Lecture 17

Statistics ---the linear model
A little bit of review:
After establishing a foundation in probability, we proceeded to estimation of unknown parameters. (We talked about criteria for assessing them as well as where they might come from.) Most, if not all, of that foundational discussion was focused on estimating parameters of a univariate distribution (like the mean or the variance or some other parameter that characterizes it). So much of what we care about in social science (and many other settings as well) involves joint distributions, though.

Statistics ---the linear model
A little bit of review:
Esther's discussion of causality was the beginning of (and a special case, really) of ar consideration of the joint distribution of variables of interest and how we will estimate parameters of these joint distributions. You can think of much of what she did as considering the joint distribution of two variables where one was simply a coin flip (H : treatment, T : control) and the other was the outcome of interest (eeg., infant mortality, or website effectiveness).

Statistics ---the linear model
A little bit of review:
And, in fact, we were mostly concerned with the conditional distribution of the outcome variable conditional on the coin flip. We can (and did) think of the treatment and control groups being two separate populations, and we were interested in, say, testing whether their means were equal. We can also think about having one population and a joint distribution of those two random variables on that population.

Statistics ---the linear model
A little bit of review:
What if, instead of a coin flip, the second random variable is continuous? It can take on a whole range of values. How do we analyze the conditional distribution of ar atcome variable conditional on something like a continuous random variable? How do we estimate the parameters of that conditional distribution?

Statistics ---the linear model
A little bit of review:
What if, instead of a coin flip, the second random variable is continuous? It can take on a whole range of values. How do we analyze the conditional distribution of ar atcome variable conditional on something like a continuous random variable? How do we estimate the parameters of that conditional distribution?

The workhorse model we use is the linear model and the way we estimate the parameters is linear regression.

Statistics ---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---prediction
---determining causality
---just understanding the world better

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
-- prediction If I am the type of person who reads xked, am I also the type of person who is likely to click on an ad for a t-shirt bearing the Russian cover design of Mobs Dick?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---prediction
If I am the type of person who reads xkcd, am I also the type of person who is likely to click on an ad for a t-shirt bearing the Russian cover design of Moby Dick?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---determining causality
If I give my dog a treat every time he does not bark at another dog walking by ar hose, will he stop barking at other dogs?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---determining causality
If I give my dog a treat every time he does not bark at another dog walking by ar hose, will he stop barking at other dogs?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---just understanding the world better
Are people only influenced by price, quality, characteristics, and expected weather when they purchase a convertible, or are they also influenced by the weather on that particular day?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---just understanding the world better

The Psychological Effect of Weather on Car
Purchases*
Meghan R. Ruse, Devin G. Pope, Jaren C. Pope and Jorge Silva-Risso

+ Author Affiliations
Abstract
When buying durable goods, consumers must fore... they will derive from future consumption, including consumption in
different states of the world. This can be complicated for consumers
because making intertemporal evaluations may expose them to a variety
of psychological biases such as present bias, projection bias, and salience
effects. We investigate whether consumers are affected by such
intertemporal biases when they purchase automobiles. Using data for
more than 40 million vehicle transactions, we explore the impact of
weather on purchasing decisions. We find that the choice to purchase a
convertible or a four-wheel-drive is highly dependent on the weather at
the time of purchase in a way that is inconsistent with classical utility
theory. We consider a range of rational explanations for the empirical
effects we find, but none can explain fully the effects we estimate
discuss and explore projection bias and salience as two primary. We the
psychological mechanisms that are consistent with our results. JEL Codes:

Are people only influenced by price, quality, characteristics, and expected weather when they purchase a convertible, or are they also influenced by the weather on that particular day?

Statistics---the linear model
Why do we care about joint distributions and estimating the parameters associated with them?
---just understanding the world better

The Psychological Effect of Weather on Car
Purchases*
Meghan R. Ruse, Devin G. Pope, Jaren C. Pope and Jorge Silva-Risso
Abstract
When buying durable goods, consumers must forecast how much ut.. they will derive from future consumption, including consumption in
different states of the world. This can be complicated for consumers
because making intertemporal evaluations may expose them to a variety
of psychological biases such as present bias, projection bias, and salience
effects. We investigate whether consumers are affected by such
intertemporal biases when they purchase automobiles. Using data for
weather on purchasing decisions. Wind that the of convertible or a four-wheel-drive is highly dependent on the weather at the time of purchase in a way that is inconsistent with classical utility effects we find, but notion
discuss and explore projection bias and salience as two primary
psychological
D03; D12.

