
Lecture 17
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Statistics---the linear model
A little bit of review:

After establishing a foundation in probability, we 
proceeded to estimation of unknown parameters.  (We 
talked about criteria for assessing them as well as where 
they might come from.)  Most, if not all, of that 
foundational discussion was focused on estimating 
parameters of a univariate distribution (like the mean or 
the variance or some other parameter that characterizes 
it).  So much of what we care about in social science 
(and many other settings as well) involves joint 
distributions, though.   
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Statistics---the linear model
A little bit of review:

Esther’s discussion of causality was the beginning of (and 
a special case, really) of our consideration of the joint 
distribution of variables of interest and how we will 
estimate parameters of these joint distributions.  You can 
think of much of what she did as considering the joint 
distribution of two variables where one was simply a coin 
flip (H: treatment, T: control) and the other was the 
outcome of interest (e.g., infant mortality, or website 
effectiveness).    
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Statistics---the linear model
A little bit of review:

And, in fact, we were mostly concerned with the 
conditional distribution of the outcome variable conditional 
on the coin flip.  We can (and did) think of the 
treatment and control groups being two separate 
populations, and we were interested in, say, testing 
whether their means were equal.  We can also think 
about having one population and a joint distribution of 
those two random variables on that population.  
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Statistics---the linear model
A little bit of review:

What if, instead of a coin flip, the second random 
variable is continuous?  It can take on a whole range of 
values.  How do we analyze the conditional distribution of 
our outcome variable conditional on something like a 
continuous random variable?  How do we estimate the 
parameters of that conditional distribution?  
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Statistics---the linear model
A little bit of review:

What if, instead of a coin flip, the second random 
variable is continuous?  It can take on a whole range of 
values.  How do we analyze the conditional distribution of 
our outcome variable conditional on something like a 
continuous random variable?  How do we estimate the 
parameters of that conditional distribution? 

The workhorse model we use is the linear model and the 
way we estimate the parameters is linear regression. 
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---prediction

---determining causality

---just understanding the world better
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---prediction If I am the type of person who reads xkcd, am I also the

type of person who is likely to click on an ad for a t-shirt
bearing the Russian cover design of Moby Dick?
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---prediction If I am the type of person who reads xkcd, am I also the

type of person who is likely to click on an ad for a t-shirt
bearing the Russian cover design of Moby Dick?

my favorite xkcd t-shirt from Out of Print
Courtesy of xkcd. LIcense: CC BY-NC

© Out of Print. All rights reserved. This 
content is excluded from our Creative 
Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 9
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---determining causality If I give my dog a treat every time

he does not bark at another dog 
walking by our house, will he stop
barking at other dogs?
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---determining causality If I give my dog a treat every time

he does not bark at another dog 
walking by our house, will he stop
barking at other dogs?
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---just understanding the world better

Are people only influenced by price, quality, 
characteristics, and expected weather when they 
purchase a convertible, or are they also influenced 
by the weather on that particular day?
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---just understanding the world better

Are people only influenced by price, quality, 
characteristics, and expected weather when they 
purchase a convertible, or are they also influenced 
by the weather on that particular day?

QJE, 2014
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Statistics---the linear model
Why do we care about joint distributions and estimating the 

parameters associated with them?
---just understanding the world better

Are people only influenced by price, quality, 
characteristics, and expected weather when they 
purchase a convertible, or are they also influenced 
by the weather on that particular day?

QJE, 2014
Image by Mario Lehmann. CC BY-NC-SA
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Statistics---the linear model
In each of those examples, there were two or more random 

variables, jointly distributed, and we would like to know 
characteristics of their joint distribution in order to 
answer the questions.  

