MUDDY POINTS

- Disappearance of vorticity?
- Vortices *versus* vorticity?
- Linear velocity variation in a nozzle?

DOES VORTICITY EVER DISAPPEAR?

- Vortex lines are only "locked" to fluid particles for inviscid flow with conservative body forces and either uniform constant density or $\rho = \rho(p)$
 - Otherwise vorticity can diffuse out of, or into, fluid particles through the action of viscosity
 - Otherwise vorticity can be produced (or reduced) through the agency of baroclinic torque
- Consider the flow in a 2-D rotating cylinder
 - Eventual steady-state is constant vorticity
- Suppose we stop the cylinder?
 - Eventual steady-state is no motion
- Can we describe this in terms of diffusion of vorticity?
- Could we do the same for two infinite parallel plates, one moving but then brought to rest?

VORTICITY AND STREAMLINE CURVATURE

• Vorticity can be present even if streamlines are straight

- Have rotation rate of vertical fluid line of $-\frac{\partial u_y}{\partial x}$, no rotation horiz. line
- Total rotation of 2 perpendicular lines is $-\frac{\partial u_x}{\partial y} + 0 = \omega_z$

VORTICITY IS NOT NECESSARILY PRESENT IF STREAMLINES ARE CURVED

• Consider 2-D flow with $u_{\theta} \propto 1/r$, $u_r = 0$

Horizontal leg rotates $d\theta$ in clockwise direction

 $d\theta = \frac{u_{\theta}}{r} \delta t$ Vertical leg rotates $\frac{\partial u_{\theta}}{\partial r} \delta t$ in anti-clockwise direction

Net rotation in anti - clockwise direction is $\left(\frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}\right) \delta t$

If
$$u_{\theta} \propto 1/r$$
, $\left(\frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}\right) = 0$, NO NET ROTATION OF FLUID PARTICLES => $\omega = 0$

CIRCULATION AND VORTICITY

- Circulation around a contour C is equal to the flux of vorticity through area A bounded by C
- If the circulation is non-zero there must be vortex lines that thread through the area enclosed by the contour

DEFINITION OF CIRCULATION

$$\Gamma = \iint_{A} (\mathbf{w} \cdot \mathbf{n}) dA$$
Flux of vorticity
through area A,
bounded by C

A VORTEX versus VORTICITY

- 1) If we have an identifiable "vortex" in a flow (what does that mean?) we have vorticity somewhere
 - Vortex: a definite structure which one could look at and say "there is a vortex"? (Eddying motion? But what is an "eddy"?)
- HOWEVER, vorticity is also present in parallel flows--don't need a vortex to exist
- 2) If we have circulation in a flow there must be vorticity within the contour
- Consider potential flow round an airfoil
 - There is circulation
 - There must be vorticity somewhere
 - Where is the vorticity?
 - Is there any fluid that one could say was "vortical"
- Have vortex sheets that bound the fluid (between the fluid and the surface) and no regions of fluid with vorticity

LINEAR VELOCITY PROFILE IN A NOZZLE?

- On the quiz we had a 2-D flow with a linear (in y) velocity profile at inlet
- It was claimed that a linear velocity profile, with the same slope, must exist at a far downstream station--this was motivated by use of

$$\frac{D\omega}{Dt}=0$$

- Some disbelief existed about this result and there was a desire to see if it was directly consistent with Bernoulli and continuity
- Start from Bernoulli
 - Stagnation pressure is constant along a streamline
 - Stagnation pressure differs from streamline to streamline

WORK IN TERMS OF A STREAM FUNCTION

• Continuity is brought in by the definition of a stream function, ψ , related to the velocity components by

$$u_{x} = \frac{\partial \psi}{\partial y}$$
$$u_{y} = -\frac{\partial \psi}{\partial x}$$

- Using the stream function the equation of continuity is identically satisfied
- Bernoulli says that p_t is a function of ψ only $[p_t = p_t(\psi)]$
- The variation in stagnation pressure can be written as

$$\frac{\partial p_t}{\partial y} = \frac{dp_t}{d\psi} \frac{\partial \psi}{\partial y} = H(\psi) \frac{\partial \psi}{\partial y}$$

EXAMINE VELOCITY GRADIENT

• From the definition of stagnation pressure, at the upstream station,

$$\frac{\partial p_t}{\partial y} = \frac{\partial p}{\partial y} + \rho u_x \frac{\partial u_x}{\partial y} = \rho u_x K; \quad K \text{ is a const.}$$

 Equating the two descriptions of the derivative of the stagnation pressure

 $\rho u_x K = H(\psi) u_x$

so $H(\psi)$ is a constant.

- But since $H(\psi)$ only depends on the stream function it has the same value at any x location
 - The velocity gradient $\partial u_x / \partial y$ is thus constant downstream as well
 - Any location at which the gradient of static pressure is zero will have a velocity gradient that is constant, i. e., a linear velocity
- This is what we said last time using vorticity arguments AND IT WAS MUCH MORE DIRECT!