by

the Total sum of squares, Thal qives vs a unit ~bree
measwre:

1
SST = LY, -1y fﬂ\ﬁL

}
x



Statistics—-the linear model

So we have

SSR = LY.~ BB X ) = (£,
SST = Z(Y,- T

Note that
0 <= SSR/SST «= | Whg?



Statistics—-the linear model

So we have

SSR = LY.~ BB X ) = (£,
SST = Z(Y,- T

Note that
0 <= SSR/SST <= | WW\/F Becavse both of these

valves are V\OV\’V\Cﬁa‘\'l ve, bﬁ constiruction, aw\d the fact
that the reﬁressnovx line is the least sctvarcs line

ensures That SSR <= SST.



Statistics—-the linear model

| quess we wanfed, a measure of fir that had larger valves
when the {'\’f was betfer, or we cxplaimd more, s0 we

defined
RZ =1 - SSR/SST.

It s ovt et SST can be decomposed into two Terms,
SSR and, the model sum of squares, SSM.

SM = Z( ¥, - Ty
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| quess we wanfed, a measure of fir that had larger valves
when the {i’r was betfer, or we cxplaimd more, s0 we

defined
RZ =1 - SSR/SST.

It s ovt et SST can be decomposed into two Terms,
SSR and, the model sum of squares, SOM.

4
SSM - 29, -1y ym

Y




Statistics—-the linear model

| quess we wanfed, a measure of fir that had larger valves
when the {i’r was betfer, or we cxplaimd more, s0 we

defined
RZ =1 - SSR/SST.

It s ovt et SST can be decomposed into two Terms,
SSR and, the model sum of squares, SOM.

Y m Cross term oes away
A — | becavse of how £ is
SOM = Z.‘( Y{ - Y)Z W chosen. QJ

RY



Statistics—-the linear model

I bivariate reqression, R* = vy, the sample corvelation
coefficient for X and Y. R2is a more qenera

Sormulation, though, and is defined for linear wodels with
more Than one cxylam’( ory variable.

I addifion Yo using R as a basic measwre of ﬁoooly\csvo\[’
£t we can also vse it as the busis of a Test of the
hypothesis Tt B = O (or=...=8=0 it we
have k explanatory variobles ). We reject The
hwpothesis when (-2)R2/U-RY), which has an F
distribution wider the will, is larqe.



Statistics—-the linear model

Let's talk abovt a tew practical issves, introduce muttiple
reqression (with madrix notation), and then retum Yo
mgcrcvu. (I¥s st Hhat this summation-based nofafion
is s0 clunky, well all be happier Yo see contidence
infervals, Ttests, and F-tests in more eleﬁam’( notation. )



Statistics~—the linear model, practicalities
What does reqression ovtput look like? How do we interpret

i

Here's some ovtput
from Stata on fwo
separate bivariate

reqressions

/* RESULTS regressions of detail-sales ratio with revenue, revenues2, gini *=/

reg ds Thd3rev if dropdet==0 & ds < 0.2

source | S5 df MS
_____________ +______________________________
Model | .000105715 1 .000105715
Residual | .003728207 67 000055645
_____________ +______________________________
Total | .003833922 o8 000056381
ds | Coef. std. Err T
_____________ +_______________________________________
Thd3rev | L0006272 000455 1.38
_cons | -.0011316 L004421 -0.26
reg js Thd3rev if dropjrn==0 & js < 0.3
source | S5 df MS
_____________ +______________________________
Model | .002022371 1 .002022371
Residual | .030570751 08 00044957
_____________ +______________________________
Total | 032593122 69 000472364
js | Coef std. Err T
_____________ +_______________________________________
Thd3rev | L0027332 LO012887 2.12
cons | -.0125051 L0125445 -1.00

0.173
0.799

0.038
0.322

Number of obs = 69
F( 1, 67) = 1.90
Frob = F = 0.1727
R-squared = 0.0276
Adj R-squared = 0.0131
RoOT MSE = .007486

-. 000281 0015354

-. 0099586 0070928
Number of obs = 7
F( 1, 68) = 4.50
Frob = F = 0.0376
R-squared = 0.0620
Adj R-squared = 0.0483
RoOT MSE = L0212

[95% Conf. Interwval]

0001617
-. 0375373

. 0053047
0125271
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Stafistics——-the linear model, practicalities