15



Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

random variables (on which we have repeated observations)
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

the dependent variable (or explained variable or regressand)
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

the regressor or explanatory variable (or independent variable)
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

unobserved random variable, the error
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

parameters to be estimated, the regression coefficients
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

This model allows us to consider the mean of a random 
variable Y as a function of another (random) variable X.  
If we obtain estimates for β0 and β1, we than have an 
estimated conditional mean function for Y.  

parameters to be estimated
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Statistics---the linear model, bivariate style
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Add basic assumptions to get classical linear regression model:
i) Xi, εi uncorrelated
ii) identification---(1/n)Σi(Xi- )2 > 0
iii) zero mean---E(εi) = 0
iv) homoskedasticity---E(εi

2) = σ2 for all i
v) no serial correlation---E(εiεj) = 0 if i j
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Notes:
We sometimes impose an alternative assumption to i) for 

our convenience:  Xi are fixed in repeated samples, or 
nonstochastic.

Assumptions iii)-v) could be subsumed under a stronger 
assumption--- εi i.i.d. N(0,σ2).
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Statistics---the linear model
ii) identification---(1/n)Σi(Xi- )2 > 0

We rule out a case like this because it doesn’t give us the 
variation in X that we need to identify the mean of Y 
conditional on X.
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Statistics---the linear model
iii) zero mean---E(εi) = 0

We rule out something like this, but we don’t have any 
information that would help us figure out whether the 
mean was non-zero and the intercept was just different.
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Statistics---the linear model
iv) homoskedasticity---E(εi

2) = σ2 for all i

This is a picture of what heteroskedasticity might look like.  
We assume for now that we don’t have it.
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Statistics---the linear model
iv) homoskedasticity---E(εi

2) = σ2 for all i

This is a picture of what heteroskedasticity might look like.  
We assume for now that we don’t have it.

Right about now you’re thinking, “what is the etymology of ’homo/heteroskedasticity,’ and 
is she even spelling it right?”  (My autocorrect keeps trying to replace k with c.)
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Statistics---the linear model
v) no serial correlation---E(εiεj) = 0 if i j

This is a picture of what positive serial correlation might 
look like.  We assume for now that we don’t have it.
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Statistics---the linear model
Assumptions iii)-v) could be subsumed under a stronger 

assumption--- εi i.i.d. N(0,σ2).
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Properties of model:
E(Yi) = E(β0 + β1Xi + εi) = β0 + β1Xi + E(εi) =        

β0 + β1Xi

Var(Yi) = E((Yi - E(Yi))2) =  E((β0 + β1Xi + εi - β0 -
β1)2) = E(εi

2) = σ2

Cov(Yi,Yj) = 0, i j (can show using properties of εi)
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Properties of model:
E(Yi) = E(β0 + β1Xi + εi) = β0 + β1Xi + E(εi) =        

β0 + β1Xi

Var(Yi) = E((Yi - E(Yi))2) =  E((β0 + β1Xi + εi - β0 -
β1)2) = E(εi

2) = σ2

Cov(Yi,Yj) = 0, i j (can show using properties of εi)

The βs are parameters in the conditional mean function.

31



Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

How do we find estimates for β0 and β1?
---least squares:  minβ Σi(Yi - β0 - β1Xi)2

---least absolute deviations:  minβ Σi|Yi - β0 - β1Xi| 

---reverse least squares:  minβ Σi(Xi - β0/β1 - Yi/β1)2
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Statistics---the linear model
---least squares:  minβ Σi(Yi - β0 - β1Xi)2

---least absolute deviations:  minβ Σi|Yi - β0 - β1Xi| 
We minimize the
sum of squares or sum
of absolute values of 
these things.
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Statistics---the linear model
---reverse least squares:  minβ Σi(Xi - β0/β1 - Yi/β1)2

We minimize the
sum of squares of 
these things.
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

