16.333: Lecture \# 6

Aircraft Longitudinal Dynamics

- Typical aircraft open-loop motions
- Longitudinal modes
- Impact of actuators
- Linear Algebra in Action!

Longitudinal Dynamics

- Recall: X denotes the force in the X-direction, and similarly for Y and Z, then (as on 4-13)

$$
X_{u} \equiv\left(\frac{\partial X}{\partial u}\right)_{0}, \ldots
$$

- Longitudinal equations (see 4-13) can be rewritten as:

$$
\begin{aligned}
m \dot{u} & =X_{u} u+X_{w} w-m g \cos \Theta_{0} \theta+\Delta X^{c} \\
m\left(\dot{w}-q U_{0}\right) & =Z_{u} u+Z_{w} w+Z_{\dot{w}} \dot{w}+Z_{q} q-m g \sin \Theta_{0} \theta+\Delta Z^{c} \\
I_{y y} \dot{q} & =M_{u} u+M_{w} w+M_{\dot{w}} \dot{w}+M_{q} q+\Delta M^{c}
\end{aligned}
$$

- There is no roll/yaw motion, so $q=\dot{\theta}$.
- Control commands $\Delta X^{c}, \Delta Z^{c}$, and ΔM^{c} have not yet been specified.
- Rewrite in state space form as

$$
\left[\begin{array}{c}
m \dot{u} \\
\left(m-Z_{\dot{w}}\right) \dot{w} \\
-M_{\dot{w}} \dot{w}+I_{y y} \dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
X_{u} & X_{w} & 0 & -m g \cos \Theta_{0} \\
Z_{u} & Z_{w} & Z_{q}+m U_{0} & -m g \sin \Theta_{0} \\
M_{u} & M_{w} & M_{q} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
u \\
w \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\Delta X^{c} \\
\Delta Z^{c} \\
\Delta M^{c} \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
m & 0 & 0 & 0 \\
0 & m-Z_{\dot{w}} & 0 & 0 \\
0 & -M_{\dot{w}} & I_{y y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{u} \\
\dot{w} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
X_{u} & X_{w} & 0 & -m g \cos \Theta_{0} \\
Z_{u} & Z_{w} & Z_{q}+m U_{0} & -m g \sin \Theta_{0} \\
M_{u} & M_{w} & M_{q} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
u \\
w \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\Delta X^{c} \\
\Delta Z^{c} \\
\Delta M^{c} \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
E \dot{\mathcal{X}} & =\bar{A} \mathcal{X}+\hat{\mathbf{c}} \quad \text { descriptor state space form } \\
\Rightarrow \dot{\mathcal{X}} & =E^{-1}(\bar{A} \mathcal{X}+\hat{\mathbf{c}})=A \mathcal{X}+\mathbf{c}
\end{aligned}
$$

- Write out in state space form:
$A=\left[\begin{array}{c|c|c|c}\frac{X_{u}}{m} & \frac{X_{w}}{m} & 0 & -g \cos \Theta_{0} \\ \frac{Z_{u}}{m-Z_{\dot{w}}} & \frac{Z_{w}}{m-Z_{\dot{w}}} & \frac{Z_{q}+m U_{0}}{m-Z_{\dot{w}}} & \frac{-m g \sin \Theta_{0}}{m-Z_{\dot{w}}} \\ I_{y y}^{-1}\left[M_{u}+Z_{u} \Gamma\right] & I_{y y}^{-1}\left[M_{w}+Z_{w} \Gamma\right] & I_{y y}^{-1}\left[M_{q}+\left(Z_{q}+m U_{0}\right) \Gamma\right] & -I_{y y}^{-1} m g \sin \Theta_{0} \Gamma \\ 0 & 0 & 1 & 0\end{array}\right]$
$\Gamma=\frac{M_{\dot{w}}}{m-Z_{\dot{w}}}$
- Note: slight savings if we defined symbols to embed the mass/inertia $\hat{X}_{u}=X_{u} / m, \hat{Z}_{u}=Z_{u} / m$, and $\hat{M}_{q}=M_{q} / I_{y y}$ then A matrix collapses to:

