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16.540 Spring 2006

VORTICITY AND CIRCULATION:
Concepts and Applications

Lectures 4 - 9
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OUTCOMES
Be able to:

• Define vorticity in several ways

• Use vortex kinematics to provide insight into the structure of internal 
flow fields

• Use vortex dynamics to provide insight into the structure of internal 
flow fields

• Use circulation evolution to provide insight into the structure of internal 
flow fields

• Provide qualitative arguments for the generation of circulation and 
vorticity by baroclinic torque

• Give explicit arguments concerning the generation of vorticity at solid 
surfaces

• Provide quantitative linkages between thermodynamic and kinematic 
quantities in a rotational flow field
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WHY DO WE CARE ABOUT VORTICITY?

• Analogy with descriptions of rigid body dynamics

– Angular velocity, angular momentum natural quantities to use 
(rather than linear velocity, linear momentum)

– No “new” information

– Still Newton’s laws but “repackaged” for problem of interest

– Useful to describe fluid motion in terms of local angular 
velocity

– Useful for insight - vorticity is sometimes easiest way to 
“explain” phenomena - especially with swirl
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PLAN OF SECTION ON VORTICITY

• Some definitions - vorticity, vortex line, 
vortex tube

• Physical interpretation of vorticity

• Vorticity kinematics

• Vorticity dynamics (evolution of the 
vorticity field)

Development of 
concepts

• Description of flow fields in terms of velocity - applications of concepts
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ω=∇×VVORTICITY

• External flows often irrotational

–

– One scalar equation:  

Incompressible flow

• Internal flows:

– More surfaces

– Differential energy addition to stream

 ∇ × V ≠ 0

   ∇ × V = 0 ⇒ V = ∇φ

∇ ⋅ V = 0 or ∇2φ = 0
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KINEMATICS: DEFINITIONS OF VORTICITY

•

• Stokes’ Theorem

• Simple case:  Rotating cylinder of fluid
For small contour, ωdA = 2πautangential

Rotating cylinder with angular velocity Ω
utangential = aΩ

normal

   
ω πa2 = 2πa ⋅ aΩ

dA

a

utangential

  area

⌠ 
⌡ ⎮ 

⌠ 
⌡ ⎮ ∇ ×

r 
u ⋅ ˆ n dA =

c

⌠ 
⌡ ⎮ 

r 
u ⋅d

r 
l 

n̂

A
C

d�
→

    
r 
ω = ∇ ×

r 
u 
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=> ω = 2Ω

• Vorticity = twice local angular velocity of fluid

• Is this true only for plane?

• Take small contour in 3 ⊥ planes -
– 3 components of vorticity - a vector

• Physical concept:  Solidify small fluid sphere without change in
angular momentum:

Angular velocity =  
 

ω / 2
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EXAMINE ONE COMPONENT OF VORTICITY
(z-component)

Consider two perpendicular fluid lines, OQ, OP :
Relative to O,  the upward

velocity of P is 
∂uy

∂x
∆x .

Velocity of Q to left is   - ∂ux
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∆y.

Rate of rotation is Tangential velocity
Distance from center

.

Rate of rotation of OP is 
∂uy

∂x
,  rate of rotation of OQ is  - ∂ux

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .

Sum of angular velocities of two perpendicular lines =

                            
∂uy

∂x
− ∂ux

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ωz =  z - component of vorticity

dy

dx

O

uy

QQ′

ux

P′
P
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• Average angular velocity = ωz/2
– Has same value for any two perpendicular lines

• Generalize to 3-D: vorticity is a measure of fluid angular velocity
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OTHER USEFUL CONCEPTS

• Vortex line
– Line in fluid
– Tangent to line has direction of vorticity vector

• Vortex tube
– Vortex lines thru a small closed curve 

form a vortex tube

• Properties of vortex lines, vortex tubes
–

–

    
r 
ω = ∇ ×

r 
u 

    ∇⋅
r 
ω = ∇⋅ ∇ ×

r 
u ( )

Vortex lines
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• Vector identity
– is any vector

• So

• Divergence Theorem

• Same number of vortex lines coming in as going out for a closed 
surface

• Vortex lines cannot end in the fluid (Any fluid)

– Form closed loops, go to ∞, end on solid boundaries in rotating 
flow

  ∇ ⋅ ∇ ×
 

b ( )= 0

  ∇ ⋅
 

ω = 0

  
 

b 

  

0 =

volume

⌠ 
⌡ 
⎮ 

⌠ 
⌡ 
⎮ 

⌠ 
⌡ 
⎮ ∇ ⋅

 
ω dV =

area

⌠ 
⌡ 
⎮ 

⌠ 
⌡ 
⎮ 

 
ω ⋅ ˆ n dA

n̂

dA

Vol.
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VORTEX TUBE

• Area dAn normal to tube, vorticity uniform across tube

• Quantity ω dAn  is called the “strength” of the vortex tube, is constant 
along the tube.