Are people only influenced by price, quality, characteristics, and expected weather when they purchase a convertible, or are they also influenced by the weather on that particular day?

Q.JE, 2014

Statistics---the linear model
In each of those examples, there were two or more random variables, jointly distributed, and we would like to know characteristics of their joint distribution in order to answer the questions.

Statistics---the linear model, bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

random variables (on which we have repeated observations)

Statistics---the linear model, bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

the dependent variable (or explained variable or regressand)

Statistics---the linear model, bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

the regressor or explanatory variable (or independent variable)

Statistics---the linear model, bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

unobserved random variable, the error

Statistics---the linear model, bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

parameters to be estimated, the regression coefficients

Statistics---the linear model, Bivariate style Linear model:

This model allows us to consider the mean of a random variable Y as a function of another (random) variable X. If we obtain estimates for β_{0} and β_{1}, we than have an estimated conditional mean function for Y.

Statistics---the linear model, Bivariate style Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Add basic assumptions to get classical linear regression model:
i) X, ε, uncorrelated
ii) identification $--(1 / n) \sum_{1}(X-\bar{x})^{2}>0$
iii) 2 zero mean $--E\left(\varepsilon_{1}\right)=0$
iv) homoskedasticity--E($\left.\varepsilon_{1}^{2}\right)=\sigma^{2}$ for all i
v) no serial correlation $--E\left(\varepsilon_{i}\right)=0$ if $i \neq j$

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i 1} \quad i=1, \ldots, n
$$

Notes:
We sometimes impose an alternative assumption to i) for or convenience: X_{i} are fixed in repeated samples, or nonstochastic.
Assumptions iii)-v) could be subsumed under a stronger assumption--- ε_{i} i.i.d. $N\left(0, \sigma^{2}\right)$.

Statistics ---the linear model
ii) identification $--(1 / n) \sum_{i}(X-\bar{X})^{2}>0$

We rule out a case like this because it doesn't give us the variation in X that we need to identify the mean of Y conditional on X.

Statistics ---the linear model
iii) zero mean $--E\left(\varepsilon_{i}\right)=0$

We rule out something like this, but we don't have any information that would help us figure out whether the mean was non-zero and the intercept was just different.

Statistics ---the linear model
iv) homoskedasticity--- $E\left(\varepsilon_{1}^{2}\right)=\sigma^{2}$ for all i

This is a picture of what heteroskedasticity might look like. We assume for now that we don't have it.

Statistics---the linear model
iv) homoskedasticity-- $E\left(\varepsilon_{1}^{2}\right)=\sigma^{2}$ for all i

This is a picture of what heteroskedasticity might look like.
We assume for now that we don't have it.
Right about now yore thinking, "what is the etymndogy of 'homo/heteroskedasticity,' and is she even spelling it right?"" (My autcocorrect keeps trying to replace k with c.)'

Statistics ---the linear model
v) no serial correlation $--E\left(\varepsilon_{i} \varepsilon_{j}\right)=0$ if $i \neq j$

This is a picture of what positive serial correlation might look like. We assume for now that we don't have it.

Statistics---the linear model
Assumptions iii)-v) could be subsumed under a stronger assumption--- ε_{i} i.i.d. $N\left(0, \sigma^{-2}\right)$.

