15.561 Information Technology Essentials

Sessions 9 & 10 Computer Security

Acknowledgments: Adapted from Chris Dellarocas, U. Md..

Copyright © 2005 Thomas Malone, Chris Dellarocas

What is computer security?

• Securing communications

- Three steps:
 - » Secrecy = prevent understanding of intercepted communication
 - » Authentication = establish identity of sender
 - » Integrity = establish that communication has not been tampered with

• Securing access to resources

- Two steps:
 - » Authenticate = establish identity of the requestor
 - » Authorize = grant or deny access

Topic 1: Securing communications

• What can go wrong?

A bird's eye view of the Internet

Communication security issues

- Encryption How do I ensure the secrecy of my transactions?
- Authentication How do I verify the true identity of my counterparts?
- Integrity How can I be sure the message hasn't been altered?

Traditional cryptography

Figure by MIT OCW.

Ceasar's Cipher: Encryption by Substitution

• Substitute for each letter (block of bits)

- How can you crack a substitution cipher?
 - I.e., how can you guess the key?

Public-key cryptography

Public key cryptography

- Secret key cryptography: Based on a secret key
 - Same secret key used for encryption and decryption
 - Problem: How to transmit key securely on the Internet???
- Public key cryptography: Two keys used
 - Public key known to everybody. Used for encryption.
 - Private key known only to owner. Used for decryption.

{Message} encrypted using Bob's public key

Bob

Only Bob who knows the corresponding private key can decrypt

Alice

Public key cryptography works if...

• Private key remains secret

- Never leaves the owner's computer
- Typically encrypted and password-protected
- Difficult to guess private key from knowledge of public key
 - Boils down to trying all different key combinations
 - Difficulty of "breaking" the code rises exponentially with the bit length of the key
 - 1024-bit keys require more time than the life of the universe in order to be "broken"
- Reliable public key distributed
 - This is the most difficult problem!

Encryption is not enough: Spoofs

- Pretending to be someone else
- Hard to login without someone's password
- But can send out communications with someone else's name on it
 - email
 - » 1993: Dartmouth sent a message saying midterm exam was cancelled
 - » Message appeared to come from the Professor!

Needed: Message Authentication

- Make sure Bob gets the message unaltered
- Don't let Alice deny sending the message

- Don't care about eavesdropper Darth, unless Darth changes the message
- How can cryptography help?

Digital Signatures

- Key property: Public and private keys can be applied in either order
- Alice has message M
 - She applies her private key to it
 - She sends encrypted message to Bob
- Bob decrypts it with Alice's public key
 - gets back original message
 - infers that Alice is indeed the sender (since only Alice has the private key that corresponds to her public key)
- In that way, encrypting a message with one's private key acts as a digital signature!

Public Key Management

- Public key cryptography works as long as
 - ✓ Private key is really kept secret
 - ✓ Hard to compute private key from public key
 - Get the correct public key from some trusted source
- Bob can send public key over insecure communication channel
- But how do you know Darth didn't send you his key instead?

A central key distributor

- Alice asks the distributor for Bob's public key
- The distributor sends it to Alice and "digitally signs" it
- Alice knows the key came from the distributor
 - Now just have to be sure that the distributor is honest and got Bob's key from Bob, not Darth
- Requires one secure communication per user
 - Bob sends public key to distributor when he joins the system
- Secret keys require secure communication between every pair of users

Public Key Infrastructure (PKI)

- Certificate Authorities are Trusted Third Parties charged with the responsibility to generate trusted certificates for requesting individuals organizations
 - Certificates contain the requestors public key and are digitally signed by the CA
 - Before a certificate is issued, CA must verify the identity of the requestor
- These certificates can then facilitate automatic authentication of two parties without the need for out-of-band communication

Certificates

- Used to certify a user's identity to another user
 - The certificate issuer's name
 - Who the certificate is being issued for (a.k.a the subject)
 - The public key of the subject
 - Some time stamps
- Digitally signed by issuer
- Issuer must be a trusted entity
- All users must have a reliable public key of the issuer
 - in order to verify signed certificate

Web browsers come with a number of certificates already installed

Certificates				? X
Intended purpose: <a>				
Issued To	Issued By	Expiratio	Friendly Name	
Microsoft Authentic Microsoft Root Aut Microsoft Root Cert MIT Certification A NetLock Expressz (NetLock Kozjegyzoi NetLock Uzleti (Clas NO LIABILITY ACC PTT Post Root CA	Microsoft Authenticod Microsoft Root Authority Microsoft Root Certifi MIT Certification Auth NetLock Expressz (Cla NetLock Kozjegyzoi (C NetLock Uzleti (Class NO LIABILITY ACCEP PTT Post Root CA	12/31/1999 12/31/2020 5/9/2021 7/13/2006 2/20/2019 2/19/2019 2/20/2019 1/7/2004 6/26/2019	Microsoft Authe Microsoft Root A Microsoft Root C <none> NetLock Express NetLock Kozjegy NetLock Uzleti (C VeriSign Time St KeyMail PTT Post</none>	
Import	Remove		Advanc	:ed
Certificate intended purpose	95		⊻jew	
			⊆lo:	se