• Finite tube with vorticity not uniform; define circulation

• Circulation is the total flux of vortex lines threading through the area 
An enclosed by the curve C

  

Γ =
 

ω ⋅  n dA =
A
∫∫ ωdAn

An
∫∫

Γ =
 

u ⋅d
 

l ∫

Γ is constant along a vortex tube
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CIRCULATION FOR A VORTEX TUBE
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VORTICITY-VELOCITY RELATIONSHIP

• Straight, infinite vortex tube, constant vorticity,

• Radius of tube, a

• Circular contour of radius, r > a

also

so

 
 

ω 

  
Γ = ⌠ 

⌡ 
⎮ 

⌠ 
⌡ 
⎮ 

 
ω ⋅ ˆ n dA = πa2ωo

    Γ = uθ ⋅2πr = πa2ωo

    
uθ =

ωoa
2

2r
=

Γ
2πr

a

r θ

ω→
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• Velocity outside tube decays as 1/r

• Velocity inside tube (r ≤ a)

− Γ = uθ ⋅ 2πr = πr2ωo

– uθ = ωor / 2

– Sense of velocity – right hand rule
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VELOCITY FIELD NEAR VORTEX TUBE

Velocity field associated
with straight vortex tube

Vortex Tube,
Radius a

Uniform Vorticity,
Magnitude ωo

uθ

r

Circular
Contour

Direction
of Vorticity

Vortex
Tube

Direction of
Local Velocity

Sketch of velocity associated
with curved vortex tube
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VORTICITY AND STREAMLINE CURVATURE

• Vorticity can be present even if streamlines are straight

•Have rotation rate of vertical fluid line

• Total rotation of 2 perpendicular lines is 

x

y

ux(y)

At time t At time
t +  t

"Fluid Cross"

δ

−
∂ux
∂y

+ 0 = ωz

of −
∂uy

∂x
,  no rotation horiz. line
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VORTICITY IS NOT NECESSARILY PRESENT 
IF STREAMLINES ARE CURVED

at t

vθ r

at t + δt

dr
dθ

• Consider 2-D flow with uθ ∝ 1 r ,  ur = 0

Horizontal leg rotates dθ in clockwise direction

                     dθ = uθ

r
δt

Vertical leg rotates ∂uθ

∂r
δt in anti - clockwise direction

Net rotation in anti - clockwise direction is ∂uθ

∂r
−

uθ

r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ δt

If  uθ ∝ 1/r ,  ∂uθ

∂r
−

uθ

r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0,   NO NET ROTATION,  ω = 0
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VORTICITY DYNAMICS: CHANGES IN 
VORTICITY IN A FLOW

• Want to be able to describe how vorticity distribution 
evolves in a general situation

• Need to develop expression for rate of change of 
vorticity
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MOMENTUM EQUATION ⇒ EXPRESSION
FOR RATE OF CHANGE OF VORTICITY

  

D
 

u 
Dt

= −
1
ρ

∇p +
 

F visc +
 

F body

Viscous
forces

Body forces,
gravity,
Coriolis,  

∂
 

u 
∂t

+
 

u ⋅ ∇( )  
u 

 
 

J ×
 

B ,…

• Vorticity is  ∇ x   so take  ∇ x [Momentum Eq.]