$$
\begin{gathered}
\hat{A}=\left[\begin{array}{c|c|c|c}
\hat{X}_{u} & \hat{X}_{w} & 0 & -g \cos \Theta_{0} \\
\frac{\hat{Z}_{u}}{1-\hat{Z}_{\dot{w}}} & \frac{\hat{Z}_{w}}{1-\hat{Z}_{\dot{w}}} & \frac{\hat{Z}_{q}+U_{0}}{1-\hat{Z}_{\dot{w}}} & \frac{-g \sin \Theta_{0}}{1-\hat{Z}_{\dot{w}}} \\
{\left[\hat{M}_{u}+\hat{Z}_{u} \hat{\Gamma}\right]} & {\left[\hat{M}_{w}+\hat{Z}_{w} \hat{\Gamma}\right]} & {\left[\hat{M}_{q}+\left(\hat{Z}_{q}+U_{0}\right) \hat{\Gamma}\right]} & -g \sin \Theta_{0} \hat{\Gamma} \\
0 & 0 & 1 & 0
\end{array}\right] \\
\hat{\Gamma}=\frac{\hat{M}_{\dot{w}}}{1-\hat{Z}_{\dot{w}}}
\end{gathered}
$$

- Check the notation that is being used very carefully
- To figure out the c vector, we have to say a little more about how the control inputs are applied to the system.

Longitudinal Actuators

- Primary actuators in longitudinal direction are the elevators and thrust.
- Clearly the thrusters/elevators play a key role in defining the steady-state/equilibrium flight condition
- Now interested in determining how they also influence the aircraft motion about this equilibrium condition

$$
\text { deflect elevator } \rightarrow u(t), w(t), q(t), \ldots
$$

- Recall that we defined ΔX^{c} as the perturbation in the total force in the X direction as a result of the actuator commands
- Force change due to an actuator deflection from trim
- Expand these aerodynamic terms using same perturbation approach

$$
\Delta X^{c}=X_{\delta_{e}} \delta_{e}+X_{\delta_{p}} \delta_{p}
$$

$-\delta_{e}$ is the deflection of the elevator from trim (down positive)
$-\delta_{p}$ change in thrust

- $X_{\delta_{e}}$ and $X_{\delta_{p}}$ are the control stability derivatives
- Now we have that

$$
\mathbf{c}=E^{-1}\left[\begin{array}{c}
\Delta X^{c} \\
\Delta Z^{c} \\
\Delta M^{c} \\
0
\end{array}\right]=E^{-1}\left[\begin{array}{cc}
X_{\delta_{e}} & X_{\delta_{p}} \\
Z_{\delta_{e}} & Z_{\delta_{p}} \\
M_{\delta_{e}} & M_{\delta_{p}} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\delta_{e} \\
\delta_{p}
\end{array}\right]=B u
$$

- For the longitudinal case

$$
B=\left[\begin{array}{c|c}
\frac{X_{\delta_{e}}}{m} & \frac{X_{\delta_{p}}}{m} \\
\frac{Z_{\delta_{e}}}{m-Z_{\dot{w}}} & \frac{Z_{\delta_{p}}}{m-Z_{\dot{w}}} \\
I_{y y}^{-1}\left[M_{\delta_{e}}+Z_{\delta_{e}} \Gamma\right] & I_{y y}^{-1}\left[M_{\delta_{p}}+Z_{\delta_{p}} \Gamma\right] \\
0 & 0
\end{array}\right]
$$