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Properties of model:

$$
\begin{aligned}
& E\left(Y_{i}\right)=E\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}\right)=\beta_{0}+\beta_{1} X_{i}+E\left(\varepsilon_{i}\right)= \\
& \beta_{0}+\beta_{1} X_{i} \\
& \operatorname{Var}\left(Y_{i}\right)=E\left(\left(Y_{i}-E\left(Y_{i}\right)\right)^{2}\right)=E\left(\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}-\beta_{0}-\right.\right. \\
& \left.\left.\beta_{1}\right)^{2}\right)=E\left(\varepsilon_{1}^{2}\right)=\sigma^{2} \\
& \left.\operatorname{Cov}\left(Y_{i} Y_{j}\right)=0, i \neq j \text { (can show using properties of } \varepsilon_{i}\right)
\end{aligned}
$$

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Properties of model:

$$
E\left(Y_{i}\right)=E\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}\right)=\beta_{0}+\beta_{1} X_{i}+E\left(\varepsilon_{i}\right)=
$$

$\beta_{0}+\beta_{1} X_{1}$ The β_{s} are parameters in the conditional mean function.

$$
\begin{aligned}
& \operatorname{Var}\left(Y_{i}\right)=E\left(\left(Y_{i}-E\left(Y_{i}\right)\right)^{2}\right)=E\left(\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}-\beta_{0}-\right.\right. \\
& \left.\left.\beta_{1}\right)^{2}\right)=E\left(\varepsilon_{i}^{2}\right)=\sigma^{2} \\
& \left.\operatorname{Cov}\left(Y_{i} Y_{j}\right)=0, i \neq j \text { (can show using properties of } \varepsilon_{i}\right)
\end{aligned}
$$

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

How do we find estimates for β_{0} and β_{1} ?
---least squares: $\min _{\beta} \sum_{i}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}$
---least absolute deviations: $\min _{\beta} \sum_{i} Y_{i}-\beta_{0}-\beta_{1} X_{i}$
--reverse least squares: $\min _{\beta} \sum_{i}\left(X_{i}-\beta_{0} / \beta_{1}-Y_{i} / \beta_{1}\right)^{2}$

Statistics ---the linear model
--least squares: $\min _{\beta} \sum_{i}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}$
---least absolute deviations: $\min _{\beta} \sum_{1} Y_{i}-\beta_{0}-\beta_{1} X_{I}$
We minimize the sum of squares or sum of absolute values of these things.

Statistics ---the linear model
--reverse least squares: $\min _{\beta} \Sigma_{1}\left(X-\beta_{0} \beta_{1}-Y_{i} / \beta\right)^{2}$

We minimize the sum of squares of these things.

Statistics---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Well focus on least squares (sometimes called "ordinary least squares," or OLS). Why? Under the assumptions of the Classical Linear Regression Model, OLS provides the minimum variance (most efficient) unbiased estimator of β_{0} and β_{1} it is the MLE under normality of errors, and the estimates are consistent and asymptotically normal.

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i 1} \quad i=1, \ldots, n
$$

Do we have to do a numerical minimization every time we want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:

$$
\begin{aligned}
& \hat{\beta}_{1}=\left\{(1 / n) \sum(X-\bar{X})\left(Y_{i}-\bar{Y}\right)\right\} /\left\{(1 / n) \sum(X-\bar{X})^{2}\right\} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Statistics ---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i 1} \quad i=1, \ldots, n
$$

Do we have to do a numerical minimization every time we want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:

$$
\begin{array}{ll}
\hat{\beta}_{1}=\left\{(1 / n) \sum(X-\bar{X})\left(Y_{i}-\bar{Y}\right)\right\} /\left\{(1 / n) \sum(X-\bar{X})^{2}\right\} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X} & \begin{array}{l}
\text { How do we get these? Pages } \\
\text { of tedious calculations, up on the } \\
\\
\\
\text { website for your viewing pleasure. }
\end{array}
\end{array}
$$

Statistics---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Do we have to do a numerical minimization every time we want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:

$$
\hat{\beta}_{1}=\left\{(1 / n) \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right\} /\left\{(1 / n) \sum\left(X_{i}-\bar{X}\right)^{2}\right\}
$$

$\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X} \quad 1$ don't want you to get the idea that OLS estimators are horrible, complicated things. They are very elegant and intuitive, but this summation-based notation is not up to the task.

Statistics---the linear model
Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

And they could be lovelier still if we weren't too afraid of using matrix notation...

Statistics ---the linear model
A couple of important definitions:

$$
\text { residual--- } \hat{\varepsilon}_{i}=y_{i}-\hat{y}_{i}
$$

regression line, or fitted line

$$
\begin{aligned}
& \text { fitted value--- } \\
& \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Statistics---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)?