  
∇ ×

D
 

u 
Dt

= −
1
ρ

∇p +
 

F visc +
 

F body
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
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• Get:

• Different physical meaning for each term

• Build up general case by looking at simple situation and 
adding effects

  

∂
 

ω 
∂t

+
 

u ⋅ ∇( )  
ω −

 
ω ∇ ⋅

 
u ( )=

 
ω ⋅ ∇( )  

u − ∇ ×
1
ρ

∇p
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + ∇ ×

 
F visc + ∇ ×

 
F body

  

D  
ω 

Dt
= lots of

terms
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CASE 1 – INVISCID, CONSTANT DENSITY FLOW
WITH CONSERVATIVE BODY FORCE

• Note:  Incompressible ≠ constant density

  
 

F body = ∇Ψ Force is gradient of a potential

∇ × ∇Ψ ≡ 0

∇ ×
1
ρ

∇p
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

1
ρ

∇ × ∇p = 0

constant

  ∇ ⋅
 

u = 0 incompressible
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• Vorticity equation

• Vorticity change in inviscid, constant density flow conservative

• Body forces

  

D  
ω 

Dt
−

 
ω ∇ ⋅

 
u ( ) =

 
ω ⋅∇( )  

u − ∇
1
ρ

∇p
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + ∇ ×

 
F visc + ∇ ×

 
F body

0 0 0 0

  
D  

ω 
Dt

=
 

ω ⋅∇( )  
u 
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PHYSICAL INTERPRETATION OF
VORTICITY CHANGE EQUATION

• What does                  mean?

− ω times derivative of     in direction along

– is element of vortex line – quantity is

• If there is a velocity variation along a vortex line, 
the vorticity changes

  
 

ω ⋅∇( )  
u 

 
 

ω 

 
ω∂

 
u 

∂
  d

 
 

 
 

u ω→

d�
→
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BEHAVIOR OF FLUID LINE (MATERIAL LINE)

• At t, dl is PQ

• P moves    δt in δt

• Q moves

• Change in line element PQ is

 
 

u 

 

 
u + ∂

 
u 

∂
d⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ δt −

 
u δt =

∂
 

u 
∂

d δt

 

 
u + ∂

 
u 

∂
d⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ δt

Q
Q'

P'
P u

→

d�
→

t + δt

u + d�
→ →∂u

∂�



26

CHANGE OF LENGTH OF A FLUID LINE

• Change of length over a time δt

• Fractional rate of change of length:

  
δ d

 
 ( )=

∂
 

u 
∂

d δt or
 

δ d
 
 ( )

δt
=

∂
 

u 
∂

d

Rate of change of 
length of line element

  
1

d
Dd

 
 

Dt
=

∂
 

u 
∂
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• Vorticity equation

• So if        is a line element on a vortex line

A solution is 

• Vortex lines and fluid lines behave the same way

• VORTEX LINES MOVE WITH THE FLUID

  
1
ω

D  
ω 

Dt
=

∂
 

u 
∂

  d
 
 

  
1
ω

D  
ω 

Dt
=

1
d

Dd
 
 

Dt

  
 

ω = K d
 
 

constant

ω→

d�
→
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VORTEX LINES MOVE WITH THE FLUID

• Vortex line stretched ⇒ increases

• Vortex line “tipped” ⇒ new component

• This is a true 3-D effect; not present in 2-D

• So:
– Inviscid flow, incompressible, uniform density, conservative 

body forces
– Vortex lines are “locked” to fluid particles

 
 

ω 
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INTERPRETATION OF  
 

ω ⋅∇( )  
u 

• Examine x-component of vorticity equation to see physical 
meaning of terms

Dωx
Dt

= ωx
∂ux
∂x

+ ωy
∂ux
∂y

+ ωz
∂ux
∂z

∆x
P Qt

P'
t + δt

Q'

• Change in length of PQ is

• Fractional change is 1/∆x times this

• Rate of change of x-vorticity is rate of change of length of vortex 

line element                             vortex stretching

∂ux
∂x

∆x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ δt

 1
ωx

Dωx
Dt

=
∂ux
∂x
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• Vortex lines move with the fluid

• ωy gets tipped into x-direction, creating an x-component of vorticity

•Rate of creation of x-vorticity can be found as follows:

Relative to P,  Q moves ∂ux
∂y

∆yδt 

Small angle α is tanα ≈ α = ∂ux
∂y

Small change in vorticity is δωx
ωy

= tanα ≈
∂ux
∂y
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INTERPRETATION OF  
 

ω ⋅∇( )  
u 

• This term represents the tipping of y (or z-) components of vorticity 
into the x-direction. 

•This is TRULY A 3-D EFFECT.  It does not occur in 2-D flow.