- Typical values for the B747

$$
\begin{array}{ll}
X_{\delta_{e}}=-16.54 & X_{\delta_{p}}=0.3 m g=849528 \\
Z_{\delta_{e}}=-1.58 \cdot 10^{6} & Z_{\delta_{p}} \approx 0 \\
M_{\delta_{e}}=-5.2 \cdot 10^{7} & M_{\delta_{p}} \approx 0
\end{array}
$$

- Aircraft response $y=G(s) u$

$$
\begin{aligned}
& \dot{\mathcal{X}}=A \mathcal{X}+B u \rightarrow G(s)=C(s I-A)^{-1} B \\
& y=C \mathcal{X}
\end{aligned}
$$

- We now have the means to modify the dynamics of the system, but first let's figure out what δ_{e} and δ_{p} really do.

Longitudinal Response

- Final response to a step input $u=\hat{u} / s, y=G(s) u$, use the FVT

$$
\begin{aligned}
\lim _{t \rightarrow \infty} y(t) & =\lim _{s \rightarrow 0} s\left(G(s) \frac{\hat{u}}{s}\right) \\
\Rightarrow \lim _{t \rightarrow \infty} y(t) & =G(0) \hat{u}=-\left(C A^{-1} B\right) \hat{u}
\end{aligned}
$$

- Initial response to a step input, use the IVT

$$
y\left(0^{+}\right)=\lim _{s \rightarrow \infty} s\left(G(s) \frac{\hat{u}}{s}\right)=\lim _{s \rightarrow \infty} G(s) \hat{u}
$$

- For your system, $G(s)=C(s I-A)^{-1} B+D$, but $D \equiv 0$, so

$$
\lim _{s \rightarrow \infty} G(s) \rightarrow 0
$$

- Note: there is NO immediate change in the output of the motion variables in response to an elevator input $\Rightarrow y\left(0^{+}\right)=0$
- Consider the rate of change of these variables $\dot{\mathbf{y}}\left(\mathbf{0}^{+}\right)$

$$
\dot{y}(t)=C \dot{\mathcal{X}}=C A \mathcal{X}+C B u
$$

and normally have that $C B \neq 0$. Repeat process above \mathbb{e}^{1} to show that $\dot{y}\left(0^{+}\right)=C B \hat{u}$, and since $C \equiv I$,

$$
\dot{y}\left(0^{+}\right)=B \hat{u}
$$

- Looks good. Now compare with numerical values computed in Matlab. Plot u, α, and flight path angle $\gamma=\theta-\alpha$ (since $\Theta_{0}=\gamma_{0}=0$ - see picture on 4-8)

[^0]
Elevator (1° elevator down - stick forward)

- See very rapid response that decays quickly (mostly in the first 10 seconds of the α response)
- Also see a very lightly damped long period response (mostly u, some γ, and very little α). Settles in >600 secs
- Predicted steady state values from code:

14.1429	$\mathrm{~m} / \mathrm{s}$	u	(speeds up)
-0.0185	rad	α	(slight reduction in AOA)
-0.0000	$\mathrm{rad} / \mathrm{s}$	q	
-0.0161	rad	θ	
0.0024	rad	γ	

- Predictions appear to agree well with the numerical results.
- Primary result is a slightly lower angle of attack and a higher speed
- Predicted initial rates of the output values from code:

-0.0001	$\mathrm{~m} / \mathrm{s}^{2}$	\dot{u}
-0.0233	$\mathrm{rad} / \mathrm{s}$	$\dot{\alpha}$
-1.1569	$\mathrm{rad} / \mathrm{s}^{2}$	\dot{q}
0.0000	$\mathrm{rad} / \mathrm{s}$	$\dot{\theta}$
0.0233	$\mathrm{rad} / \mathrm{s}$	$\dot{\gamma}$

- All outputs are zero at $t=0^{+}$, but see rapid changes in α and q.
- Changes in u and γ (also a function of θ) are much more gradual - not as easy to see this aspect of the prediction
- Initial impact Change in α and q (pitches aircraft)
- Long term impact Change in u (determines speed at new equilibrium condition)