Statistics---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)? We want to know how is it distributed (because we cannot perform inference, like creating confidence intervals and running hypothesis tests, unless we know something about its distribution).

Statistics ---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)? We want to know how is it distributed (because we cannot perform inference, like creating confidence intervals and running hypothesis tests, unless we know something about its distribution).
Let $\bar{x}=\frac{1}{n} \sum x_{i}$ and $\hat{\sigma}_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$ (for convenience).

Statistics---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)? We want to know how is it distributed (because we cannot perform inference, like creating confidence intervals and running hypothesis tests, unless we know something about its distribution).
Let $\bar{x}=\frac{1}{n} \sum x_{i}$ and $\hat{\sigma}_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$.

	mean	variance	covariance
$\hat{\beta}_{0}$	β_{0}	$\sigma^{2} \bar{x}^{2} / n \hat{\sigma}_{x}^{2}+\sigma^{2} / n$	$-\sigma^{2} \bar{x} / n \hat{\sigma}_{x}^{2}$
$\hat{\beta}_{1}$	β_{1}	$\sigma^{2} / n \hat{\sigma}_{x}^{2}$	

Statistics---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)? We want to know how is it distributed (because we cannot perform inference, like creating confidence intervals and running hypothesis tests, unless we know something about its distribution).

How do we get these? Pages
Let $\bar{x}=\frac{1}{n} \sum x_{i}$ and $\hat{\sigma}_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$ of tedious calculations, up on the website for you viewing pleasure.

Statistics---the linear model
What do we always ask when we learn about a new estimator (and why do we ask it)? We want to know how is it distributed (because we cannot perform inference, like creating confidence intervals and running hypothesis tests, unless we know something about its distribution).

These you knew because I told
Let $\bar{x}=\frac{1}{n} \sum x_{i}$ and $\hat{\sigma}_{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$ you that OLS estimates were unbiased
mean covariance
$\hat{\beta}_{0}$
$\hat{\beta}_{1}$

$$
-\sigma^{2} \bar{x} / n \hat{\sigma}_{x}^{2}
$$

Statistics ---the linear model

	mean	variance	covariance
$\hat{\beta}_{0}$	β_{0}	$\sigma^{2} \bar{x}^{2} / n \hat{\sigma}_{x}^{2}+\sigma^{2} / n$	$-\sigma^{2} \bar{x} / n \hat{\sigma}_{x}^{2}$
$\hat{\beta}_{1}$	β_{1}	$\sigma^{2} / n \hat{\sigma}_{x}^{2}$	

Some comparative statics:
--A larger σ^{2} means larger $\operatorname{Var}(\hat{\beta})$
--A larger $\hat{\sigma}_{x}^{2}$ means smaller $\operatorname{Var}(\hat{\beta})$
--A larger n means smaller $\operatorname{Var}(\hat{\beta})$
$\cdots-1 f \bar{x}>0, \operatorname{Cov}\left(\beta_{0}, \beta_{1}\right)<0$

Statistics ---the linear model

	mean	variance	covariance
$\hat{\beta}_{0}$	β_{0}	$\sigma^{2} \bar{x}^{2} / n \hat{\sigma}_{x}^{2}+\sigma^{2} / n$	$-\sigma^{2} \bar{x} / n \hat{\sigma}_{x}^{2}$
$\hat{\beta}_{1}$	β_{1}	$\sigma^{2} / n \hat{\sigma}_{x}^{2}$	

Some comparative statics:
--A larger σ^{2} means larger $\operatorname{Var}(\hat{\beta})$
--A larger $\hat{\sigma}_{x}^{2}$ means smaller $\operatorname{Var}(\hat{\beta})$
--A larger n means smaller $\operatorname{Var}(\hat{\beta})$
$\cdots-1 f \bar{x}>0, \operatorname{Cov}\left(\beta_{0}, \beta_{1}\right)<0$

Statistics-- the linear model
--A larger σ^{-2} means larger $\operatorname{Var}(\hat{\beta})$
variance of the error

less sure of our estimates in this case---higher variance

Statistics-- the linear model
---A larger $\hat{\sigma}_{x}^{2}$ means smaller $\operatorname{Var}(\hat{\beta})$
how much variation we have in ar explanatory variable

less sure of our estimates in this case---higher variance

Statistics ---the linear model
--A larger n means smaller $\operatorname{Var}(\hat{\beta})$

I wont draw a picture, but well just note that this comparative static follows from consistency of $\hat{\beta}$.