What does reqression ovtput look like? How do we interpret
iy e

/* RESULTS regressions of detail-sales ratio with revenue, revenues2, gini *=/

reg ds Thd3rev if dropdet==0 & ds < 0.2

source | 55 df M5 Number of ohs = 69
------------- o F( 1, 67) = 1.90
Model | .000105715 1 .000105715 Prob = F = 0.1727
il Residual | .003728207 67 000055645 R-squared = 0.0276
tommmm e - Adj R-squared = 0.0131
| .003833922 68 000056381 RoOOT MSE = .00746
Coef. std. Err. T P=|t| [95% Conf. Interwval]
L0006272 000455 1.38 0.173 -. 000281 0015354
-. 0011316 L004421 -0.26 0,799 -. 0094956 LO070928
opjrn==0 & js < 0.3
S5 df MS Number of obs = 70
------------------------------------------- F( 1, 68) = 4.50
L002022371 1 .002022371 Prob = F = 0.0376
LO30570751 08 00044957 R-squared = 0.0620
—————————————————————————————— Adj R-squared = 0.0483
.032593122 69 000472364 RoOOT MSE = L0212
‘\_ l d js | Coef. std. Err. T P=|t| [95% Conf. Interwval]
_____________ +________________________________________________________________
s av‘ r errors Thd3rev | L0027332 LO012887 2.12 0.038 L0001e17 0053047
cons | -.0125051 L0125445 -1.00 0,322 -. 0375373 LO125271



Statistics~—the linear model, practicalities
What does reqression ovtput look like? How do we interpret

L

\

We wod, fail o
re\'\ec’f Yhe vl that
= 0 (for ay
reasonably sized test).

Y7

Here are vesuts

for the F-test
| bri c\qﬂ mentioned.

. /% RESULTS regressions of detail-sales ratio with revenue, revenuesA2, gini */

: reg ds Thd3rev if dropdet==0 & ds < 0.2

source | 55 df M5 Number of ohs = 60
------------- o F( 1, 67) =
Model | .000105715 1 .000105715 Prob = F =
Residual | .003728207 67 000055645 R-5 = =820
————————————— tommmm - ] R-squared = 0.0131
Total | .003833922 o8 RoOOT MSE = .00746
| T P=|t| [95% Conf. Interwval]
_____________ +________________________________________________________________
Thd3rev | L0006272 000455 1.38 0.173 -. 000281 0015354
_cons | -.0011316 L004421 -0.26 0.7499 -. 0094956 LO070928
. reg js Thd3rev if dropjrn==0 & js < 0.3
source | 55 df M5 Number of ohs = 7
------------- o F( 1, 68) = 4.50
Model | .002022371 1 .002022371 Prob = F = 0.0376
Residual | .030570751 68 . 00044957 R-squared = 0.0620
————————————— tommmm e - Adj R-squared = 0.0483
Total | .032593122 69 000472364 RoOOT MSE = L0212
js | Coef. std. Err. T P=|t| [95% Conf. Interwval]
_____________ +________________________________________________________________
Thd3rev | L0027332 LO012887 2.12 0.038 L0001e17 0053047
cons | -.0125051 L0125445 -1.00 0,322 -. 0375373 LO125271
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Statistics~—the linear model, practicalities
What does reqression ovtput look like? How do we interpret

.
| .
L R N

/* RESULTS regressions of detail-sales ratio with revenue, revenues2, gini *=/

reg ds Thd3rev if dropdet==0 & ds < 0.2

source | 55 df M5 Number of ohs = 69

------------- o F( 1, 67) = 1.90

Model | .000105715 1 .000105715 Prob = F = 0.1727

Residual | .003728207 67 .000055645 R-squared = 0.0276

————————————— tommmm e - Adj R-squared = 0.0131

F:' \1A. Total | .003833922 68 000056381 RoOOT MSE = .00746
oy twis ove, Wwe

. ds | Coef. std. Err T P=|t| [95% Conf. Interwval]
_____________ +________________________________________________________________

WO\}ld, YC CC“— WC V\Uu Thd3rev | L0006272 000455 1.38 0.173 -. 000281 0015354
_cons | -.0011316 L004421 -0.26 0,799 -. 0094956 LO070928

Metpcofr —

source | 55 Number of obs
o 5% test, but wot ____sorce T S
Model | .002022371 1 .002022371 Prob = F
Residual | .030570751 68 . 00044957 R-squared
Q l 0 ‘\'CS'\— ————————————— e Adj R-squared
¢ Total | .032593122 69 000472364 RoOOT MSE
js | Coef. std. Err. T P=|t| [95% Conf. Interwval]
_____________ +________________________________________________________________
Thd3rev | L0027332 LO012887 2.12 0.038 L0001e17 0053047
cons | -.0125051 L0125445 -1.00 0,322 -. 0375373 LO125271
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Stafistics——-the linear model, practicalities

