
 
   

     
   

Statistics---inference in the linear model 
I have barely even mentioned the t-test. Where does that 

come in? It's printed out every time we run a regression, 
so it must be useful. 
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Statistics---inference in the linear model 
I have barely even mentioned the t-test. Where does that 

come in? It's printed out every time we run a regression, 
so it must be useful. 

Before we talk about how to use it, let me remind you of the 
mathematical basis. Recall that, if the errors have a 
normal distribution, then so do the s. But their 
variances (and covariances) depend on the error variance, 
which we typically will not know. So when we substitute 
in for σ2, the standardized version of now has a t 
distribution, not a normal distribution any more. 
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Statistics---inference in the linear model 
That's the mathematical justification for the t-test, but we 

often don't have or want to assume a normal distribution 
of the errors. We still use the t-test in that case, 
essentially as a way to make the hypothesis test a little 
more conservative than one based on a normal distribution, 
at least for small samples. 
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Statistics---inference in the linear model 
So here's what it looks like for H0: βi = c: 

T = ( - c)/SE( i) where SE( ) = (σ2(XTX)-1)ii
1/2

i i 
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Statistics---inference in the linear model 
So here's what it looks like for H0: βi = c: 

T = ( - c)/SE( i) where SE( ) = (σ2(XTX)-1)ii
1/2

i i 

This picks out the ith diagonal element of 
the variance-covariance matrix. 
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Statistics---inference in the linear model 
So here's what it looks like for H0: Rβ = c: 

T = (R - c)/SE(R ) 
where SE(R ) = (σ2R(XTX)-1RT)1/2 

6



 
    

    

  
   

β β
β

Statistics---inference in the linear model 
So here's what it looks like for H0: Rβ = c: 

T = (R - c)/SE(R ) 
where SE(R ) = (σ2R(XTX)-1RT)1/2 

Since this is a t-test, and we can only 
test one hypothesis (potentially involving 
multiple parameters), R is a 1x(k+1) matrix 
and c is a scalar here. 
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Statistics---inference in the linear model 
Back to the question of when and how it's useful: 
Well, for the hypothesis H0: βj = c versus HA: βj c, the 

F-test is equivalent to the t-test. (The t-test statistic 
and critical values are the square root of those for the F-
test.) 

So, you can use either, but it's easier to use the t-test for a 
single estimated coefficient if H0: βj = 0 since it's printed 
out right there for you. 

One case where you need a t-test: if you want to carry out a 
one-sided test, like H0: βj > 0 versus HA: βj < 0. 

8



 
       

        
  

     

  
 

   
 

 
 
   

      

free are the tests that each 
coefficient is 0. 
F-test shou

gss_data$year. 
(3.911)2 

Statistics---inference in the linear model 
The F-test always given to us for free is the test of all coefficients 
(but not the intercept) being 0. The t-tests always given to us for 

So, here, the 
ld be equivalent to the 

t-test for the coefficient on 
Let's check: 

= 15.296. (They don't 
give us the critical values, 

but we could check that 
the t critical value 
squared is equal to the 
F critical value.) 
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Lecture 19: Practical Issues in Running 
Regressions 

Prof. Esther Duflo 

14.310x 
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Practical issues with regression 

• Dummy Variables 

• Other Functional Form issues 

• On example of Putting things together : Regression 
discontinuity Design 
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Dummy Variables 

Yi = α + βDi + �i 

Di is a dummy variable , or an indicator variable, if it takes the 
value 1 if the observation is in group A, and 0 if in group B. 
Example: 

• RCT: 1 if in treatment group , 0 otherwise 

• 1 if male, 0 if female 

• 1 before great depression, 0 after 

• 1 before generic substitution act passed, 0 otherwise, 

• 1 if the house has a deck in the backyard, 0 otherwise, 
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Interpretation 

Yi = α + βDi + �i 

Without any control variables, it is easy to verify that bβ = YA − YB . 
So you can always estimate the difference between the treatment 
and control group for an RCT using an OLS regression framework. 
The standard errors will be slightly different from the Neyman 
standard errors we computed before (because the Neyman 
standard errors adjust for sample size of EACH group, whereas the 
OLS standard errors adjust for the size of the overall sample), but 
it won’t matter that much if the samples are large enough, and 
similar in treatment and control groups. 
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• R will complain about multi-colinearity. We typically omit ONE of
the categories

• So what do we do?
• We typically omit ONE group (if we don’t do it, R may do it for
us), and then what is the interpretation of each coefficient?