Statistics---the linear model $--1 f \bar{x}>0, \operatorname{Cov}\left(\beta_{0}, \beta_{1}\right)<0$

a mechanical relationship between the two estimates

Statistics ---the linear model
One step further: If we use the stronger assumption that the errors are i.i.d. $N\left(0, \sigma^{-2}\right)$, we obtain the result that $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ will also have normal distributions.

Statistics ---the linear model
Note that the distributions of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are functions of σ^{2}. But we often don't know σ^{2}. So we estimate it.

Let's use $\hat{\sigma}^{2}=\frac{1}{n-2} \sum \hat{\varepsilon}_{i}^{2}$ because it's unbiased for σ^{2}. (Why the -2 in the denominator? Because we're estimating two parameters, β_{0} and β_{1}, and it turns out that's what we need for $\hat{\sigma}^{2}$ to be unbiased.)

Statistics ---the linear model
What happened when we were doing univariate inference and we replaced an unknown variance with an estimate of the variance?

Statistics---the linear model
What happened when we were doing univariate inference and we replaced an unknown variance with an estimate of the variance?

Same thing is going to happen here.

Statistics ---the linear model
Now that we have all of the pieces (model, estimators, information about the distribution of estimators, etc.), we could proceed with inference, but we're going to put that off for a little while. For now, let's take a quick detour: analysis of variance.

Statistics---the linear model
We want some way to indicate how closely associated X and Y are, or how much of Y s variation is "explained" by X^{\prime} 's variation. We perform an analysis of variance and that leads us to a measure of goodness-of-fit.

Statistics ---the linear model
We want some way to indicate how closely associated X and Y are, or how much of Y s variation is "explained" by X^{\prime} 's variation. We perform an analysis of variance and that leads us to a measure of goodness-of-fit.

Let's start by defining the sum of squared residuals, SSR.

$$
S S R=\sum_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\sum_{i}\left(\hat{\varepsilon}_{i}\right)^{2}
$$

Statistics ---the linear model
We want some way to indicate how closely associated X and Y are, or how much of Y 's variation is "explained" by $X_{\text {'s variation. We perform an analysis of variance and }}$ that leads us to a measure of goodness-of-fit.

Let's start by defining the sum of squared residuals, SSR.

$$
S S R=\sum_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\sum_{i}\left(\hat{\varepsilon}_{i}\right)^{2}
$$

Statistics ---the linear model

$$
S S R=\sum_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\sum_{i}\left(\hat{\varepsilon}_{i}\right)^{2}
$$

This is, in some sense, a measure of goodness-of-fit, but it is not unit-free, which is inconvenient. If we divide by the total sum of squares, that gives us a unit-free measure:

$$
S S T=\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Statistics ---the linear model

$$
S S R=\sum_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\sum_{i}\left(\hat{\varepsilon}_{i}\right)^{2}
$$

This is, in some sense, a measure of goodness-of-fit, but it is not unit-free, which is inconvenient. If we divide by the total sum of squares, that gives us a unit-free measure:

$$
S S T=\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Statistics---the linear model
So we have

$$
\begin{aligned}
& S S R=\Sigma_{i}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\Sigma_{i}\left(\hat{\varepsilon}_{i}\right)^{2} \\
& S S T=\sum_{i}\left(Y_{i}-\hat{Y}\right)^{2}
\end{aligned}
$$

Note that

$$
0<=S S R / S S T<=1 \text { Why? }
$$

Statistics ---the linear model
So we have

$$
\begin{aligned}
& S S R=\sum_{1}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}=\sum_{i}\left(\hat{\varepsilon}_{i}\right)^{2} \\
& S S T=\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

Note that
$0<=S S R / S S T \ll 1$ Why? Because both of these valves are non-negative, by construction, and the fact that the regression line is the "least squares" line ensures that $\operatorname{SSR}=$ SST.

