
Lecture 18
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Statistics---the linear model, multivariate style
Let’s consider a more general linear model:

Yi = β0 + β1X1i + β2X2i + . . . + βkXki +  εi,         
i = 1, . . . , n

This is a job for matrix notation!
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Statistics---the linear model, multivariate style
Let’s consider a more general linear model:

Yi = β0 + β1X1i + β2X2i + . . . + βkXki +  εi,         
i = 1, . . . , n

This is a job for matrix notation!
Let Xi = (X0i, . . . , Xki)   1x(k+1) (row) vector (X0i==1)
Let β = (β0, β1, . . . , βk)T (k+1)x1 (column) vector
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Statistics---the linear model, multivariate style
So we have:

Yi = Xiβ +  εi,         i = 1, . . . , n

But we can go further:
Let Y = (Y1, . . . , Yn)T nx1 (column) vector
Let ε = (ε1, . . . , εn)T nx1 (column) vector
Let X =  X01 . . .  Xk1 nx(k+1) matrix (X0i==1)

X02 . . . Xk2

X0n . . . Xkn
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Statistics---the linear model, multivariate style
So we have:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

Assumptions:
i) identification:  n > k+1, X has full column rank k+1 
(i.e., regressors are linearly independent, i.e., XTX is 
invertible)
ii) error behavior:  E(ε) = 0, E(εεT) (= Cov(ε)) = 
σ2In (stronger version ε ~ N(0,σ2In))
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Statistics---the linear model, multivariate style
So we have:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

Assumptions:
i) identification:  n > k+1, X has full column rank k+1 
(i.e., regressors are linearly independent, i.e., XTX is 
invertible)
ii) error behavior:  E(ε) = 0, E(εεT) (= Cov(ε)) = 
σ2In (stronger version ε ~ N(0,σ2In))
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Statistics---the linear model, multivariate style
So we have:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

Assumptions:
i) identification:  n > k+1, X has full column rank k+1 
(i.e., regressors are linearly independent, i.e., XTX is 
invertible)
ii) error behavior:  E(ε) = 0, E(εεT) (= Cov(ε)) = 
σ2In (stronger version ε ~ N(0,σ2In))

Let’s take a closer look at these assumptions.              7



Statistics---the linear model, multivariate style
i) n > k+1, X has full column rank k+1 (i.e., regressors are 

linearly independent, i.e., XTX is invertible)---what does 
this mean?

---need to have more observations than regressors
---can’t have any regressors that do not have positive 

sample variation
---can’t have any regressors that are linear functions of one 

or more other regressors
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Statistics---the linear model, multivariate style
---can’t have any regressors that are linear functions of one 

or more other regressors

Imagine a case where we want to estimate the effect of schooling,  
work experience, and age, on salary, so we estimate the following 
model on individual-level data:  

Yi = β0 + β1X1i + β2X2i + . . . + βkXki +  εi
Yi salary 
X1i years of schooling
X2i years of work experience    could be that X1i + X2i + 6 = X3i
X3i age                        for all i in our sample
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Statistics---the linear model, multivariate style
---can’t have any regressors that are linear functions of one 

or more other regressors

Actually, researchers most often run afoul of this assumption when
using dummy variables to indicate, say, observations falling into an
exhaustive and mutually exclusive set of classes.  Suppose each 
observation in your data set of pets is either a dog, cat, or fish.
You cannot create and include a dummy variable for each type of pet
because together they add up to a column of 1s, which is perfectly 
collinear with the first column of the X matrix.  You need to omit 
one of them.  
R will tell you if you make this mistake.     
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Statistics---the linear model, multivariate style
ii) E(ε) = 0, E(εεT) = σ2In---what does this mean?