What does reqression ovtput look like? How do we interpret
iy e

/* RESULTS regressions of detail-sales ratio with revenue, revenues2, gini *=/

reg ds Thd3rev if dropdet==0 & ds < 0.2

source | 55 df M5 Number of ohs = 69

------------- o m e F( 1, 67) = 1.90

Model | .000105715 1 .000105715 Prob = F = 0.1727

Residual | .003728207 67 .000055645 R-squared = 0.0276

————————————— tommmm e - Adj R-squared = 0.0131

-l-L\ ‘\_ ‘\_ ‘\_ Total | .003833922 o8 000056381 RoOOT MSE = .00746

, .. ds | Coef. std. Err [95% Conf. Interwval]

_______ +___________________________ o o o o o o o o

‘FOV' ‘V\dj\"d\,al Thd3rev L 000455 0.173 -. 000281 0015354

_cons -. 0011316 L LOITE 0,799 -. 0094956 0070928

icents, Well — T S T
COC‘F‘(‘C‘CV‘ S‘ e reg js Thd3rev if dropjrn==0 & js < 0.3

4" 4" 4‘1/\ l 4\' source | 55 df M5 Number of ohs = 7

et To Them later.  source s e s Nenber of oBs = L1

Model | .002022371 1 .002022371 Prob = F = 0.0376

Residual | .030570751 68 . 00044957 R-squared = 0.0620

————————————— tommmm e - Adj R-squared = 0.0483

Total | 032593122 69 000472364 RoOOT MSE = L0212

js | Coef std. Err. T P=|t| [95% Conf. Interwval]

_____________ +________________________________________________________________

Thd3rev | L0027332 LO012887 2.12 0.038 L0001e17 0053047

cons | -.0125051 L0125445 -1.00 0,322 -. 0375373 LO125271
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Statistics~—the linear model, practicalities
What does regression oviput look like? How do we inferpret

'112 > fit<-1m(gss_data$any_reason~gss_dataSyear)
y > summary(fit)

Call:
Im(formula = gss_data$any_reason ~ gss_data$year)

Residuals:
Min 1Q Median 3Q Max T-Yests
95 -2.1089 -0.1308 ©0.9966 5.4378

Estimate Std. Error t value Pr(Gltl)
-362.02694 102.99766 -3.515 0.001953 **

gss_dataSyear 0.20204 0.05166 3.911 0.000749 ***

F.ns“'”—wc WO\)‘d ;- 1 f d @ ‘***’ 9.001 ‘**’ 90.01 ‘*’ 0.05 0.1 1
) . ignif. codes: ; * 0. - A o Sl A TG ¥
fail o reject the wl
= 1l standard error: 2.764 on 22 degrees of freedom
fat B = O (for an i ; 2 Ongree .
, ple uared: 0.4101, Adjusted R-squared: ©.3833
veasovwbln sized Yest).  F-statistic: 15.3 on 1 and 22 DF, p-value: 0.000749
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Stafistics——-the linear model, practicalities

Livear model:

YVi=BotBK e, 1=l ..., 0

ﬁ L

b

How do we interpret owr parameter estimates,
?a\r’ﬁ evlar?

B, is the estimated etfect on Y of a one-wiit increase in X,
(Precise wances of the interpretation will depend on
whether we think we have estimated a cavsal relationship
or something else. More on that later.)



Stafistics——-the linear model, practicalities

. /¥ baseball regressions */
p=
> /* this program reads in baseball.dta, the stata version of a data */
> /% file downloaded from espn.com about the 2005 mlb season. ®/
= team is the team c1t¥ {and name) ®/
> J* wins is the number of wins in a 162 game regular season =/
A rs is total runs scored all season w/
= ra is total runs allowed all season "/
- attend is total season attendance in thousands "/
= rundiff is the difference between runs scored and runs "/
= JE allowed ®/
regress attend wins;
source | 55 cf M5 Number of obs = 30
————————————— +—— F( 1, 28) = 9.53
Model | 3308050. 96 1 3308050.96 Prob = F = 0.0045
Residual | 9717640.51 28 347058. 59 R-squared = 0.2540
————————————— e Adj R-squared = 0.2273
Total | 13025691.5 29 449161.77 RoOt MSE = 589.12
attend | Coef std. Err t P=|t] [85% Conf. Interwval]
_____________ +________________________________________________________________
wins | 31.17391 10.09733 3.09 0. 005 10.49047 51. 85736
_cons | -45.62029 824.9258 -0.086 0.9586 -1735.404 la44.164
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Stafistics——-the linear model, practicalities