Statistics ---the linear model
I guess we wanted a measure of fit that had larger values when the fit was better, or we explained more, so we defined

$$
R^{2}=1-S S R / S S T .
$$

It turns out that SST can be decomposed into two terms, SSR and the model sum of squares, SSM.

$$
S S M=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

Statistics ---the linear model
I guess we wanted a measure of fit that had larger values when the fit was better, or we explained more, so we defined

$$
R^{2}=1-S S R / S S T .
$$

It turns out that SST can be decomposed into two terms, SSR and the model sum of squares, SSM.

$$
S S M=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

Statistics ---the linear model
I guess we wanted a measure of fit that had larger values when the fit was better, or we explained more, so we defined

$$
R^{2}=1-S S R / S S T .
$$

It turns out that SST can be decomposed into two terms, SSR and the model sum of squares, SSM.

$$
S S M=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

Cross term goes away because of how $\hat{\beta}$ is chosen.

Statistics ---the linear model
In bivariate regression, $R^{2}=r_{X} Y^{2}$, the sample correlation coefficient for X and Y. R^{2} is a more general formulation, though, and is defined for linear models with more than one explanatory variable.

In addition to using R^{2} as a basic measure of goodness-offit, we can also use it as the basis of a test of the hypothesis that $\beta_{1}=0$ (or $\beta_{1}=\ldots=\beta_{k}=0$ if we have k explanatory variables). We reject the hypothesis when $(n-2) R^{2} /\left(1-R^{2}\right)$, which has an F distribution under the null, is large.

Statistics ---the linear model
Let's talk about a few practical issues, introduce multiple regression (with matrix notation), and then return to inference. (It's just that this summation-based notation is so clunky, well all be happier to see confidence intervals, t-tests, and F-tests in more elegant notation.)

Statistics---the linear model, practicalities What does regression atput look like? How do we interpret it?

Here's some output from Stata on two separate bivariate regressions:

Statistics---the linear model, practicalities What does regression autput look like? How do we interpret

 it?
***** NEW TABLE 6: Advertising Intensity $* * * * *$
****wwws
/* RESULTS regressions of detail-sales ratio with revenue, revenue^2, gini */
reg ds 1 hd 3 rev if dropdet $==0 \& d s<0.2$

Statistics---the linear model, practicalities What does regression atput look like? How do we interpret it?

Here are results for the F-test I briefly mentioned.

We would fail to reject the null that $\beta_{1}=0$ (for any
 reasonably sized test).

Statistics---the linear model, practicalities What does regression atput look like? How do we interpret it?

For this one, we would reject the null that $\beta_{1}=0$ for a 5% test, but not a 1% test.

Statistics---the linear model, practicalities What does regression atput look like? How do we interpret it?

These are t tests for individual coefficients. Wéll get to them later.

Statistics---the linear model, practicalities What does regression output look like? How do we interpret

Percent who think abortion should be allowed for any reason

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

How do we interpret our parameter estimates, $\hat{\beta}$, in particular?
$\hat{\beta}_{1}$ is the estimated effect on Y of a one-unit increase in X. (Precise nuances of the interpretation will depend on whether we think we have estimated a causal relationship or something else. More on that later.)

Statistics---the linear model, practicalities

- regress attend wins

Source	SS	df		MS		$\begin{array}{rlr} \text { Number of obs } & = & 30 \\ \mathrm{~F}(1, & 28) & = \\ \text { Prob }>\text { F } & =0.0045 \\ \text { R-squared } & =0.2540 \\ \text { Adj R-squared } & =0.2273 \\ \text { Root MSE } & =589.12 \end{array}$	
Mode1	3308050.96	1		50.96			
Residual	9717640.51	28		58. 59			
Total	13025691.5	29	449	. 775			
attend	coef.	std.	Err	t	$P>\|t\|$	[95\% Conf.	Interval]
wins	$\begin{array}{r} 31.17391 \\ -45.62029 \end{array}$	10.09	$\begin{aligned} & 733 \\ & 258 \end{aligned}$	$\begin{array}{r} 3.09 \\ -0.06 \end{array}$	$\begin{aligned} & 0.005 \\ & 0.956 \end{aligned}$	$\begin{array}{r} 10.49047 \\ -1735.404 \end{array}$	$\begin{aligned} & 51.85736 \\ & 1644.164 \end{aligned}$

Statistics---the linear model, practicalities

One additional win is associated with an additional 31,000 fans in attendance over the carse of the season.