ε= (ε1, . . . , εn)T is nx1, so εεT nxn
E(εεT) =  E(ε1ε1) . . E(ε1εn)   =  Var(ε1) . . Cov(ε1,εn)    

E(εnε1) . . E(εnεn)      Cov(ε1,εn) . . Var(εn)
=   σ2 0 . . .  0

0  σ2 . . . 0   = σ2In

0  0 . . . σ2
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Statistics---the linear model, multivariate style
E(ε) = 0, E(εεT) = σ2In---what does this mean?

ε= (ε1, . . . , εn)T is nx1, so εεT nxn
E(εεT) =  E(ε1ε1) . . E(ε1εn)   =  Var(ε1) . . Cov(ε1,εn)    

E(εnε1) . . E(εnεn)      Cov(ε1,εn) . . Var(εn)
=  σ2 0 . . .  0

0  σ2 . . . 0   = σ2In

0  0 . . . σ2

This is because the E(ε) = 0.
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Statistics---the linear model, multivariate style
E(ε) = 0, E(εεT) = σ2In---what does this mean?

ε= (ε1, . . . , εn)T is nx1, so εεT nxn
E(εεT) =  E(ε1ε1) . . E(ε1εn)   =  Var(ε1) . . Cov(ε1,εn)    

E(εnε1) . . E(εnεn)      Cov(ε1,εn) . . Var(εn)
=  σ2 0 . . .  0

0  σ2 . . . 0   = σ2In

0  0 . . . σ2

This is called the variance-
covariance matrix of ε---we
denote it Cov(ε)
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What is   ?  Well, it is the vector that minimizes the sum 
of squared errors, i.e.,
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What is   ?  Well, it is the vector that minimizes the sum 
of squared errors, i.e.,

So, take the derivative w.r.t. β and set equal to zero to 
obtain                      .  Then solve for   .   

             15



Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What is   ?  Well, it is the vector that minimizes the sum 
of squared errors, i.e.,

So, take the derivative w.r.t. β and set equal to zero to 
obtain                      .  Then solve for   .   

if (XTX) is invertible.
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What is   ?  Well, it is the vector that minimizes the sum 
of squared errors, i.e.,

So, take the derivative w.r.t. β and set equal to zero to 
obtain                      .  Then solve for   .   

if (XTX) is invertible.
Wow, beautiful.
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What do we want to know about   ?  Its distribution!
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What do we want to know about   ?  Its distribution!
E(  ) = β (Treat Xs as fixed, they come outside of the 

expectation operator, and it’s easy to show.) 
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What do we want to know about   ?  Its distribution!
E(  ) = β (Treat Xs as fixed, they come outside of the 

expectation operator, and it’s easy to show.) 
Cov(  ) = σ2(XTX)-1  (Again, not too hard to show if you 

treat the Xs as fixed---details in notes on website.)
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What do we want to know about   ?  Its distribution!
E(  ) = β (Treat Xs as fixed, they come outside of the 

expectation operator, and it’s easy to show.) 
Cov(  ) = σ2(XTX)-1  (Again, not too hard to show if you 

treat the Xs as fixed---details in notes on website.)
And 
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Statistics---the linear model, multivariate style
Linear model:

Y =    Xβ +   ε
nx1  (nx(k+1))((k+1)x1  nx1

What do we want to know about   ?  Its distribution!
E(  ) = β (Treat Xs as fixed, they come outside of the 

expectation operator, and it’s easy to show.) 
Cov(  ) = σ2(XTX)-1  (Again, not too hard to show if you 

treat the Xs as fixed---details in notes on website.)
And And if the errors are normally-

distributed, they’re also normal.
             22



Statistics---inference in the linear model
Now, finally, we get to inference.  Typically, we will want 

to test hypotheses involving the βs.  (The βs are the 
parameters in our conditional mean function of our 
outcome variable Y, and the questions we want to answer 
are usually about the nature of this conditional mean 
function.)  

Sometimes we are only interested in one of the βs.  Other 
times we might want to simultaneously test hypotheses 
about several of them.  