•FOR 2-D FLOW, the vorticity and the velocity are both functions of 
x and y.  Plug into the vorticity equation and find that 

Dωy

Dt
=

Dωz
Dt

= 0

Dωz
Dt

= Dω
Dt

= 0
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APPLICATIONS TO SOME RELEVANT FLOWS

• Can predict changes in vorticity by examining kinematics of 
vortex lines

• Example:  Secondary flow in a bend, blade passage

ωin

?

FLOW
Floor

u(Y)
→
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GENERATION OF STREAMWISE VORTICITY (AND 
SECONDARY FLOW) BY CONVECTION OF VORTEX 

LINES THROUGH A BEND

A

B

A′

B′

ωn
ωs

Vortex line
at exit

Boundary
layer region

Top View
of Passage

Velocity

Vortex line
at inlet

Inlet Streamwise
Velocity

ID OD

Secondary Streamlines
at Passage Exit
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• Note:  Can also understand in terms of pressures and accelerations
• In free stream

• In boundary layer on floor,

∂p
∂n

= ρ
Ufreestream

2

rc
Local radius of
curvature

ρ
ub.l.

2

rcb.l.
= ρ

Ufreestream
2

rc
same ∂p

∂n

rcb.l.
rc freestream

~ ub.l.
Ufreestream

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

• So more curvature, sharper turn, in boundary layer ⇒ radially 
inward acceleration

• Boundary layer - less centrifugal force, same
⇒ Radially inward accelerationof fluid

∂p
∂n
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HORSESHOE VORTEX
(Strut, Turbomachinery Blade)

Successive positions
of vortex line

Boundary layerVortex line

Boundary layer

A

A'

B

B'

C

C'

Horseshoe vortex upstream of a strut; vortex lines wrapped around obstacle

ω

Figure by MIT OCW.
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HORSESHOE VORTEX UPSTREAM OF WEDGE [Schwind]

Figure by MIT OCW. 
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SKETCH OF TURBINE SECONDARY FLOW [Langston]

Stream Surface

Inlet Boundary Layer

Endwall

Passage (Secondary
Flow) VortexEndwall

Crossflow

Figure by MIT OCW. 
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SECONDARY FLOW IN TURBINE BLADES [Gostelow]

Figure by MIT OCW. 
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FLOW ROUND A LOG (MY BACK YARD)

Velocity
Profile

Downflow

Erosion
Accumulation
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BEHAVIOR OF A VORTEX RING

• Consider two infinite vortex tubes
1 Velocity at 1 “due to” 2

Velocity at 2 “due to” 12

Sense of vorticity

So two vortices will move with constant velocity, u = ?

w0

Vortex ring 
Slice thru ring
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Vortex ring has some similarities to vortex pair

w
Translates along
With velocity = ?

Seems easier to “understand” using vorticity arguments 
than using pressure (force) description
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VORTICITY MEASURES ANGULAR VELOCITY NOT 
ANGULAR MOMENTUM

Spherical fluid particle with                      at time t

Motion with uz outwards, uz, uy inwards

Suppose               and symmetric about z - axis  

ωx = ωz = ω0

∂uz

∂z
= ε

 ∂ux

∂x
=

∂uy

∂y
= −ε / 2

Vorticity vector is at 45o to x, z, axes initially

What happens to vorticity vector with time?
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ωz is increased (stretched) by the motion

ωx is decreased (contracted) by the motion

The vorticity vector is “tipped” by the deformation of the particle.  

This is change in vorticity.  What about change in angular momentum?

  
D  

ω 
Dt

≠ 0

y

(t )

(t+δt)

x

Strain
Rate,

ε

ε

−ε/2 −ε/2

y

x

Original
orientation

(a) (b)
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CHANGES IN ANGULAR MOMENTUM?
• Only pressure forces act.

• Pressure forces are normal to surface of a spherical particle

• Pressure forces act through the center of mass of the particle and 
exert no torque

• No torque => No change in angular momentum

Torque = rate of change of angular momentum

• Conclusion is that vorticity       changes but angular momentum
does not.

• How does this happen?  (What is going on physically?)  