Figure 1: Step Response to 1 deg elevator perturbation - B 747 at $\mathrm{M}=0.8$

Thrust (1/6 input)

- Motion now dominated by the lightly damped long period response
- Short period motion barely noticeable at beginning.
- Predicted steady state values from code:

0	$\mathrm{~m} / \mathrm{s}$	u
0	rad	α
0	$\mathrm{rad} / \mathrm{s}$	q
0.05	rad	θ
0.05	rad	γ

- Predictions appear to agree well with the simulations.
- Primary result - now climbing with a flight path angle of 0.05 rad at the same speed we were going before.
- Predicted initial rates of the output values from code:

2.9430	$\mathrm{~m} / \mathrm{s}^{2}$	\dot{u}
0	$\mathrm{rad} / \mathrm{s}$	$\dot{\alpha}$
0	$\mathrm{rad} / \mathrm{s}^{2}$	\dot{q}
0	$\mathrm{rad} / \mathrm{s}$	$\dot{\theta}$
0	$\mathrm{rad} / \mathrm{s}$	$\dot{\gamma}$

- Changes to α are very small, and γ response initially flat.
- Increase power, and the aircraft initially speeds up
- Initial impact Change in u (accelerates aircraft)
- Long term impact Change in γ (determines climb rate)

Figure 2: Step Response to $1 / 6$ thrust perturbation - B 747 at $\mathrm{M}=0.8$

Frequency Domain Response

- Plot and inspect transfer functions from δ_{e} and δ_{p} to u, w, and γ
- See following pages
- From elevator:
- Huge response at the phugoid mode for both u and γ (very lightly damped)
- Short period mode less pronounced
- Response falls off very rapidly
- Response to w shows a pole/zero cancelation (almost) of the phugoid mode. So the magnitude level is essentially constant out to the frequency of the short period mode

Why would we expect that?

- From thrust:

- Phugoid peaks present, but short period mode is very weak (not in u, low in $\gamma, w)$. \Rightarrow entirely consistent with the step response.
- Thrust controls speed (initially), so we would expect to see a large response associated with the phugoid mode (speed variations are a key component of this mode)

Figure 3: TF's from elevator to flight variables - B 747 at $\mathrm{M}=0.8$

Figure 4: TF's from thrust to flight variables- B 747 at $\mathrm{M}=0.8$

- Summary:
- To increase equilibrium climb rate, add power.
- To increase equilibrium speed, increase δ_{e} (move elevator further down).
- Transient (initial) effects are the opposite and tend to be more consistent with what you would intuitively expect to occur

Modal Behavior

- Analyze model of vehicle dynamics to quantify the responses seen.
- Homogeneous dynamics of the form $\dot{X}=A X$, so the response is

$$
X(t)=e^{A t} X(0) \text { - a matrix exponential. }
$$

- To simplify the investigation of the system response, find the modes of the system using the eigenvalues and eigenvectors
$-\lambda$ is an eigenvalue of A if $\operatorname{det}(\lambda I-A)=0$ which is true iff there exists a nonzero v (eigenvector) for which

$$
(\lambda I-A) v=0 \quad \Rightarrow \quad A v=\lambda v
$$

- If $\mathrm{A}(n \times n)$, typically get n eigenvalues/eigenvectors $A v_{i}=\lambda_{i} v_{i}$
- Assuming that eigenvectors are linearly independent, can form

$$
A\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]
$$

$$
A T=T \Lambda
$$

$$
\Rightarrow T^{-1} A T=\Lambda \quad, \quad A=T \Lambda T^{-1}
$$

- Given that $e^{A t}=I+A t+\frac{1}{2!}(A t)^{2}+\ldots$, and that $A=T \Lambda T^{-1}$, then it is easy to show that

$$
X(t)=e^{A t} X(0)=T e^{\Lambda t} T^{-1} X(0)=\sum_{i=1}^{n} v_{i} e^{\lambda_{i} t} \beta_{i}
$$

