Lecture 16
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LeYs consider a more ﬁevxeml linear model:

Y’\=%O+%IXI'\+?2X2'\+"'+%kxki+ €
=1 ...,wn

This is a job for matvix notation'



Stafistics——-the linear model, multivariate st 3\@

LeYs consider a more ﬁevxeml linear model:

Y’\=%O+%IXI'\+?2X2'\+"'+%kxki+ €
=1 ...,wn

This is a job for matvix notation'

Let K = 0K, ..., Ko) Ixdkl) Grow) veckor OK,==1)
Let =B B, ... BT UeriDxd Cedumn) vector



Stafistics——-the linear model, multivariate st 3\@

So we have:

Y= Xp+ g I n

But we can 40 borther
Let Y =LY, ..., YT wxd Ccolumn) vector

Lete = (g, ..., e)" wx Ceolwmn) vector
Let K= Ky .. Ky | wedket) matvine OK==1)
| Xor - - K|

X, . . X



Stafistics——-the linear model, multivariate st 3\@

S0 we have:
Y= Xg + ¢
md - Okt )Xkt wxd
Assvm?’ﬁows‘-
) identification: n > k*l, X s il column vank k+|

G.e., reqressors are linearly independent, i.e., KX s
invertible)

it) ervor belavior: E(¢) = O, ElgeT) (= Coule)) =
0, Cstronger version & ~ N(O,0%,))
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So we have:

Y= Xg + ¢
nxd CaxCktDXk* Dl nxd
Assvmy’ﬁ oms:

) idenfification: > k*l, X lhas Sl colmn vank k!
G.e., reqressors are linearly independent, i.e., KX s
invertible)

it) error bebavior: E(e) = O, E(eeT) (= Covle)) =
Ulaner version ¢ ~ N(O,02 )

—

NN '\dm’ﬁ’fﬂ matrix




Stafistics——-the linear model, multivariate st 3\@

S0 we have:
Y= Xg + ¢
md - Okt )Xkt wxd
Assvm‘)’ﬁ oms:

) identification: n > k*l, X s il column vank k+|
G.e., reqressors are linearly independent, i.e., KX s
invertible)

it) ervor belavior: E(¢) = O, ElgeT) (= Coule)) =
0, Cstronger version & ~ N(O,0%,))

Lets Yake a closer look af these assumpTions.



Stafistics——-the linear model, multivariate st 3\@

D n > kAl X has Sl edvmn vank k+l Gee., reqressors are
liwearlﬁ independent, i.c., KTX is invertible)-—-what does
this mean?

——-need Yo have more observations Yhan reqressors

——cant have any regressors That do not have positive
sample variafion

—-cant have any veqressors Thal are linear fnctions of one
or wore other veqressors



Stafistics——-the linear model, multivariate st 3\@

——=cant have any vegressors that are linear fnctions of one
or wore other veqressors

lmaﬁ'\V\e a case where we want o estimate the etfect of schooling,
work experience, and age, on salaur“, 50 we estimate The \Collowinﬁ

model on ndividual-level data:
Yf@o*@%n*@zxﬁ*---*@kxka)‘ 2
Y salary

X years of schooling
K, years o\f work experience — cod be that Kt K+ 6=%K,

Ky age for all i in our sample

—

—
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——=cant have any vegressors that are linear fnctions of one
or wore other veqressors

Ack valhj, researchers most often vun afoul of thais assumption when
Vsing dwnmg variables To indicate, S, observations \Call'w\ﬁ into an
exhavstive and mv’wall\ﬁ exclusive set of classes. vaosc each
observation in Your dta set of pefs is either a o{05, e, or fish.
You cannot create and indude a dummy variable for each ¥ Ype of pet
becavse Together They add vp Yo a column of 1s, which is {)er{cc’dnj
colliviear with the first coumn of the X matvix. You vieed Yo omit
one o them.

R will tell you it you make this mistake.



Stafistics——-the linear model, multivariate st 3\@
i) E(e) = 0, EleeT) = 0 -—what does this mean?

e (g, ..., ¢ )7 is nd, s0 €& nxn
Elee™) =[Eet,) . . Elee )] = [Varle) . . Cole e,)

Elee) . . Heg,) -Cov(f,,,ﬁv\) . Var(tv\)-
(20... O | |
[0 0%2...0]| =04,

.0 O...0%
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E(e) = 0, EleeT) = 0 -—what does this mean?
This is becavse the E(¢) = 0.

e (g, ..., e)T is nxl, so €€ T M

Elee™) =[Eet,) . . Elee )] = [Varle) . . Cole e,)

Elee) . . Heg,) -Cov(t,,ﬁv\) . Var(tv\)-
(20... O | |
[0 0%2...0]| =04,

.0 O...0%



Stafistics——-the linear model, multivariate st \ﬁlc
E(e) = 0, EleeT) = 0 -—what does this mean?

