14.581 International Trade — Lecture 16: Gravity Models (Theory) —

The Simplest Gravity Model: Armington

- Gravity Models and the Gains from Trade: ACR (2012)
- Beyond ACR's (2012) Equivalence Result: CR (2013)

1. The Simplest Gravity Model: Armington

The Armington Model

Image courtesy of rdpeyton on flickr. CC NC-BY-SA

14.581 (Week 9)

Gravity Models (Theory)

The Armington Model: Equilibrium

Labor endowments

$$L_i$$
 for $i = 1, \dots n$

• CES utility \Rightarrow CES price index

$$P_j^{1-\sigma} = \sum_{i=1}^n (w_i \tau_{ij})^{1-\sigma}$$

• Bilateral trade flows follow gravity equation:

$$X_{ij} = \frac{\left(w_i \tau_{ij}\right)^{1-\sigma}}{\sum_{l=1}^{n} \left(w_l \tau_{lj}\right)^{1-\sigma}} w_j L_j$$

• In what follows $\varepsilon \equiv -\frac{d \ln X_{ij}/X_{jj}}{d \ln \tau_{ij}} = \sigma - 1$ denotes the **trade elasticity**

Trade balance

$$\sum_{i} X_{ji} = w_j L_j$$

14.581 (Week 9)

• Question:

Consider a foreign shock: $L_i \rightarrow L'_i$ for $i \neq j$ and $\tau_{ij} \rightarrow \tau'_{ij}$ for $i \neq j$. How do foreign shocks affect real consumption, $C_j \equiv w_j / P_j$?

• Shephard's Lemma implies

$$d \ln C_j = d \ln w_j - d \ln P_j = -\sum_{i=1}^n \lambda_{ij} \left(d \ln c_{ij} - d \ln c_{jj} \right)$$

with $c_{ij} \equiv w_i \tau_{ij}$ and $\lambda_{ij} \equiv X_{ij} / w_j L_j$.

Gravity implies

$$d \ln \lambda_{ij} - d \ln \lambda_{jj} = -\varepsilon \left(d \ln c_{ij} - d \ln c_{jj} \right)$$

The Armington Model: Welfare Analysis

• Combining these two equations yields

$$d \ln C_j = rac{\sum_{i=1}^n \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj} \right)}{\varepsilon}.$$

• Noting that
$$\sum_i \lambda_{ij} = 1 \Longrightarrow \sum_i \lambda_{ij} d \ln \lambda_{ij} = 0$$
 then
 $d \ln C_j = -\frac{d \ln \lambda_{jj}}{\epsilon}.$

• Integrating the previous expression yields $(\hat{x} = x'/x)$

$$\hat{C}_j = \hat{\lambda}_{jj}^{-1/arepsilon}.$$

- In general, predicting $\hat{\lambda}_{jj}$ requires (computer) work
 - We can use exact hat algebra as in DEK (Lecture #3)
 - Gravity equation + data $\{\lambda_{ij}, Y_j\}$, and ε
- But predicting how bad would it be to shut down trade is easy...

• In autarky,
$$\lambda_{jj}=1$$
. So

$$C_j^A/C_j = \lambda_{jj}^{1/(\sigma-1)}$$

• Thus gains from trade can be computed as

$$GT_j \equiv 1 - C_j^A / C_j = 1 - \lambda_{jj}^{1/\varepsilon}$$

The Armington Model: Gains from Trade

- Suppose that we have estimated trade elasticity using gravity equation
 - Central estimate in the literature is $\ensuremath{\varepsilon}=5$
- We can then estimate gains from trade:

	λ_{jj}	$\% GT_j$
Canada	0.82	3.8
Denmark	0.74	5.8
France	0.86	3.0
Portugal	0.80	4.4
Slovakia	0.66	7.6
U.S.	0.91	1.8

2. Gravity Models and the Gains from Trade: ACR (2012)

• New Trade Models

- Micro-level data have lead to new questions in international trade:
 - How many firms export?
 - How large are exporters?
 - How many products do they export?
- New models highlight new margins of adjustment:
 - From inter-industry to intra-industry to intra-firm reallocations

Old question:

• How large are the gains from trade (GT)?

• ACR's question:

• How do new trade models affect the magnitude of GT?