We’ll focus on least squares (sometimes called “ordinary least 
squares,” or OLS).  Why?  Under the assumptions of 
the Classical Linear Regression Model, OLS provides the 
minimum variance (most efficient) unbiased estimator of 
β0 and β1, it is the MLE under normality of errors, and 
the estimates are consistent and asymptotically normal.   
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Do we have to do a numerical minimization every time we 
want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:
β = {(1/n)Σ(Xi - X)(Yi - Y)}/{(1/n)Σ(Xi - X)2}
β = Y - β1 X
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Do we have to do a numerical minimization every time we 
want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:
β = {(1/n)Σ(Xi - X)(Yi - Y)}/{(1/n)Σ(Xi - X)2}
β = Y - β1 X How do we get these? Pages

of tedious calculations, up on the
website for your viewing pleasure.
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Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Do we have to do a numerical minimization every time we 
want to solve for the least squares estimates?
No, we have lovely, closed-form solutions:
β = {(1/n)Σ(Xi - X)(Yi - Y)}/{(1/n)Σ(Xi - X)2}
β = Y - β1 X I don’t want you to get the idea that OLS estimators are 

horrible, complicated things.  They are very elegant and 
intuitive, but this summation-based notation is not up to 
the task. 38



Statistics---the linear model
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

And they could be lovelier still if we weren’t too afraid of 
using matrix notation . . . 
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Statistics---the linear model
A couple of important definitions:

regression line, or fitted line
---

fitted value---

residual---
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?  We want to know 
how is it distributed (because we cannot perform 
inference, like creating confidence intervals and running 
hypothesis tests, unless we know something about its 
distribution).
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?  We want to know 
how is it distributed (because we cannot perform 
inference, like creating confidence intervals and running 
hypothesis tests, unless we know something about its 
distribution).

Let              and                   (for convenience).
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?  We want to know 
how is it distributed (because we cannot perform 
inference, like creating confidence intervals and running 
hypothesis tests, unless we know something about its 
distribution).

Let              and                  .                  
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?  We want to know 
how is it distributed (because we cannot perform 
inference, like creating confidence intervals and running 
hypothesis tests, unless we know something about its 
distribution).

Let              and                  .                  
How do we get these? Pages
of tedious calculations, up on the
website for your viewing pleasure.
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Statistics---the linear model
What do we always ask when we learn about a new 

estimator (and why do we ask it)?  We want to know 
how is it distributed (because we cannot perform 
inference, like creating confidence intervals and running 
hypothesis tests, unless we know something about its 
distribution).

Let              and                  .                  
These you knew because I told 
you that OLS estimates were 
unbiased.
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Statistics---the linear model

Some comparative statics:
---A larger σ2 means larger Var(  )
---A larger σ2 means smaller Var(  )
---A larger n means smaller Var(  )
---If    > 0, Cov(β0,β1) < 0 
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Statistics---the linear model

Some comparative statics:
---A larger σ2 means larger Var(  )
---A larger σ2 means smaller Var(  )
---A larger n means smaller Var(  )
---If    > 0, Cov(β0,β1) < 0 

the vector of
parameters
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Statistics---the linear model
---A larger σ2 means larger Var(  )

variance of the error

less sure of our estimates 
in this case---higher variance
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Statistics---the linear model
---A larger σ2 means smaller Var(  )

less sure of our estimates 
in this case---higher variance

how much variation we have in our explanatory variable

50



Statistics---the linear model
---A larger n means smaller Var(  )

I won’t draw a picture, but we’ll just note that this 
comparative static follows from consistency of   .
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Statistics---the linear model
---If    > 0, Cov(β0,β1) < 0 

a mechanical relationship 
between the two estimates
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Statistics---the linear model
One step further:  If we use the stronger assumption that 

the errors are i.i.d. N(0,σ2), we obtain the result that 
β0 and β1 will also have normal distributions.
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Statistics---the linear model
Note that the distributions of β0 and β1 are functions of σ2.  

But we often don’t know σ2.  So we estimate it.

Let’s use               because it’s unbiased for σ2. (Why 
the -2 in the denominator?  Because we’re estimating 
two parameters, β0 and β1, and it turns out that’s what 
we need for     to be unbiased.) 
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Statistics---the linear model
What happened when we were doing univariate inference and 

we replaced an unknown variance with an estimate of 
the variance? 
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Statistics---the linear model
What happened when we were doing univariate inference and 

we replaced an unknown variance with an estimate of 
the variance?