As we saw in the output I showed you earlier, statistical 
packages typically perform some standard tests for us, 
but there may be other ones we need to do ourselves.              23



Statistics---inference in the linear model
Let’s start with a pretty general framework for testing 

hypotheses about β.  It’s not only quite general and 
flexible, it’s also super intuitive.  
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

R is a rx(k+1) matrix of restrictions.  (If r = 1, then we 
are just testing one restriction, such as β1 = 0.)
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

Almost any hypothesis involving β you can dream up in the 
context of the linear model can be captured in this 
framework.  You can test whether individual parameters 
are equal to zero.  You can test whether individual 
parameters are equal to something other than zero.  You 
can test multiple hypotheses simultaneously.  You can test 
hypotheses about linear combinations of parameters.  
The world is your oyster. 
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

R is a rx(k+1) matrix of restrictions. 
If, for instance, R =  0 1 0 . . 0   and c = 0
that corresponds to H0: β1 = 0.
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

R is a rx(k+1) matrix of restrictions. 
If, for instance, R =  0 1 0 . . 0   and c = 0

0 0 1 . . 0           0
. .       .             .
0 0 0 . . 1           0

that corresponds to H0: β1 = β2 = . . . = βk = 0.
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

R is a rx(k+1) matrix of restrictions. 
If, for instance, R =  0 1 0 . . 0   and c = 0

0 0 1 . . 0           0
. .       .             .
0 0 0 . . 1           0

that corresponds to H0: β1 = β2 = . . . = βk = 0.
Here we’re testing k hypotheses simultaneously.
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Statistics---inference in the linear model
Let’s consider hypotheses of the following form:

H0: Rβ = c
HA: Rβ = c

R is a rx(k+1) matrix of restrictions. 
If, for instance, R =  0 1 -1 . .  0   and c = 0

0 0 0 1 . 0           5
0 0 0 . . 1           -2

that corresponds to H0: β1 = β2, β3 = 5, and βk = -2.
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Statistics---inference in the linear model
One thing you cannot do in this framework is test one-sided 

hypotheses.  (We’ll get back to those.)
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Statistics---inference in the linear model
We have a super intuitive and cool way to test these 

hypotheses. (First, think of the null as describing a set of 
restrictions on the model.) 
1. We estimate the unrestricted model.  
2. We impose the restrictions of the null and estimate 
that model.  
3. We compare the goodness-of-fit of the models.  If the 
restrictions don’t really affect the fit of the model much, 
then the null is probably true or close to true, so we do 
not want to reject it.  If the restrictions really bind, then 
we do want to reject the null.
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Statistics---inference in the linear model
Estimating the unrestricted model should be simple---just run 

the regression.  But how do we estimate the restricted 
model?
If the restriction is that certain βs = 0, then leave the 
regressors corresponding to those βs out of the restricted 
model.
If the restriction is that, say, two βs are equal, create a 
new regressor, which is the sum of the regressors
corresponding to those βs and include that sum in the 
restricted model in place of the original regressors.  
What if the restriction is that some β = c?
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Statistics---inference in the linear model
This is an F-test.  (We’ve mentioned a special case of the F 

test before.  This is a more general formulation.)  
T = ((SSRR - SSRU)/r)/(SSRU/(n-(k+1))
T ~ Fr,n-(k+1) under the null and we reject the null for large 

values of the test statistic.
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Statistics---inference in the linear model
This is an F-test.  (We’ve mentioned a special case of the F 

test before.  This is a more general formulation.) 
T = ((SSRR - SSRU)/r)/(SSRU/(n-(k+1))
T ~ Fr,n-(k+1) under the null and we reject the null for large 

values of the test statistic.
(Why an F distribution?  Well, the reason goes back to one 

of the facts I told you about special distributions a couple 
of weeks ago.  The ratio of two independent χ2 random 
variables divided by their respective degrees of freedom 
are distributed F.)
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