• It is the difference between the value of this group and the value
for the omitted (reference) group.

From a categorical variable to dummy 
variables 

• What if you don’t have two groups, but, say, 50 (e.g. 50 states): 
Your original variable is takes discrete values 1 to 50. 

• It usually does not make much sense to include it directly as a 
regressor 

• Transform it into 50 dummy variables: for each state, the dummy 
= 1 if the observation is from that state, and 0 otherwise. 

• Careful, what happens if you introduce all of them and the 
constant? 
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• It is the difference between the value of this group and the value
for the omitted (reference) group.

From a categorical variable to dummy 
variables 

• What if you don’t have two groups, but, say, 50 (e.g. 50 states): 
Your original variable is takes discrete values 1 to 50. 

• It usually does not make much sense to include it directly as a 
regressor 

• Transform it into 50 dummy variables: for each state, the dummy 
= 1 if the observation is from that state, and 0 otherwise. 

• Careful, what happens if you introduce all of them and the 
constant? 

• R will complain about multi-colinearity. We typically omit ONE of 
the categories 

• So what do we do? 
• We typically omit ONE group (if we don’t do it, R may do it for 
us), and then what is the interpretation of each coefficient? 
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From a categorical variable to dummy 
variables 
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with other variables in the regression 

With other variables in the regression 

Yi = α + βDi + Xi γ + �i 

In that case β is the difference in intercept between group A and 
group B. This is the most frequent way that RCT are analyzed: 
the matrix X are “control” variables: things that did not affect the 
assignment but may have been different at baseline. 
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• bα: An estimate of mean for women in the control group
• bβ: An estimate of the difference between the treatment and
control group means for women [we call this the treatment main
effect]

• bγ: An estimate of the difference between Males and Females. [we
call this the gender main effect]

• bδ An estimate of the difference between the treatment effect for
males and for female. [we call this the interaction effect]

How do you obtain, for example, an estimate of the mean for males?
How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 

Yi = α + βDi + γMi + δMi ∗ Di + �i 

How do we interpret these coefficients: 
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An estimate of mean for women in the control group
• bβ: An estimate of the difference between the treatment and
control group means for women [we call this the treatment main
effect]

• bγ: An estimate of the difference between Males and Females. [we
call this the gender main effect]
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Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
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Yi = α + βDi + γMi + δMi ∗ Di + �i 

How do we interpret these coefficients: 

• αb: 
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• bβ: An estimate of the difference between the treatment and
control group means for women [we call this the treatment main
effect]

• bγ: An estimate of the difference between Males and Females. [we
call this the gender main effect]

• bδ An estimate of the difference between the treatment effect for
males and for female. [we call this the interaction effect]

How do you obtain, for example, an estimate of the mean for males?
How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 

Yi = α + βDi + γMi + δMi ∗ Di + �i 

How do we interpret these coefficients: 

• αb: An estimate of mean for women in the control group 
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An estimate of the difference between the treatment and
control group means for women [we call this the treatment main
effect]

• bγ: An estimate of the difference between Males and Females. [we
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• bγ: An estimate of the difference between Males and Females. [we
call this the gender main effect]

• bδ An estimate of the difference between the treatment effect for
males and for female. [we call this the interaction effect]

How do you obtain, for example, an estimate of the mean for males?
How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 

Yi = α + βDi + γMi + δMi ∗ Di + �i 

How do we interpret these coefficients: 

• αb: An estimate of mean for women in the control group b• β: An estimate of the difference between the treatment and 
control group means for women [we call this the treatment main 
effect] 
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An estimate of the difference between Males and Females. [we
call this the gender main effect]

• bδ An estimate of the difference between the treatment effect for
males and for female. [we call this the interaction effect]

How do you obtain, for example, an estimate of the mean for males?
How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
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• αb: An estimate of mean for women in the control group b• β: An estimate of the difference between the treatment and 
control group means for women [we call this the treatment main 
effect] 

• γb: 
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An estimate of the difference between the treatment effect for
males and for female. [we call this the interaction effect]
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How do you obtain, for example, an estimate of the mean for males?
How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 
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How do you obtain an estimate of the treatment effect for males?

Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 

Yi = α + βDi + γMi + δMi ∗ Di + �i 

How do we interpret these coefficients: 

• αb: An estimate of mean for women in the control group b• β: An estimate of the difference between the treatment and 
control group means for women [we call this the treatment main 
effect] 
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call this the gender main effect]b• δ An estimate of the difference between the treatment effect for 
males and for female. [we call this the interaction effect] 

How do you obtain, for example, an estimate of the mean for males? 
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Dummy variables and Interactions 
Now imagine you have two sets of dummy variables, say, Treatment 
and control, and Male and Female. 
You can run: 

Yi = α + βDi + γMi + δMi ∗ Di + �i 
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• αb: An estimate of mean for women in the control group b• β: An estimate of the difference between the treatment and 
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How do you obtain an estimate of the treatment effect for males? 
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Difference-in-Differences 

• This is the basic “difference in differences” model which is 
often used by empirical researchers in a situation where there 
was a change in the law (or an event) affecting one group but 
not the other, and you are willing to assume that in the 
absence of the law, the difference between the two group 
would have remained stable over time 

• In this case you have Di = 1 if post law, 0 otherwise, and 
Gi = 1 if pre law, 0 otherwise. 

• Famous examples: Mariel Boatlift experiment (David Card) ; 
New Jersey -Pennsylvania experiment (Card and Krueger) 
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Example : INPRES school construction 
program in Indonesia 

Second five year plan (1974-79)-Oil shock. 

• A large program: 

• 61,807 primary schools constructed from to 1973/74 to 
1978/79. 
Number of schools multiplied by 2. 1 school for every 500 
children. 

• A change in policy: Before 1973, no construction, ban on 
recruiting for public service positions. 

• A program meant to favor low-enrollment regions. 
Allocation rule: number of schools constructed in a district 
was proportional to the number of children (ages 7 to 12) not 
enrolled in primary school. 

31



Data Available 

SUPAS 95: A survey done in 1995: after the children educated in 
these schools have completed their schooling, and have started 
working. 
• 150,000 men born 1950-1972 

• Variables: education, year and region of birth, wages. 
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Sources of variation 
Two factors affect the intensity of the program. 

• Year of birth : 

• Region of birth The government was targeting low enrollment 
regions ⇒ substantial variation in program intensity across 
districts. 
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Difference in difference 
TABLE 3 -- MEANS OF EDUCATION AND LOG(WAGE) BY COHORT AND LEVEL OF PROGRAM CELLS

Years of education
Level of program in Level of program in 

Region of birth Region of birth
High Low Difference High Low Difference
(1) (2) (3) (4) (5) (6)

Panel A: Experiment of Interest

Aged 2 to 6 in 1974 8.49 9.76 -1.27 6.61 6.73 -0.12
(0.043) (0.037) (0.057) (0.0078) (0.0064) (0.010)

Aged 12 to 17 in 1974 8.02 9.40 -1.39 6.87 7.02 -0.15
(0.053) (0.042) (0.067) (0.0085) (0.0069) (0.011)

Difference 0.47 0.36 0.12 -0.26 -0.29 0.026

(0.070) (0.038) (0.089) (0.011) (0.0096) (0.015)

Panel B: Control Experiment

8.00 9.41 -1.41 6.87 7.02 -0.15
Aged 12 to 17 in 1974 (0.054) (0.042) (0.078) (0.0085) (0.0069) (0.011)

7.70 9.12 -1.42 6.92 7.08 -0.16
Aged 18 to 24 in 1974 (0.059) (0.044) (0.072) (0.0097) (0.0076) (0.012)

0.30 0.29 0.013 0.056 0.063 0.0070
Difference (0.080) (0.061) (0.098) (0.013) (0.010) (0.016)

Note: The sample is made of the individuals who earn a wage. Standard errors are in parentheses

Log(wages)

source: Duflo, 2001 ”Schooling and Labor market consequence of 
school constructions in Indonesia: Evidence from an Unusual 
Experiment” American economic review. 
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More generally: Interactions 

More generally, the coefficient on the interaction between dummy 
variable and some variable X tells us the extent to which the 
dummy variable changes the regression function for that regressor. 