• To see this, let’s look at the changes in angular velocity and angular 
momentum using the tools familiar from 3-D dynamics

 
 

ω ( )
 

 
H ( )
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ANGULAR MOMENTUM AND VELOCITY CHANGES

  

 
H = I  

ω    ;   I  is the inertia tensor -  9 quantities

I =
Ix 0 0
0 Iy 0
0 0 Iz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  for a sphere,  where Ix = Iy = Iz = I

               d
 

H 
dt

=
 

ω 
dI 
dt

+ I d  ω 
dt

This is worked out in the notes in detail,  but can see
here one component,  Hx = Ix ωx .

            dHx
dt

= ωx
dIx
dt

+ Ix
dωx
dt

ωx  decreases and moment of inertia Ix( ) about x - axis increases
As shown in notes,  there are equal and opposite terms so that

           dHx
dt

= 0
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ANGULAR VELOCITY CHANGES

• For a 2-D flow we can calculate the change in angular momentum by 
considering torques

Torque = d Angular momentum( )
dt

= d IΩ( )
dt

Torque = I dΩ
dt

+ Ω dI
dt

I for a small cylinder = MR 2 /2;  M = mass,  R = radius

Cylinder deforms to an ellipse with I = M
4

c 2 + b 2( )

b = R +
∂ux

∂x
δt    ;    c = R −

∂uy

∂y
δt

δI = M
4

R 2 2R ∂ux

∂x
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + 2R −

∂uy

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ δt = 0   ;   Continuity
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CASE 2 - VORTICITY CHANGES IN INVISCID, 
INCOMPRESSIBLE FLOW WITH NON-UNIFORM DENSITY

  

D  
ω 

Dt
=

 
ω ⋅∇( )

 
V − ∇ ×

1
p

∇ρ
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

  

D  
ω 

Dt
=

 
ω ⋅∇( )

 
V + 1

ρ2 ∇p × ∇ρ new term

• Gradient is normal to surfaces having constant value

• If ∇p x ∇ρ ≠ 0                      ∇p not parallel to ∇ρ
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PHYSICAL MECHANISM FOR VORTICITY PRODUCTION

• Constant density surfaces not aligned with constant pressure 
surfaces leads to vorticity production

• Look at two-dimensional example
(We already understand the                 term)

• If surfaces of constant ρ and constant p are not aligned, there is a 
torque about the center of mass

 
 

ω ⋅∇( )  
u 

Dω
Dt

=
1

ρ2 ∇ρ × ∇p
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TORQUE IN A NON-UNIFORM DENSITY FLUID

Generation of vorticity due to the interaction of pressure and density
gradients:  pressure force torque about the center of mass of a fluid particle

∇P

∇ρ

Pressure Forces

ρ1

ρ2

ρ30

CM

CM

Generation
of ω

⇒

Force

ηc
→
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δI = 0 for this problem (2 - D, incompressible spherical)
Torque directly related to changes in angular velocity

Torque = I dΩ
dt

=
 

r ×
 

F 

 
r = − 1

ρo
∇ρR 2 / 4      ;    

 
F = −∇p πR 2( )

          
 

r ×
 

F =
1

ρ2
o

∇ρ × ∇p πρoR 2( )R 2

2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ ⎪ 

⎫ 
⎬ 
⎭ ⎪ 

Underlined term is I

          Torque = I dΩ
dt

 becomes 

          1
ρo

∇ρ × ∇p = 2 dΩ
dt

= dω
dt

Fluid dynamics is a branch of dynamics;  the 
connections are useful and helpful
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EXAMPLES OF VORTICITY PRODUCTION
DUE TO “∇ρ x ∇p”

1) Flow round a bend
– Initial conditions:     = constant,     = 0

− ρ = ρ(z)
− ∇ρ points down
− ∇p points radially outward

− ∇ρ x ∇p is in streamwise direction; 
leads to secondary circulation

 
 

u  
 

ω 
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Denser fluid

Freestream

Bend

• “Primitive variable” explanation:

– Pressure gradient set by free stream ρ; ∂p/∂r = ρu2

– Fluid near bottom is denser, won’t follow free streamlines 
(too much inertia to be turned), flows to outside of bend
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ID OD

Secondary Streamlines
at Passage Exit

Generation of streamwise vorticity (and secondary flow) due to
interaction of pressure and density gradients

Inlet Streamwise
Velocity:

ρ(z)inlet

ωinlet = 0→

∇P

∇ρ
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OUTFLOW FROM RESERVOIR OF THERMALLY STRATIFIED 
FLUID (COMBUSTOR)

Sense of vorticity
produced at exit

B

B'
uexit

uinlet

C

A'

A

∆

ρ
∆

p

ρ1

ρ2

Vorticity production in a fluid of non-uniform density; channel with inlet area >> exit area