Same thing is going to happen here. 
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Statistics---the linear model
Now that we have all of the pieces (model, estimators, 

information about the distribution of estimators, etc.), 
we could proceed with inference, but we’re going to put 
that off for a little while.  For now, let’s take a quick 
detour:  analysis of variance.
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Statistics---the linear model
We want some way to indicate how closely associated X and 

Y are, or how much of Y’s variation is “explained” by 
X’s variation.  We perform an analysis of variance and 
that leads us to a measure of goodness-of-fit.
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Statistics---the linear model
We want some way to indicate how closely associated X and 

Y are, or how much of Y’s variation is “explained” by 
X’s variation.  We perform an analysis of variance and 
that leads us to a measure of goodness-of-fit.

Let’s start by defining the sum of squared residuals, SSR.

SSR = Σi(           )2 = Σi(  )2
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Statistics---the linear model
We want some way to indicate how closely associated X and 

Y are, or how much of Y’s variation is “explained” by 
X’s variation.  We perform an analysis of variance and 
that leads us to a measure of goodness-of-fit.

Let’s start by defining the sum of squared residuals, SSR.

SSR = Σi(           )2 = Σi(  )2
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Statistics---the linear model

SSR = Σi(           )2 = Σi(  )2

This is, in some sense, a measure of goodness-of-fit, but it 
is not unit-free, which is inconvenient.  If we divide by 
the total sum of squares, that gives us a unit-free 
measure:

SST = Σi(   - )2
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Statistics---the linear model

SSR = Σi(           )2 = Σi(  )2

This is, in some sense, a measure of goodness-of-fit, but it 
is not unit-free, which is inconvenient.  If we divide by 
the total sum of squares, that gives us a unit-free 
measure:

SST = Σi(   - )2
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Statistics---the linear model
So we have

SSR = Σi(           )2 = Σi(  )2

SST = Σi(   - )2

Note that
0 <= SSR/SST <= 1  Why?
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Statistics---the linear model
So we have

SSR = Σi(           )2 = Σi(  )2

SST = Σi(   - )2

Note that
0 <= SSR/SST <= 1  Why?  Because both of these 
values are non-negative, by construction, and the fact 
that the regression line is the “least squares” line 
ensures that SSR <= SST.
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Statistics---the linear model
I guess we wanted a measure of fit that had larger values 

when the fit was better, or we explained more, so we 
defined 
R2 = 1 - SSR/SST.

It turns out that SST can be decomposed into two terms, 
SSR and the model sum of squares, SSM.  

SSM = Σi(   - )2
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Statistics---the linear model
I guess we wanted a measure of fit that had larger values 

when the fit was better, or we explained more, so we 
defined 
R2 = 1 - SSR/SST.

It turns out that SST can be decomposed into two terms, 
SSR and the model sum of squares, SSM.  

SSM = Σi(   - )2
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Statistics---the linear model
I guess we wanted a measure of fit that had larger values 

when the fit was better, or we explained more, so we 
defined 
R2 = 1 - SSR/SST.

It turns out that SST can be decomposed into two terms, 
SSR and the model sum of squares, SSM.  

SSM = Σi(   - )2

Cross term goes away
because of how    is
chosen.
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Statistics---the linear model
In bivariate regression, R2 = rXY

2, the sample correlation 
coefficient for X and Y.  R2 is a more general 
formulation, though, and is defined for linear models with 
more than one explanatory variable.

In addition to using R2 as a basic measure of goodness-of-
fit, we can also use it as the basis of a test of the 
hypothesis that β1 = 0 (or β1 = . . . = βk = 0 if we 
have k explanatory variables).  We reject the 
hypothesis when (n-2)R2/(1-R2), which has an F 
distribution under the null, is large.
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Statistics---the linear model
Let’s talk about a few practical issues, introduce multiple 

regression (with matrix notation), and then return to 
inference.  (It’s just that this summation-based notation 
is so clunky, we’ll all be happier to see confidence 
intervals, t-tests, and F-tests in more elegant notation.)
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Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

Here’s some output 
from Stata on two 
separate bivariate 
regressions:
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Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

standard errors
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Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

Here are results
for the F-test
I briefly mentioned.