/¥ baseball regressions */
p=
> /* this program reads in baseball.dta, the stata version of a data */
> /% file downloaded from espn.com about the 2005 mlb season. ®/
= team is the team c1t¥ {and name) ®/
> J* wins is the number of wins in a 162 game regular season =/
A rs is total runs scored all season w/
= ra is total runs allowed all season "/
- attend is total season attendance in thousands "/
= rundiff is the difference between runs scored and runs "/
= [ allowed w
regress attend wins;
source | 55 cf M5 Number of obs = 30
————————————— +—— F( 1, 28) = 9.53
Model | 3308050. 96 1 3308050.96 Prob = F = 0.0045
Residual | 9717640.51 28 347058. 59 R-squared = 0.2540
————————————— e Adj R-squared = 0.2273
Total | 13025691.5 29 449161.77 RoOt MSE = 589.12
std. Err. t P=|t] [85% Conf. Interwval]
10.09733 3.09 0. 005 10.49047 51. 85736
824.9258 -0.086 0.9586 -1735.404 la44.164

Ove additional win is associated with an additional 31,000 fans in attendance
over the course of the season.
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Stafistics——-the linear model, practicalities

Livear model:

YVi=BotBK e, 1=l ..., 0

What if X ovxlﬁ Yakes on Two valves, O or 17 We have a
special viame For thak Type of variable, &
variable.  (Sometimes we call it an indicator variable.)

No Problcm***wo’fwwﬁ we have done here rules ovt any
parficdar distribution bor X or possible valves of X.



Stafistics——-the linear model, practicalities

Livear model:

YVi=BotBK e, 1=l ..., 0

What if X ovxlﬁ Yakes on Two valves, O or 17 We have a
special viame For thak Type of variable, &
variable.  (Sometimes we call it an indicator variable.)

No Problcm***wo’fwwﬁ we have done here rules ovt any
parficdar distribution bor X or possible valves of X.

(Well, the pictures would look ditferent.)



Stafistics——-the linear model, practicalities

Here's what | mean:




Stafistics——-the linear model, practicalities

Livear model:

YVi=BotBK e, 1=l ..., 0

wam‘\/) variables serve a wmber o\[ imporfant roles i linear
models. We've (sort of) already seen one, RCTs.

vaose we have some Treatiment in whose c\[{ec’f we are
interested  We mvwlomhﬁ assiqn The treatment Yo hal§
of the observations and leave the other Wlf wntreated
We assi gn The Treated observafions K =1 and the
witreated X = O.



Stafistics——-the linear model, practicalities

Livear model:

YVi=BotBK e, 1=l ..., 0

1§ we estimate the reqression above, B, will be the estimated
etfect of the freatment.



Stafistics——-the linear model, practicalities

Livear model:

Yi=B tBN e, i=l ..., n

By the way, X vieed viot be vandomly assigqned half Os and
half 1 Yo be a olvmm'j variable. Awﬂ characteristic that
exists on some but ot all observations can be
represented with a dummy,

We will see other vses for olwvwv% variables when we 4et Yo
mulfiple vegression.



Stafistics——-the linear model, practicalfies

Livear model:

Yi=B tBN e, i=l ..., n

lsnt a linear model rcallg;cs’fric’ﬁve? What if X and, Y

have a velationship, Dut it's vot linear?

~--Note that the linear model is ac’f\)allﬁ super flexible
and, ean allow for all kinds of vonlivear relationships.
When we ﬁe’( Yo W\VH'\P‘C reﬁression, well see some
exavvq)les.

-=-We can do a V\OV\PaYaVV\d' ric version, kervel

reqression, bt there are ¥ mdcogs, V\aW\dlj eﬁidevx%.



Stafistics——-the linear model, wmultivariate st 3\@

LeYs consider a more ﬁevxeml linear model:

Y’\=%O+%IXI'\+?2X2'\+"'+%kxki+ €
=1 ...,wn

This is a job for matvix notation'



Stafistics——-the linear model, wmultivariate st 3\@

LeYs consider a more ﬁevxeml linear model:

Y’\=%O+%IXI'\+?2X2'\+"'+%kxki+ €
=1 ...,wn

This is a job for matvix notation'

Let K = 0K, ..., Ko) Ixdkl) Grow) veckor OK,==1)
Let =B B, ... BT UetDxd Cedumn) vector



Stafistics——-the linear model, wmultivariate st 3\@

So we have:

Y= Xp+ g I n

But we can 40 borther
Let Y =LY, ..., YT wxd Ccolumn) vector

Leve= (g, . . ., e, wx (eolumn) vector
Let K= Ky .. Ky | wedket) matvine OK==1)
X, .. X,




Stafistics——-the linear model, wmultivariate st 3\@

S0 we have:
Y= Xg + ¢
nd - Okt )Xkt wxd
Assvm?’ﬁows‘-
) identification: n > k*l, X s il column vank k+|

G.e., reqressors are linearly independent, i.e., KX s
invertible)

it) ervor bebavior: E(¢) = O, ElgeT) (= Coule)) =
0, Cstronger version & ~ N(O,0%,))
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