- State solution is a linear combination of system modes $v_{i} e^{\lambda_{i} t}$ $e^{\lambda_{i} t}$ - determines nature of the time response
v_{i} - gives extent to which each state participates in that mode β_{i} - determines extent to which initial condition excites the mode
- The total behavior of the system can be found from the system modes
- Consider numerical example of B747

$$
A=\left[\begin{array}{cccc}
-0.0069 & 0.0139 & 0 & -9.8100 \\
-0.0905 & -0.3149 & 235.8928 & 0 \\
0.0004 & -0.0034 & -0.4282 & 0 \\
0 & 0 & 1.0000 & 0
\end{array}\right]
$$

which gives two sets of complex eigenvalues
$\lambda=-0.3717 \pm 0.8869 \mathbf{i}, \omega=0.962, \zeta=0.387, \quad$ short period
$\lambda=-0.0033 \pm 0.0672 \mathbf{i}, \omega=0.067, \zeta=0.049$, Phugoid - long period

- Result is consistent with step response - heavily damped fast response, and a lightly damped slow one.
- To understand eigenvectors, must do some normalization (scales each element appropriately so that we can compare relative sizes)
$-\hat{u}=u / U_{0}, \alpha=w / U_{0}, \hat{q}=q /\left(2 U_{0} / \bar{c}\right)$
- Then divide through so that $\theta \equiv 1$

	Short Period	Phugoid
\hat{u}	$0.0156+0.0244 \mathbf{i}$	$-0.0254+0.6165 \mathbf{i}$
α	$1.0202+0.3553 \mathbf{i}$	$0.0045+0.0356 \mathbf{i}$
\hat{q}	$-0.0066+0.0156 \mathbf{i}$	$-0.0001+0.0012 \mathbf{i}$
θ	1.0000	1.0000

- Short Period - primarily θ and $\alpha=\hat{w}$ in the same phase. The \hat{u} and \hat{q} response is very small.
- Phugoid - primarily θ and \hat{u}, and θ lags by about 90°. The α and \hat{q} response is very small.
- Dominant behavior agrees with time step responses - note how initial conditions were formed.

Figure 5: Mode Response - B 747 at $\mathrm{M}=0.8$

- Relative motion between aircraft and an observer flying at a constant speed $U_{0} t$
(Image removed for copyright considerations.)
- Motion of perturbed aircraft with respect to an unperturbed one
- Note phasing of the forward velocity \dot{x}_{e} with respect to altitude z_{e}
- aircraft faster than observer at the bottom, slower at the top
- The aircraft speeds up and slows down - leads and lags the observer.
- Consistent with flight path?
- Consistent with Lanchester's approximation on 4-1?

Summary

- Two primary longitudinal modes: phugoid and short-period
- Have versions from the full model - but can develop good approximations that help identify the aerodynamic features that determine the mode frequencies and damping

Impact of the various actuators clarified:

- Short time-scale
- Long time-scale

Matrix Diagonalization

- Suppose A is diagonizable with independent eigenvectors

$$
V=\left[v_{1}, \ldots, v_{n}\right]
$$

- use similarity transformations to diagonalize dynamics matrix

$$
\begin{aligned}
\dot{x} & =A x \Rightarrow \dot{x}_{d}=A_{d} x_{d} \\
V^{-1} A V & =\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \triangleq \Lambda=A_{d}
\end{aligned}
$$