We would fail to 
reject the null that
β1 = 0 (for any 
reasonably sized test). 72



Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

For this one, we
would reject the null
that β1 = 0 for
a 5% test, but not
a 1% test.
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Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

These are t-tests 
for individual
coefficients.  We’ll 
get to them later.
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Statistics---the linear model, practicalities
What does regression output look like?  How do we interpret 

it?

t-tests 

F-test---we would 
fail to reject the null 
that β1 = 0 (for any 
reasonably sized test).

t-tests
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Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

How do we interpret our parameter estimates,    in 
particular?

is the estimated effect on Y of a one-unit increase in X.  
(Precise nuances of the interpretation will depend on 
whether we think we have estimated a causal relationship 
or something else.  More on that later.)
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Statistics---the linear model, practicalities

78



Statistics---the linear model, practicalities

One additional win is associated with an additional 31,000 fans in attendance
over the course of the season. 79



Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

What if X only takes on two values, 0 or 1?  We have a 
special name for that type of variable, a dummy
variable.  (Sometimes we call it an indicator variable.)  

No problem---nothing we have done here rules out any 
particular distribution for X or possible values of X.  
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Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

What if X only takes on two values, 0 or 1?  We have a 
special name for that type of variable, a dummy
variable.  (Sometimes we call it an indicator variable.)  

No problem---nothing we have done here rules out any 
particular distribution for X or possible values of X. 

(Well, the pictures would look different.)
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Statistics---the linear model, practicalities

Here’s what I mean:

82



Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Dummy variables serve a number of important roles in linear 
models.  We’ve (sort of) already seen one, RCTs.

Suppose we have some treatment in whose effect we are 
interested.  We randomly assign the treatment to half 
of the observations and leave the other half untreated.  
We assign the treated observations X = 1 and the 
untreated X = 0.  
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Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

If we estimate the regression above,   will be the estimated 
effect of the treatment.  
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Statistics---the linear model, practicalities
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

By the way, X need not be randomly assigned half 0s and 
half 1s to be a dummy variable.  Any characteristic that 
exists on some but not all observations can be 
represented with a dummy.  

We will see other uses for dummy variables when we get to 
multiple regression.
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Statistics---the linear model, practicalties
Linear model:

Yi = β0 + β1Xi + εi,   i = 1, . . . , n

Isn’t a linear model really restrictive?  What if X and Y 
have a relationship, but it’s not linear?
---Note that the linear model is actually super flexible 
and can allow for all kinds of nonlinear relationships.  
When we get to multiple regression, we’ll see some 
examples.
---We can do a nonparametric version, kernel 
regression, but there are tradeoffs, namely efficiency.  
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Statistics---the linear model, multivariate style
Let’s consider a more general linear model:

Yi = β0 + β1X1i + β2X2i + . . . + βkXki +  εi,         
i = 1, . . . , n

This is a job for matrix notation!
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Statistics---the linear model, multivariate style
Let’s consider a more general linear model:

Yi = β0 + β1X1i + β2X2i + . . . + βkXki +  εi,         
i = 1, . . . , n

This is a job for matrix notation!
Let Xi = (X0i, . . . , Xki)   1x(k+1) (row) vector (X0i==1)
Let β = (β0, β1, . . . , βk)T (k+1)x1 (column) vector
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Statistics---the linear model, multivariate style
So we have:

Yi = Xiβ +  εi,         i = 1, . . . , n

But we can go further:
Let Y = (Y1, . . . , Yn)T nx1 (column) vector
Let ε= (ε1, . . . , εn)T nx1 (column) vector
Let X =  X01 . . .  Xk1 nx(k+1) matrix (X0i==1)

X02 . . . Xk2

X0n . . . Xkn
89



Statistics---the linear model, multivariate style
So we have:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

Assumptions:
i) identification:  n > k+1, X has full column rank k+1 
(i.e., regressors are linearly independent, i.e., XTX is 
invertible)
ii) error behavior:  E(ε) = 0, E(εεT) (= Cov(ε)) = 
σ2In (stronger version ε ~ N(0,σ2In))
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