- ACR focus on gravity models
 - PC: Armington and Eaton & Kortum '02
 - MC: Krugman '80 and many variations of Melitz '03
- Within that class, welfare changes are $(\hat{x} = x'/x)$

$$\hat{C} = \hat{\lambda}^{1/\varepsilon}$$

- Two sufficient statistics for welfare analysis are:
 - Share of domestic expenditure, λ ;
 - Trade elasticity, ε
- Two views on ACR's result:
 - Optimistic: welfare predictions of Armington model are more robust than you thought
 - Pessimistic: within that class of models, micro-level data do not matter

Primitive Assumptions

Preferences and Endowments

• CES utility

• Consumer price index,

$${\sf P}_i^{1-\sigma}=\int_{\omega\in\Omega}{\sf p}_i(\omega)^{1-\sigma}d\omega,$$

• One factor of production: labor

- $L_i \equiv$ labor endowment in country *i*
- $w_i \equiv$ wage in country *i*

Primitive Assumptions Technology

• Linear cost function:

$$C_{ij}(\omega, t, q) = \underbrace{qw_i\tau_{ij}\alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}}}_{\text{variable cost}} + \underbrace{w_i^{1-\beta}w_j^{\beta}\xi_{ij}\phi_{ij}(\omega) m_{ij}(t)}_{\text{fixed cost}},$$

q: quantity,

 τ_{ii} : iceberg transportation cost,

 $\alpha_{ii}(\omega)$: good-specific heterogeneity in variable costs,

$$\xi_{ii}$$
 : fixed cost parameter,

 $\phi_{ii}(\omega)$: good-specific heterogeneity in fixed costs.

Primitive Assumptions Technology

Linear cost function:

$$C_{ij}\left(\omega, t, q\right) = q w_i \tau_{ij} \alpha_{ij}\left(\omega\right) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}\left(\omega\right) m_{ij}\left(t\right)$$

 $m_{ij}(t)$: cost for endogenous destination specific technology choice, t,

$$t\in [\underline{t},\overline{t}]$$
 , $m_{ij}'>0$, $m_{ij}''\geq 0$

Primitive Assumptions Technology

• Linear cost function:

$$C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}(\omega) m_{ij}(t)$$

• Heterogeneity across goods

$$G_{j}\left(\alpha_{1},...,\alpha_{n},\phi_{1},...,\phi_{n}\right)\equiv\left\{\omega\in\Omega\mid\alpha_{ij}\left(\omega\right)\leq\alpha_{i},\,\phi_{ij}\left(\omega\right)\leq\phi_{i},\,\forall i\right\}$$

Primitive Assumptions

Market Structure

Perfect competition

- Firms can produce any good.
- No fixed exporting costs.

Monopolistic competition

- Either firms in *i* can pay $w_i F_i$ for monopoly power over a random good.
- Or exogenous measure of firms, $\overline{N}_i < \overline{N}$, receive monopoly power.
- Let N_i be the measure of goods that can be produced in i
 - Perfect competition: $N_i = \overline{N}$
 - Monopolistic competition: $N_i < \overline{N}$

Macro-Level Restrictions

Trade is Balanced

Bilateral trade flows are

$$X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij}\left(\omega
ight) d\omega$$

• **R1** For any country *j*,

$$\sum_{i \neq j} X_{ij} = \sum_{i \neq j} X_{ji}$$

- Trivial if perfect competition or $\beta = 0$.
- Non trivial if $\beta > 0$.

• R2 For any country j,

 $\prod_{j} / \left(\sum_{i=1}^{n} X_{ji} \right)$ is constant

where Π_j : aggregate profits gross of entry costs, $w_j F_j$, (if any)

- Trivial under perfect competition.
- Direct from Dixit-Stiglitz preferences in Krugman (1980).
- Non-trivial in more general environments.

Macro-Level Restriction

CES Import Demand System

• Import demand system

$$({f w},{f N},{f au})\,
ightarrow{f X}$$

• R3

$$\varepsilon_{j}^{ii'} \equiv \partial \ln \left(X_{ij} / X_{jj} \right) / \partial \ln \tau_{i'j} = \begin{cases} \varepsilon < 0 & i = i' \neq j \\ 0 & otherwise \end{cases}$$

• Note: symmetry and separability.

- The trade elasticity ε is an upper-level elasticity: it combines
 - $x_{ij}(\omega)$ (intensive margin)
 - Ω_{ij} (extensive margin).
- R3 \implies complete specialization.
- R1-R3 are not necessarily independent

• If
$$\beta = 0$$
 then R3 \implies R2.

Macro-Level Restriction Strong CES Import Demand System (AKA Gravity)

R3' The IDS satisfies

$$X_{ij} = \frac{\chi_{ij} \cdot M_i \cdot (w_i \tau_{ij})^{\varepsilon} \cdot Y_j}{\sum_{i'=1}^n \chi_{i'j} \cdot M_{i'} \cdot (w_{i'} \tau_{i'j})^{\varepsilon}}$$

where χ_{ij} is independent of (**w**, **M**, τ).