- Corresponds to change of state from x to $x_{d}=V^{-1} x$
- System response given by $e^{A t}$, look at power series expansion

$$
\begin{aligned}
A t & =V \Lambda t V^{-1} \\
(A t)^{2} & =\left(V \Lambda t V^{-1}\right) V \Lambda t V^{-1}=V \Lambda^{2} t^{2} V^{-1} \\
\Rightarrow(A t)^{n} & =V \Lambda^{n} t^{n} V^{-1} \\
e^{A t} & =I+A t+\frac{1}{2}(A t)^{2}+\ldots \\
& =V\left\{I+\Lambda+\frac{1}{2} \Lambda^{2} t^{2}+\ldots\right\} V^{-1} \\
& =V e^{\Lambda t} V^{-1}=V\left[\begin{array}{lll}
e^{\lambda_{1} t} & & \\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right] V^{-1}
\end{aligned}
$$

- Taking Laplace transform,

$$
\begin{aligned}
(s I-A)^{-1} & =V\left[\begin{array}{ccc}
\frac{1}{s-\lambda_{1}} & & \\
& \ddots & \\
& & \frac{1}{s-\lambda_{n}}
\end{array}\right] V^{-1} \\
& =\sum_{i=1}^{n} \frac{R_{i}}{s-\lambda_{i}}
\end{aligned}
$$

where the residue $R_{i}=v_{i} w_{i}^{T}$, and we define

$$
V=\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right], V^{-1}=\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right]
$$

- Note that the w_{i} are the left eigenvectors of A associated with the right eigenvectors v_{i}

$$
\begin{gathered}
A V=V\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \Rightarrow V^{-1} A=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] V^{-1} \\
{\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right] A=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right]}
\end{gathered}
$$

where $w_{i}^{T} A=\lambda_{i} w_{i}^{T}$

- So, if $\dot{x}=A x$, the time domain solution is given by

$$
\begin{aligned}
& x(t)=\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i} w_{i}^{T} x(0) \quad \text { dyad } \\
& x(t)=\sum_{i=1}^{n}\left[w_{i}^{T} x(0)\right] e^{\lambda_{i} t} v_{i}
\end{aligned}
$$

- The part of the solution $v_{i} e^{\lambda_{i} t}$ is called a mode of a system
- solution is a weighted sum of the system modes
- weights depend on the components of $x(0)$ along w_{i}
- Can now give dynamics interpretation of left and right eigenvectors:

$$
A v_{i}=\lambda_{i} v_{i}, w_{i} A=\lambda_{i} w_{i}, w_{i}^{T} v_{j}=\delta_{i j}
$$

so if $x(0)=v_{i}$, then

$$
\begin{aligned}
x(t) & =\sum_{i=1}^{n}\left(w_{i}^{T} x(0)\right) e^{\lambda_{i} t} v_{i} \\
& =e^{\lambda_{i} t} v_{i}
\end{aligned}
$$

\Rightarrow so right eigenvectors are initial conditions that result in relatively simple motions $x(t)$.

With no external inputs, if initial condition only disturbs one mode, then the response consists of only that mode for all time.

- If A has complex conjugate eigenvalues, the process is similar but a little more complicated.
- Consider a 2×2 case with A having eigenvalues $a \pm b \mathbf{i}$ and associated eigenvectors e_{1}, e_{2}, with $e_{2}=\bar{e}_{1}$. Then

$$
\begin{aligned}
A & =\left[e_{1} \mid e_{2}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid e_{2}\right]^{-1} \\
& =\left[e_{1} \mid \bar{e}_{1}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid \bar{e}_{1}\right]^{-1} \equiv T D T^{-1}
\end{aligned}
$$

- Now use the transformation matrix

$$
M=0.5\left[\begin{array}{rr}
1 & -\mathbf{i} \\
1 & \mathbf{i}
\end{array}\right] \quad M^{-1}=\left[\begin{array}{rr}
1 & 1 \\
\mathbf{i} & -\mathbf{i}
\end{array}\right]
$$

- Then it follows that

$$
\begin{aligned}
A & =T D T^{-1}=(T M)\left(M^{-1} D M\right)\left(M^{-1} T^{-1}\right) \\
& =(T M)\left(M^{-1} D M\right)(T M)^{-1}
\end{aligned}
$$

which has the nice structure:

$$
A=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

where all the matrices are real.