e= (e, ..., &) isnd, s0 &7 nxn

Elee™) =[Eet,) . . Elee )] = [Varle) . . Cole e,)

Elee) . . Heg,) -Cov(t, €. . Var(tv\)-

72
~0... 0 his 15 called the variance-
[0 0%...0]" 0—2|n covariance matirix O\C £-""we

devote it Covle)

.0 O...0%



Stafistics——-the linear model, multivariate st 3\@
Linear model:

Y= Xg + ¢

- Ol )Xt wxd

What is @7 Well, it is the vector that minimizes the sum
o\[ sztvarcd ervors, i, £ £ = (Y- XF,) (Y- xga)
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Livear mode!:
Y= Xg + ¢
nxd  CaxkA Ikt D nxd

What is @7 Well, it is the vector That minimizes the sum
o\[sztvarcderrors e, £ = (Y- XF,) (Y- xga)

Do, take the derivative w.r.t. B and set equal Yo 2ero Yo
obtain —2x" (Y- Xg,) 0. Then sve for Q,
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Linear model:
Y= Xg + ¢
nxd  CaxkA Ikt D nxd
What is @7. Well, it is the vector that minimizes the sum
of sztvarcd ervors, i.e., £ £ = (Y- XF)T[Y—XE)
Do, take the derivative w.r.t. B and set equal Yo 2ero Yo
obtain ~2x"(Y-x2) = 0 Then solve for b
XY = XX B '
B X' XY i (KTX) s invertible,



Stafistics——-the linear model, multivariate st \ﬁlc

Livear model:

Y= Xg + ¢
nxd  CaxkA Ikt D nxd
What is @7. Well, it is the vector that minimizes the sum
of sztvarcd ervors, i.e., £ £ = (Y- XF)T[Y—XE)
Do, take the derivative w.r.t. B and set equal Yo 2ero Yo
obtain ~2x"(Y-x2) = 0 Then solve for b
XY = XX B '

N L Wow, beavtit.
B (KXY XY i OKTX) s invertible. v



Satistics—the linear model, mulfivarigte style
Linear model: E’

Y= Xg + ¢

md (kD)X k4D nxd
What do we want Yo know about @7. It distvibution!



Satistics—the linear model, mulfivarigte style
Linear model E’

Y= Xg + ¢

md - Okt )Xkt wxd
What do we want Yo know about @7. Ite distribution!
E(@) =B (Treat Xs as fixed, Waa come ovfside of the

“expectation operafor, and it's easy Yo show. )
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Livear model:

Y= Xg + ¢

md - Okt )Xkt wxd
What do we want Yo know about @7. Ite distribution!
E(Q, )= p CTreat Xs s fixed, Waa come ovfside of the

ex‘?ec’m’ﬂon opevator, and iY's ensy Yo show. )

Cov((?:) o 2OKTKO) (Aﬁaw\ not Yoo hard Yo show \\[ v
treat the Xs as fixed-—details in notes on voebsﬁ(e)
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Livear mode!:
Y= Xg + ¢
md - Gk M (k) nixd
What do we want Yo know about @7. Ite distribution!

E(Q, )= p CTreat Xs s fixed, Wena come ovfside of the
ex‘?ec’m’ﬂon opevator, and iY's ensy Yo show. )

Cov((?:) o 2OKTKO) (Aﬁaw\ not Yoo hard Yo show \\[ v
treat the Xs as fixed-—details in notes on websﬁ(e)

And T2 - £7% /(n-k)
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Livear mode!:
Y= Xg + ¢
md - Gk M (k) nixd
What do we want Yo know about @7. Ite distribution!

E(Q, )= p CTreat Xs s fixed, Wena come ovfside of the
ex‘?ec’m’ﬂon opevator, and iY's ensy Yo show. )

Cov((?:) o 2OKTKO) (Aﬁaw\ not Yoo hard Yo show \\[ v
treat the Xs as fixed-—details in notes on websﬁ(e)

And 0 gl - e ¢ / (n-k) And ‘\C Yhe ervors are V\ormall\j
distributed, ’ﬂnaj re also vormal.



Statistics—-inference in the linear model

Now, {'\V\allﬂ, N ﬂc’f Yo ivx&revme. Tmi\call - we will want
Yo Yest hﬁpo’dneses \V\volvinﬁ The Ps. (13w Ps are the
parameters in our conditional mean fnction of owr

ovteome variable Y, and the gquestions we want Yo answer
are vsvallg abovt The nature of this conditional mean

fnction.)

Sometimes we are omhj interested in one of the Bs.  Other
Times we might want Yo s'\mvl’ramovslﬁ test hﬁpo’fhcses

abovt several of them.