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

What if X only takes on two valves, O or 1 ? We have a special name for that type of variable, a dummy variable. (Sometimes we call it an indicator variable.)
No problem---nothing we have done here rules out any particular distribution for X or possible values of X.

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

What if X only takes on two values, O or 1 ? We have a special name for that type of variable, a dummy variable. (Sometimes we call it an indicator variable.)
No problem---nothing we have done here rules out any particular distribution for X or possible values of X. (Well, the pictures would look different.)

Statistics---the linear model, practicalities

Here's what I mean:

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i 1} \quad i=1, \ldots, n
$$

Dummy variables serve a number of important roles in linear models. We've (sort of) already seen one, RCTs.
Suppose we have some treatment in whose effect we are interested. We randomly assign the treatment to half of the observations and leave the other half untreated. We assign the treated observations $X=1$ and the untreated $X=0$.

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

If we estimate the regression above, $\hat{\beta}_{1}$ will be the estimated effect of the treatment.

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

By the way, X need not be randomly assigned half $O s$ and half is to be a dummy variable. Any characteristic that exists on some but not all observations can be represented with a dummy.
We will see other uses for dummy variables when we get to multiple regression.

Statistics---the linear model, practicalities Linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{11} \quad i=1, \ldots, n
$$

Isn't a linear model really restrictive? What if X and Y have a relationship, but it's not linear?
-- Note that the linear model is actually super flexible and can allow for all kinds of nonlinear relationships. When we get to multiple regression, well see some examples.
--We can do a nonparametric version, kernel regression, but there are tradeoffs, namely efficiency.

Statistics---the linear model, multivariate style Let's consider a more general linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+\varepsilon_{i 1} \\
& i=1, \ldots, n
\end{aligned}
$$

This is a job for matrix notation!

Statistics---the linear model, multivariate style Let's consider a more general linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+\varepsilon_{i 1} \\
& i=1, \ldots, n
\end{aligned}
$$

This is a job for matrix notation!
Let $X=\left(X_{0 i 1} \ldots, X_{k i}\right) \quad 1 x(k+1)($ row $)$ vector $\left(X_{0}=1\right)$
Let $\beta=\left(\beta_{0}, \beta_{1} \ldots, \beta_{k}\right)^{\top}(k+1) \times 1$ (column) vector

Statistics---the linear model, multivariate style So we have:

$$
Y_{i}=X \beta+\varepsilon_{11} \quad i=1, \ldots, n
$$

But we can go further:
Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{\top} n \times 1($ column $)$ vector
Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top} n \times 1$ (column) vector
Let $X=\left|\begin{array}{llll}X_{0} & \ldots & X_{k} \\ X_{02} & \ldots & X_{k 2} \\ X_{o n} & \ldots & X_{k n}\end{array}\right| n \times(k+1)$ matrix $\left(X_{0 i}=1\right)$

Statistics---the linear model, multivariate style
So we have:

$$
Y=X_{\beta}+\varepsilon
$$

$n x \mid \quad \operatorname{lnx}(k+1))((k+1) x|\quad n x|$
Assumptions:
i) identification: $n>k+1, X$ has full column rank $k+1$ (i.e., regressors are linearly independent, i.e., $X^{T} X$ is invertible)
ii) error behavior: $E(\varepsilon)=0, E\left(\varepsilon \varepsilon^{\top}\right)(=\operatorname{Cov}(\varepsilon))=$ $\sigma^{2} 1_{n}\left(\right.$ stronger version $\left.\varepsilon \sim N\left(0, \sigma^{-2}\right)\right)$

MIT OpenCourseWare
https://ocw.mit.edul
14.310x Data Analysis for Social Scientists

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