Figure by MIT OCW. 
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VORTICITY PRODUCTION IN STRATIFIED FLOW

• Alternative explanation

– High and low density streams have same ∆p - same force

– Low density stream has less mass

– Aa = F/m ⇒ acceleration of low density stream is higher

– Final velocity for ρ1 stream > than for ρ2 stream
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CASE 3 - VISCOUS FLOW

Incompressible, const ρ, conservative          

Look at basic problem:  Viscous flow near infinite flat plate which we 
impulsively start - 2-D flow 

Equations for velocity, vorticity  

 
 

F body

∂
∂x

= 0

x

y

Plate ω(y,t)

u(y,t)y~3√νt

Generation of vorticity due to the action of viscous forces: impulsively 
started plate: U (0,t) = 0, t < 0; U (0, t) = U, t > 0
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∂ux

∂t
= ν

∂2ux

∂y 2 net viscous forces

and

 ∇x
 

F visc( )∂ω
∂t

= ν
∂2ω
∂y 2 net viscous torque

Vorticity is altered due to viscous effects
Viscous forces can exert a torque
Dynamic correspondence worked out in notes

Note time and length scales from form of solution
ω

U νt
∝ ey 2 2νt

δ ~ distance of appreciable vorticity:

y 2

νt
~ 1⇒ δ ~ νt
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VISCOUS STRESSES AND TORQUES ON A 
FLUID ELEMENT

X

Y

σy

σx

σy
dσy

dY
β+

σx
dσx

dX
λ+

τ

τ

τ
τ

β

Figure by MIT OCW. 
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VISCOUS STRESSES AND TORQUES ON A FLUID ELEMENT

• Region near wall of appreciable vorticity scales as         .

• Flow along a stationary wall  

νt

t ~ x U
δ ~ νx U

• We have been looking at effects one-by-one.  Now put two together: 
vortex stretching plus effects of viscosity
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VORTEX STRAINED (STRETCHED) ALONG ITS AXIS

Conditions 

Axisymmetric flow

Constant strain rate, α

Use cylindrical coordinate system

Velocity components:             (Strain rate is z)

Continuity -

uz = αz

ω

∂uz

∂z
dz

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ πr 2 + 2πurrdz = 0

Flow thru 
sidesFlow thru

top & bottom
r

ur = − α r 2
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ALTERNATIVE VIEW OF PROCESS

Consider volume fixed in space

Area Fixed
volume,

Vortex
tube

s
v

Write expression for changes of vorticity 
in fixed volume, v

 

∂
∂t

 ω dν =  ω ⋅ ∇( )  u dν − ′ n ⋅
 u ( )  ω ds

s
∫

/ s 
∫

ν
∫

− ˆ n × Fviscds∫

Steady flow - volume surfaces away form viscous regions

  
ˆ n ⋅ ˆ u ( )

s
∫

 
ω ds = ω ⋅∇( )  

u 
ν
∫ dν

Flux out Produced inside
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uθ =
Γ

2πr
1− e −αr2 4ν( )

Only vorticity is in z direction

ωz =
Γ
π

e −αr2 4ν

Appreciable vorticity only exists for                say (whatever initial 
Distribution is)

Vorticity equation 

r 4ν α,

ur
∂ωz

∂r
= ωz

∂
∂z

+ ν
∂2ωz

∂r 2 +
1
r

∂ rωz( )
∂r

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Change in vorticity as particle (ring of particles) is (are) 
convected inward due to:

a)  Vortex stretching and vorticity production
b)  Viscous torques 
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EXAMINE SMALL ELEMENT

a) As element’s radius shrinks, angular velocity increases 
(ang. mom. is const)

ω0 ω ω0>

b) But as element "spins up" viscous torques try to decrease its ω.  

• A balance between a) and b).  Also, strain rate α sets size of vortex 
(sets radius)
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This is a model problem with applications:

Horse shoe vortex
Inlet vortex

One other point:  look at control volume of radius

No vorticity on sides - fluid comes in irrotational

Fluid continually leaving thru top and bottom with vorticity

Net outflow of vorticity because vorticity is produced inside 
by vortex stretching (straining) 

r >> ν α

z = 0

Vortex
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INLET VORTEX

Gas Turbine Engine

Ground Plane

Inlet

Vortex

Figure by MIT OCW. 
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INGESTION OF VORTEX LINES INTO INLET 

Inlet

Vortex lines

A

B

C

U

CL

Figure by MIT OCW. 
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INGESTION OF VORTEX LINES INTO AN INLET:
A BASIC QUESTION

• Vortex lines cannot end in fluid.  If a vortex line is ingested into 
an inlet, there are thus two legs of the line that "stick out".