- With complex roots, the diagonalization is to a block diagonal form.
- For this case we have that

$$
e^{A t}=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

- Note that $\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}$ is the matrix that inverts $\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]$

$$
\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- So for an initial condition to excite just this mode, can pick $x(0)=$ $\left[\operatorname{Re}\left(e_{1}\right)\right]$, or $x(0)=\left[\operatorname{Im}\left(e_{1}\right)\right]$ or a linear combination.
- Example $x(0)=\left[\operatorname{Re}\left(e_{1}\right)\right]$

$$
\begin{aligned}
x(t)= & e^{A t} x(0)=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right] \\
& {\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right)\right] } \\
= & {\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] } \\
= & e^{a t}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{r}
\cos (b t) \\
-\sin (b t)
\end{array}\right] \\
= & e^{a t}\left(\operatorname{Re}\left(e_{1}\right) \cos (b t)-\operatorname{Im}\left(e_{1}\right) \sin (b t)\right)
\end{aligned}
$$

which would ensure that only this mode is excited in the response

Example: Spring Mass System

- Classic example: spring mass system consider simple case first: $m_{i}=$ 1 , and $k_{i}=1$

$$
x=\left[\begin{array}{llllll}
z_{1} & z_{2} & z_{3} & \dot{z}_{1} & \dot{z}_{2} & \dot{z}_{3}
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & 0
\end{array}\right] \quad M=\operatorname{diag}\left(m_{i}\right)
$$

$$
K=\left[\begin{array}{ccc}
k_{1}+k_{2}+k_{5} & -k_{5} & -k_{2} \\
-k_{5} & k_{3}+k_{4}+k_{5} & -k_{3} \\
-k_{2} & -k_{3} & k_{2}+k_{3}
\end{array}\right]
$$

- Eigenvalues and eigenvectors of the undamped system

$$
\begin{array}{ccc}
\lambda_{1}= \pm 0.77 \mathbf{i} & \lambda_{2}= \pm 1.85 \mathbf{i} & \lambda_{3}= \pm 2.00 \mathbf{i} \\
v_{1} & v_{2} & v_{3} \\
1.00 & 1.00 & 1.00 \\
1.00 & 1.00 & -1.00 \\
1.41 & -1.41 & 0.00 \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \pm 2.00 \mathbf{i} \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \mp 2.00 \mathbf{i} \\
\pm 1.08 \mathbf{i} & \mp 2.61 \mathbf{i} & 0.00
\end{array}
$$

- Initial conditions to excite just the three modes:

$$
x_{i}(0)=\alpha_{1} \operatorname{Re}\left(v_{i}\right)+\alpha_{2} \operatorname{Im}\left(v_{1}\right) \quad \forall \alpha_{j} \in \mathbb{R}
$$

- Simulation using $\alpha_{1}=1, \alpha_{2}=0$
- Visualization important for correct physical interpretation
- Mode $1 \lambda_{1}= \pm 0.77 \mathrm{i}$

- Lowest frequency mode, all masses move in same direction
- Middle mass has higher amplitude motions z_{3}, motions all in phase

- Mode $2 \lambda_{2}= \pm 1.85 \mathbf{i}$

M_{1} M_{3}	M_{2} \longrightarrow	\rightarrow

- Middle frequency mode has middle mass moving in opposition to two end masses
- Again middle mass has higher amplitude motions z_{3}

- Mode $3 \lambda_{3}= \pm 2.00 \mathbf{i}$

- Highest frequency mode, has middle mass stationary, and other two masses in opposition

- Eigenvectors with that correspond with more constrained motion of the system are associated with higher frequency eigenvalues

[^0]: ${ }^{1}$ Note that $C(s I-A)^{-1} B+D=D+\frac{C B}{s}+\frac{C A^{-1} B}{s^{2}}+.$.