• Same restriction on $\varepsilon_{j}^{\rm ii'}$ as R3 but, but additional structural relationships

• State of the world economy:

$$\mathsf{Z}\equiv(\mathsf{L}, au, \boldsymbol{\xi})$$

• Foreign shocks: a change from Z to Z' with no domestic change.

• Proposition 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/\varepsilon}.$$

- Implication: 2 sufficient statistics for welfare analysis $\widehat{\lambda}_{jj}$ and ε
- New margins affect structural interpretation of ε
 - ...and composition of gains from trade (GT)...
 - ... but size of GT is the same.

Gains from Trade Revisited

- Proposition 1 is an *ex-post* result... a simple *ex-ante* result:
- Corollary 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_{j}^{\mathcal{A}} = \lambda_{jj}^{-1/\varepsilon}.$$

Equivalence (II)

- A stronger ex-ante result for variable trade costs under R1-R3':
- Proposition 2: Suppose that R1-R3' hold. Then

$$\widehat{W}_{j} = \widehat{\lambda}_{jj}^{1/arepsilon}$$

where

$$\widehat{\lambda}_{jj} = \left[\sum_{i=1}^n \lambda_{ij} \left(\hat{w}_i \hat{ au}_{ij}
ight)^arepsilon
ight]^{-1}$$
 ,

and

$$\widehat{w}_{i} = \sum_{j=1}^{n} \quad \lambda_{ij} \widehat{w}_{j} Y_{j} \left(\widehat{w}_{i} \widehat{\tau}_{ij}
ight)^{arepsilon}$$

• ε and $\{\lambda_{ij}\}$ are sufficient to predict W_j (ex-ante) from $\hat{\tau}_{ij}$, i = j.

Taking Stock

- ACR consider models featuring:
 - (*i*) Dixit-Stiglitz preferences;
 - (*ii*) one factor of production;
 - (iii) linear cost functions; and
 - (*iv*) perfect or monopolistic competition;

with three macro-level restrictions:

- (*i*) trade is balanced;
- (ii) aggregate profits are a constant share of aggregate revenues; and
- (iii) a CES import demand system.
- Equivalence for ex-post welfare changes and GT
 - under R3' equivalence carries to ex-ante welfare changes

3. Beyond ACR's (2012) Equivalence Result: CR (2013)

Departing from ACR's (2012) Equivalence Result

• Other Gravity Models:

- Multiple Sectors
- Tradable Intermediate Goods
- Multiple Factors
- Variable Markups

Beyond Gravity:

- PF's sufficient statistic approach
- Revealed preference argument (Bernhofen and Brown 2005)
- More data (Costinot and Donaldson 2011)

Back to Armington

- 4 Add multiple sectors
- 2 Add traded intermediates

Multiple sectors, GT

- Nested CES: Upper level EoS ρ and lower level EoS ε_s
- Recall gains for Canada of 3.8%. Now gains can be much higher: $\rho = 1$ implies GT = 17.4%

Tradable intermediates, GT

- Set ho = 1, add tradable intermediates with Input-Output structure
- Labor shares are $1 \alpha_{j,s}$ and input shares are $\alpha_{j,ks}$ $(\sum_k \alpha_{j,ks} = \alpha_{j,s})$

Tradable intermediates, GT

	% <i>GT</i> _j	% GT_{j}^{MS}	% GT ¹⁰
Canada	3.8	17.4	30.2
Denmark	5.8	30.2	41.4
France	3.0	9.4	17.2
Portugal	4.4	23.8	35.9
U.S.	1.8	4.4	8.3

Combination of micro and macro features

- In Krugman, free entry \Rightarrow scale effects associated with total sales
- In Melitz, additional scale effects associated with market size
- In both models, trade may affect entry and fixed costs
- All these effects do not play a role in the one sector model
- With multiple sectors and traded intermediates, these effects come back

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6
MS, IO, MC (Melitz)	39.8	77.9	52.9	20.7	10.3

From GT to trade policy evaluation

- Back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{\tau}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- This is what CGE exercises do
- Contribution of recent quantitative work:
 - Link to theory—"mid-sized models"
 - Model consistent estimation
 - Quantify mechanisms

Main Lessons from CR (2013)

• Mechanisms that matter for GT:

- Multiple sectors, tradable intermediates
- Market structure matters, but in a more subtle way

• Trade policy in gravity models:

- Good approximation to optimal tariff is $1/\varepsilon \approx 20\%$ (related to Gros 87)
- Large range for which countries gain from tariffs
- Small effects of tariffs on other countries

For Future Research

- Treatment of capital goods
- Modeling of trade imbalances
- Fit of model
- Relation with micro studies
- Relation with other non-gravity approaches

MIT OpenCourseWare http://ocw.mit.edu

14.581 International Economics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.