• Only one vortex seems to be observed, however!
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CASE 4 – COMPRESSIBLE FLOW

• Inviscid, conservative body force
(these act as in incompressible case)

• Start with general vorticity equation

  

D  
ω 

Dt
=

 
ω ⋅∇( )  

u +  
ω ∇ ⋅

 
u ( )− ∇ ×

1
ρ

∇p
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
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ANALOGY WITH INCOMPRESSIBLE FLOW

• for a compressible flow behaves like     for an 
incompressible flow

• For a compressible flow,           can be altered if ρ ≠ ρ(p) or, 
equivalently, S ≠ S(T)

• 2-D isentropic flow:  ω/ρ = const ; ρ↑ ⇒ ω↑

 
 

ω   
 

ω / ρ

  

D  
ω /ρ( )
Dt

=
 

ω 
ρ

⋅ ∇
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 
u − 1

ρ
∇T × ∇s( )

 
 

ω / ρ
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Flow in a high speed boundary layer with adverse pressure 
gradient (2-D)

∇ρU

T

→ ∇P

Fluid near wall has same P, higher T than outside boundary layer

∇ρ

∇P

  
D  

ω 
Dt

 

D
Dt

 
ω ρ =

1
ρ3 ∇ρ × ∇P

Shape of boundary layer
Profile changesVorticity
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Simpler model problem

ρH

ρ2

ρU = cons

∆ρ

Another view
dP = ρfsuedue

dPb.l . = dPfs = ρb .l .ub .l .dub.l .

dub .l .

due
=

ρfsue

ρb .l .ub .l .

Neglecting visc.

"Double whammy"
on deceleration
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CIRCULATION AND VORTICITY

• Circulation around a contour C is equal to the flux of vorticity
through A bounded by C

• Circulation – a more global quantity than vorticity
– Often are more interested in overall effects than in details

• Circulation – a scalar

• Wish to find rate of change of circulation for a fluid contour –
closed curve composed of the same fluid particles
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DEFINITION OF CIRCULATION

  

Γc =
 

u ⋅ d
 
 

c

⌠ 
⌡ 
⎮ n̂

A

C

ω→

d�
→

Closed
contour, C

  

= ∇ ×
 

u ⋅ ˆ n dA

A

⌠ 
⌡ 
⎮ 

⌠ 
⌡ 
⎮ 

(Stokes)

  

Γ =
 

ω ⋅ ˆ n ( )dA

A

⌠ 
⌡ 
⎮ 

⌠ 
⌡ 
⎮ Flux of vorticity

through area A, 
bounded by C
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CHANGE IN CIRCULATION FOR A FLUID CONTOUR

Fluid
contour

C at t1
Γ = Γ1

C at t2
Γ = ?

DΓc
Dt

Want to find

  

DΓc
Dt

=
D
Dt

 
u ⋅ d

 
 ⌠ 

⌡ 
⎮ 
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CHANGE IN CIRCULATION (cont.)

• Can think of this as

• Always consider “same” N fluid particles, so can say

• Can do this with integral because consider contour of 
same particles

C

dl1
→

dl2
→

dl3
→

  

D
Dt

 
u i ⋅ d

 
 i

i=1

N
∑ ≅

DΓc
Dt

  

D
Dt

ui ⋅d i∑ =
D
Dt

 
u i ⋅ d

 
 i( )∑

  

DΓc
Dt

=
D
Dt

c

⌠ 
⌡ 
⎮ 

 
u ⋅ d

 
 ( )
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CHANGE IN CIRCULATION (cont.)

  

DΓc
Dt

=
D

 
u 

Dt
⋅ d

 
 +

c

⌠ 
⌡ ⎮ 

 
u ⋅ Dd

 
 

Dt
c

⌠ 
⌡ ⎮ 

(1) (2)

• Look at (2):

– is        at t

– is P’Q’ or                      at t + δt

• Rate of change of       is

Or        so:

  d
 
 

  d
 
 

PQ

 PQ + d
 

u δt
δ d

 
    

 d
 
 

 

δ d
 
 ( )

δt
  d

 
u 

  
Dd

 
 

Dt
= d

 
u 
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CHANGE IN CIRCULATION (cont.)

