Overview: Pricing with Market Power II

- Two Part Tariffs
- Base case: One Consumer Type
- Self-selection with Multiple Types
- Volume Pricing
- Bundling

Recall: Price Discrimination

- Three types covered:
- 'Perfect' - price at consumer’s full value
- Price to each market segment
- Price/design for consumer self- selection
- For all, need
- market power
- ability to prevent arbitrage/resale
- Knowledge of preferences, segment differences, etc.

Two-Part Tariffs

- Access fee and per-unit price
- Customers decide whether to pay access fee and how much to buy at the per-unit price
- Examples

Simple Case: One Consumer Type

- Single Price
- Two-Part Tariff

\square

Worked-out Example: Tennis Club

- Tennis club
- P = price for one hour of court time
- Q is hours of court time purchased
- 2 types of players, 1000 of each
"Serious", with demand $Q_{S}=6-P$
"Casual", with demand $Q_{C}=3-0.5 P$
- Fixed cost of operating club is $\$ 5000 /$ week
- Marginal cost of additional court time $=0$
- Pricing strategies we will consider
- Single price
- Two-part tariff
- Designed so that only "serious" play tennis
- Designed so that both "serious" and "casual" play tennis

Tennis Club: Single Price

- Individual demands:

$$
\mathrm{Q}_{\mathrm{S}}=6-\mathrm{P} \text { and } \mathrm{Q}_{\mathrm{C}}=3-0.5 \mathrm{P}
$$

- Total demand

$$
\begin{aligned}
\mathrm{Q} & =1000(6-\mathrm{P})+1000(3-0.5 \mathrm{P}) \\
& =9000-1500 \mathrm{P}
\end{aligned}
$$

or, converting to an "inverse" demand function,
$\mathrm{P}=6-\mathrm{Q} / 1500$

Tennis Club: Single Price (cont’d.)

- Market Demand $P=6-Q / 1500$
- Max profit:
$\Pi=\mathrm{PQ}-\mathrm{FC}=6 \mathrm{Q}-\mathrm{Q}^{2} / 1500-\mathrm{FC}$
$\mathrm{d} \Pi / \mathrm{dQ}=6-2 \mathrm{Q}^{*} / 1500=0$
$\mathrm{Q}^{*}=4500, \mathrm{P}^{*}=3$
$\Pi=6 \cdot 4500-(4500)^{2} / 1500-5000=\$ 8500 /$ week

Two-Part Tariff: "Serious" Group Only

Make "Serious" pay access fee $=$ full surplus

- For "serious" players: $\mathrm{Q}_{\mathrm{S}}=6-\mathrm{P}$

- $\mathrm{T}^{*}=\mathrm{CS}_{\mathrm{S}}=1 / 2 \cdot 6 \cdot 6=\$ 18 /$ week
- $\mathrm{P}^{*}=0$ (Why?)
$-\Pi=18 \cdot 1000-5000=\$ 13,000 /$ week

Two-Part Tariff: Sell to Both Groups

Make "Casual" pay access fee $=$ full surplus

- Set $T\left(\mathrm{P}^{*}\right)=\mathrm{CS}_{\mathrm{C}}\left(\mathrm{P}^{*}\right)$, given P^{*}. But what P^{*} ?
- $\mathrm{CS}_{\mathrm{C}}=1 / 2\left(6-\mathrm{P}^{*}\right)\left(3-0.5 \mathrm{P}^{*}\right)=\left(3-0.5 \mathrm{P}^{*}\right)^{2}$

Two-Part Tariff: Sell to Both Groups

- Now choose P^{*} to maximize Π
$\Pi=2000 \mathrm{~T}\left(\mathrm{P}^{*}\right)+1000 \mathrm{P}^{*} \mathrm{Q}_{\mathrm{S}}\left(\mathrm{P}^{*}\right)+1000 \mathrm{P}^{*} \cdot \mathrm{Q}_{\mathrm{C}}\left(\mathrm{P}^{*}\right)-5000$
- Substitute for demand and T*:

$$
\begin{gathered}
\Pi=2000\left(3-0.5 \mathrm{P}^{*}\right)^{2}+1000 \mathrm{P}^{*}\left(6-\mathrm{P}^{*}\right) \\
+1000 \mathrm{P}^{*}\left(3-0.5 \mathrm{P}^{*}\right)-5000
\end{gathered}
$$

- Set $\mathrm{d} \Pi / \mathrm{dP}=0 \rightarrow \mathrm{P}^{*}=\$ 1.50 /$ hour

$$
\begin{aligned}
& \mathrm{T}^{*}=\$ 5.06 / \text { week, } \mathrm{Q}_{\mathrm{S}}=4.5 \mathrm{hrs} / \text { week, } \mathrm{Q}_{\mathrm{C}}=2.25 \mathrm{hrs} / \text { week } \\
& \Pi=\mathbf{1 5 , 2 5 0} / \text { week }
\end{aligned}
$$

Summary: Tennis Club Pricing

Approach

Single Price
Tariff: "Serious Only"
Tariff: Sell to Both Groups
Perfect Price Discrimination

Profits per Week
\$ 8,500
\$ 13,000
\$ 15,250
\$ 22,000

Implementing Two-Part Tariffs

- Setting access fee and per-unit price amounts to choosing which consumers will purchase your product and how much.
- Simplest when consumers are very similar. With many different types of consumers, solutions may involve trial and error
- Alternative schemes?
- Different quality packages
- Combining two-part tariffs with segmentation

Volume Pricing: Example

- How does volume discounting maximize profits?
- Suppose there are two types of customers with demand curves as shown:
- Idea is to sell different blocks of quantities
 to different customer types.

Volume Pricing: Example

- Attract only High, charge $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$ for quantity q_{H}
- To attract High and Low, can sell two quantities $\mathrm{q}_{\mathrm{L}}, \mathrm{q}_{\mathrm{H}}$.
- Idea is to get Low to buy q_{L} and High to buy q_{H}.
- Charge $A+D$ for q_{L}, $\mathrm{A}+\mathrm{B}+\mathrm{D}+\mathrm{E}$ for q_{H}
- Note: High gets surplus C
- As with tariffs, must compare profits from one group to profits from two groups.

Volume Pricing: Adjustments

- For more profits from High customers, consider selling Low some quantity q_{L} ' other than q_{L}.
- With q_{L} ' you maximize profits by:
- Charge A'+D' for q_{L} '
(Gives Low zero surplus)
- Charge A'+ B'+D'+E' for q_{H} (or slightly less - give High enough surplus (C’) to choose q_{H} over $\mathrm{q}_{\mathrm{L}}{ }^{\prime}$)

Bundling

- Bundling refers to selling a combination of products for a single price; namely selling a "bundle."
- Many reasons to bundle
- Customer convenience.
- Extend market power (through tying)
- Extract more consumer surplus than with separate prices

Bundling Example (from book)

Two theaters with known reservation prices. Price separately or bundle?

Case 1:	GWTW	GGG
Theater A	$\$ 12,000$	$\$ 3,000$
Theater B	$\$ 10,000$	$\$ 4,000$

		Profit	
Separate prices	$\$ 10,000$	$\$ 3,000$	$\$ 26,000$
Pure bundle price	$\$ 14,000$	$\$ 28,000$	

Take Away Points

- Two-part tariffs and volume discounts can be used to price discriminate through consumer self-selection.
- Both systems work best when there are few segments with very different demand.
- Bundling can also be used to extract more surplus.