As we saw in the ovt put | showed you earlier, statistica
packages ypically ?er\fovm some standard tests for vs,
bt there may be other ones we veed Yo do ourselves.



Statistics—-inference in the linear model

Lets start with a pretiy 3evw,m| bramework. for Testing
hypotheses abat B.  [¥'s not only quite general and
Hexible, it's also super infuitive.



Statistics—-inference in the linear model

Let's consider potheses of the \Collowiwﬁ Form:

o R = ¢

iy RB ¢

R is a k) matvix of vestrictions. U v = 1, then we
are st Yesting one restriction, such as f = 0.)




Statistics—-inference in the linear model
Let's consider potheses of the \Collowiwﬁ Form:

(K R@ = ¢

" A" R@ ZC

Almost aw ypothesis involving b wou can dream vp in the
confext o}e The linear model can be captired in this
bramework.  You can Yest whether individwal parameTers
are equal Yo zevo. You can Yest whether individual
?amme’rcrs are u(val Yo somethi ny other than zevo. You
can Yest mutfiple hypotheses simtaneously You can Yest

hypotheses about linear combinations of parameters,
e world is your oyster.




Statistics—-inference in the linear model
Let's consider potheses of the \Collowiwﬁ Form:

o R = ¢

iy RB ¢

R is a k) matvix of restrictions.

£ for wnstance, R={010..0} and ¢ <[O}

that corvesponds o H: B = O.




Statistics—-inference in the linear model
Let's consider potheses of the \Collowiwﬁ Form:

o R = ¢

iy RB ¢

R is a k) matvix of restrictions.

£ for nstance, R=T010..0 ] and ¢ =[O"
O0I..0 O
000..1 0

that corresponds Yo Hy: B =, = ... = B, = O.



Statistics—-inference in the linear model
Lets consider hpotheses of the \Collowmﬁ Form:

o R = ¢

H A R@ ZC

R is a k) matvix of restrictions.

£ for nstance, R=T010..0 ] and ¢ =[O"
O0I..0 O
000..1 0
that corresponds Yo Hy: B =, = ... = B, = O.

Here we're ’fes’f’mﬁ k w\/‘?oﬂ/\escs simvl’faneovslﬂ.



Statistics—-inference in the linear model
Let's consider potheses of the \Collowiwﬁ Form:

%O=R@=c

iy RB ¢
R is a k) matvix of restrictions.
£ for nstance, R=[01 .. O] adc =[O
10001 .0 157r
' 000..1 1_

that corvesponds Yo H b= By Bs=5 and By = -



Statistics—-inference in the linear model

One thing yov cannot do in this bramework is Yest one-sided
hngo’dneses. (Well et back Yo Those.)



Statistics—-inference in the linear model

We have a super infuitive and cool way Yo Test These

‘/\npo’d/\eses. (First, think of the wil as olzscribmﬁ a set of
restrictions on the model.)

|. We estimate the wirestricted model.

2. We impose the vestrictions of the vl and estimate
that model.

3. We compare the ﬁoody\ess*o\[’\ci’f of the models. 1§ the
restrictions dont really atkect the it of the model much,
then the vl is Probablq trve or close Yo frve, so we do
not want to veject it £ Yhe vestrictions really bind, then
we do want Yo reject the will



Statistics—-inference in the linear model

Es’ﬁma’ﬁmﬁ Yhe wirestricted model should be simple'”\'\vs’f w
Yhe reﬁressi on. vt how do we estimate the restricted

model?

£ the vestriction is that certain ps = O, Then leave The

regressors corvesponding Yo those fs ovt of the vestricted
model.

I\C the vestriction is that Sy, Two @s are eztval, create a
new reqressor, which is the sum of the reqressors

corresponding Yo those Ps and include that sum in the
resfricted model in place of the ori gival veqressors.

What i the restriction is that some p =



Statistics—-interence n the liiear model

This is an F-Yest. (We've mentioned a special case of the F
fest betore.  This is a more 3cmcm| Formulation.)

T = (.(.SSRR - SSR\}>/ V‘)/ (SSR\}/ (V\’(k“'l))

T~ F, ey Wder Yhe vill and we reject the nl for large
valves of the test stafistic.



Statistics—-interence n the liiear model

This is an F-Yest. (We've mentioned a special case of the F
fest betore.  This is a more 3cmcm| Formulation.)

T = (.(.SSRR - SSR\}>/ V‘)/ (SSR\}/ (V\’(k“'l))

T~ F, ey Wder Yhe vill and we reject the nl for large
valves of the test stafistic.

(Wihu an F distvibution? Well, the reason qoes back Yo one
the facts | Yold Wov abot special distributions a couple
of weeks ago.  The vatio of two independent X* random
variales divided by their vespective degrees of freedom
are distributed F.)
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