Yi = β0 + β0 
∗ Di + β1X1i + β ∗ Di X1i + · · · + �i 
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INPRES example: use variation across 
cohorts 

Sijk = c1 + α1j + β1k + (Pj ∗ Ti )γ1 + �ijk , (1) 

where 

• Sijk is the education of individual i born in region j in year k, 

• Ti is a dummy indicating whether the individual belongs to 
the “young” cohort in the subsample, 

• Pj denotes the intensity of the program in the region of birth 
(number of school built) 

• c1 is a constant, 

• β1k is a set of cohort-of-birth fixed effects [in practice, a series 
of dummies=1 for each year of birth, omit 1] 

• α1j is a set of district-of-birth fixed effects [in practice, a 
series of dummies=1 for each district of birth, omit 1] 
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Table 

TABLE 4 -- EFFECT OF THE PROGRAM ON EDUCATION AND WAGES: COEFFICIENTS OF THE INTERACTIONS BETWEEN COHORT DUMMIES 
AND THE NUMBER OF SCHOOLS CONSTRUCTED PER 1000 CHILDREN IN THE REGION OF BIRTH.

Observations (1) (2) (3) (4) (5) (6)

PANEL A: Experiment of Interest: Individuals Aged 2 to 6 or 12 to 17 in 1974

(Youngest Cohort: Individuals Ages 2 to 6 in 1974)

Whole sample 78,470 0.124 0.15 0.188
(0.0250) (0.0260) (0.0289)

Sample of wage earners 31,061 0.196 0.199 0.259 0.0147 0.0172 0.0270
(0.0424) (0.0429) (0.0499) (0.00729) (0.00737) (0.00850)

PANEL B: Control Experiment : Individuals Aged 12 to 24 in 1974 
(Youngest Cohort: Individuals Ages 12 to 17 in 1974)

Whole sample 78,488 0.0093 0.0176 0.0075
(0.0260) (0.0271) (0.0297)

Sample of wage earners 30,225 0.012 0.024 0.079 0.0031 0.00399 0.0144

(0.0474) (0.0481) (0.0555) (0.00798) (0.00809) (0.00915)

Control variables:
Year of birth*enrollment rate in 1971 No Yes Yes No Yes Yes
Year of birth* water and sanitation program No No Yes No No Yes

Notes: All specifications include region of birth, year of birth dummies and interactions between the year of birth dummies and the number of children in the

 region of birth (in 1971). The numbers of observations refer to the specification  in columns 1 and 4.

Standard errors are in parentheses.

Log(hourly wage)
Dependent variable

Years of education

The coefficient γ tells us that the difference in education between 
the young cohort and the old cohort is 0.124 year larger for each 
school built per 1000 kids. 
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Figure 1: Regional growth in education and log wages accross cohort and program intensity

(Per capita denotes per 1000 children)
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Practical issues with regression 

• Dummy Variables 

• Other Functional Form issues 

• One example of putting things together: Regression 
discontinuity design 
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Other functional form issues 

• Transforming the dependent variable 

• Non linear transformations of the independent variables 
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Transformations of the dependent variable 

β1 β2• Suppose Yi = AX X �i then run linear regression1i 2i e 

log(Yi ) = β0 + β1logX1i + β2logX12 + �i 

to estimate β1 and β2. Note that β1 and β2 are elasticities: 
when X1 changes by 1%, Y changes by β1%. 

• Returns to education formulation 

logYi = β0 + β1Si + �i 

When education increases by 1 year, wages increase by 
β1 × 100%. 
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Transformations of the dependent variable 
• Box Cox Transformation 
Suppose Yi = 1 

β0+β1X1i +β2X2i +�i 
then run regression 

1 
= β0 + β1X1i + β2X2i + �i

Yi 

• Discrete choice model 
Suppose 

β0+β1X1i +β2X2i +�ie 
Pi = 

β0+β1X1i +β2X2i +�i1 + e 
Pi is the percentage of individuals choosing a particular option 
(e.g. buying a particular car) 
then run regression: 

Pi 
Yi = log( ) = β0 + β1X1i + β2X2i + �i

1 − Pi 
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