PKI Industry

- Main players: trusted third party CAs
 - Verisign
 - Entrust
 - Cybertrust
 - **RSA**
- Revenue from
 - products (PKI servers for intranets and extranets)
 - services (certificate services for individuals and organizations)

Applications: eCommerce Security

- Needed to transmit sensitive information through the Web
 - credit card numbers
 - merchandise orders
- Requirements
 - sender and receiver must authenticate each other before sending any "real" data
 - all "real" data must flow encrypted through the network
 - no intercepted communication can be used to an intruder's advantage

SSL / TLS

- Secure Sockets Layer / Transport Layer Security
- Provides reasonable level of security
- Often used for transactions between consumers and merchants

Negotiate Security Options

Merchant's digital certificate

Merchant

Random session key generated by customer and encrypted with merchant's public key

> **Ongoing communication with both parties using session key**

Applications: Virtual Private Networks (VPNs)

- Secure, private networks that operate over a public network (like the Internet).
 - Messages are confidential
 - Only authorized users can access network
- "Tunneling" -- encrypted messages from one protocol are packaged inside another protocol.

Topic 2: Access Control

- Something you have
- Something you know
- Something you are

Smart Cards "Something you have"

- Several subcategories
- One of interest here is cryptographic smart cards:
 - Store user's digital certificate and/or private key
 - Used to prevent private keys from being "hacked" from user's computer
 - What happens if a smart card is stolen?

System Access Controls "Something you know..."

- Login procedures
 - Usually something you know

Password leaks

- Commonly used password
- Explicitly told
 - » Voluntarily
 - » Trojan horse
- Trial and error
- Intercepted communication
 - » paper, camera, wiretap, file on disk, emanations, password sniffing on networks

• Passwords are inconvenient

In client/server environment, user doesn't want to enter password for every service she connects to

Enter Biometrics... "Something you are..."

Figure by MIT OCW.

Sneaking through the backdoor...

- Strategies whose goal is to gain control by bypassing access control defenses
- Exploit "holes" in applications that connect our machine to the network
 - Viruses
 - Buffer overflow attacks

Viruses and Worms

- Programs that run on machines where they're not wanted
- Transmitted through I/O channels
- Disguise themselves
 - How?
- Often don't act right away
 - Why not?
- Why hasn't anyone written a definitive virus eliminator?

Spyware, Adware, Malware

- Programs that are (usually) added to your computer without your knowledge and that do things you don't want, such as:
 - Display unwanted ads in pop-up windows
 - Surreptitiously send information about your computer and your actions to someone else
 - Change toolbars, homepages, etc.
- Common sources:
 - "Free" software you download and install
 - Some web pages

Denial of service attacks

- Flood a server with fake messages (with "spoofed" IP addresses) so that no legitimate messages can get through
 - Flood someone's mailbox
 - Recent attacks on eBay, Yahoo, etc.
- Difficult to trace since fake messages are sent from a variety of "hijacked" machines

Defensive Measures

- Virus scanners and removers
- Malware scanners and removers
- Firewalls
- Intrusion Detection Systems

Firewalls

What a firewall does

- Hides the structure of the network by making it appear that all transmissions originate from the firewall.
- Blocks all data not specifically requested by a legitimate user of the network.
- Screens data for source and destination address so you receive data from only trusted locations like people on your approved guest list.
- Screens the contents of data packets for known hacker attacks

Types of firewalls

- Packet filter: Looks at each <u>packet</u> entering or leaving the network and accepts or rejects it based on userdefined rules.
 - Stateless
 - Stateful
- Proxy server: Intercepts all messages entering and leaving the network. The <u>proxy server</u> effectively hides the true network addresses

Packet-level firewalls

Figure by MIT OCW.

Application-level gateways

Figure by MIT OCW.

Firewall performance/security tradeoffs

How do Intrusion Detection Systems work?

- IDS uses data mining techniques to uncover and report suspicious activities
- Two main strategies:
 - Pattern recognition
 - Anomaly detection

Other prevention measures

• Stay current on patch levels for Microsoft's OS and web server.

Despite all that... security breaches are on the rise

Figure by MIT OCW.

.. and require far less technical expertise

Security Resources

• www.microsoft.com/security

- Advisories
- Patches
- IIS Security Checklist
- www.securityfocus.com
 - Bugtraq Mailing List
 - Tools, Books, Links
 - Vulnerabilities and Fixes