Rate of change, in length and orientation, of a vortex line element      of fluid contour

Q

Q'

P'
P

u δt
→

d� (at t)
→

→

→

d� (at t + δt)

d�

(u + du)δt
→ →

Element of
curve, C
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CHANGE IN CIRCULATION (cont.)

  

Hence (2) =
 

u ⋅ d
 

u 
c

⌠ 
⌡ ⎮ = d

 u ⋅  u 
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c

⌠ 
⌡ ⎮ 

= 0 Integral of an
exact differential
round a closed
contour

  
∴

DΓc
Dt

=
D

 
u 

Dt
⋅ d

 
 ⌠ 

⌡ ⎮ 
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RATE OF CHANGE OF CIRCULATION (concluded)

  

DΓc
Dt

= −
∇p
ρ

+
 

F visc +
 

F body
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

c

⌠ 

⌡ ⎮ ⋅ d
 
 

Kelvin’s Theorem

• Rate of change of circulation round a fluid contour, C

• Constant density, inviscid, conservative body force

DΓc
Dt

= 0
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IMPLICATIONS OF KELVIN’S THEOREM
(Constant Density, Inviscid, Conservative Body Force)

• If a fluid contour once has Γc = 0, it always has Γc = 0

• If fluid comes from reservoir with Γc = 0, then Γc = 0 everywhere

⇒ Potential flow
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VORTEX TUBE

C1, Area A1

C2, Area A2

Vortex tube showing contour C1, which encloses all vortex
lines in tube, and C2, which has zero circulation
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VORTEX TUBE IN CONSTANT DENSITY FLOW

• Γc1 is constant, C1 is a fluid contour 

• C1 always encloses vortex lines

• Γc2 = 0      (C2 on wall of tube)

• Vortex lines never permeate A2

– Remain confined in tube

⇒ Vortex lines move with the fluid
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EXTENSION TO COMPRESSIBLE FLOW

• for ρ = constant

• Suppose ρ = ρ(p)    (e.g. isentropic compressible flow)

(still inviscid, conservative forces)

DΓc
Dt

= 0

DΓc
Dt

= −
∇p
ρ

c

⌠ 
⌡ ⎮ “Kelvin’s form”

of Kelvin’s Theorem

• If ρ = ρ(p), r.h.s. is

  

∇p
ρ(p)

c

⌠ 
⌡ ⎮ ⋅ d

 
 = dp

ρ(p)
= 0

c

⌠ 
⌡ ⎮ 
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• so if ρ = ρ(p)

• Also consider element in vortex tube
a) ρ dA dl = constant
b) ω dA = constant

• ω/ρ for compressible flow plays same role as ω in 
incompressible flow

DΓc
Dt

= 0 ⇒ Vortex lines move with the fluid

  

b)
a)

⇒
ω

ρd
= cons tant
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FLUID ELEMENT IN VORTEX TUBE

Fluid element in vortex tube; mass = ρ dA dl

dl

ω

dA

Flow in which ρ = ρ(p)
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EXAMPLES OF THE USE OF KELVIN’S THEOREM

• Example 1:  “Pre-whirl”

Question:  What is average Cθ upstream of a rotor?

Consider contour, C.  

Far upstream Gc = 0 so upstream of rotor

Unless backflow from separation in rotor

Atm
C Turbomachine

  

Γc =
 

C θ ⋅ d
 
 = 0 ⇒ Cθ( )av = 0

c

⌠ 
⌡ 
⎮ 
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• Example 2:  Relative eddy in centrifugal impeller

Flow in rotating passage:

Γc = 0  in absolute (fixed) system,

In rotating system

DΓc
Dt

= 0

Ω

  
 

u abs =
 

u rel +
 

Ω ×
 

r 

  

 
u rel⋅d

 
 ∫ = −

 
Ω ×

 
r ⋅ d

 
 

c

⌠ 
⌡ 
⎮ 
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RELATIVE CIRCULATION

  Γcrel = −2AcΩ Ac ⊥
 

Ω ( )

ωrel =
Γcrel
Ac

= −2Ω (relative vorticity)

• So-called “relative eddy”
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RELATIVE VELOCITY PROFILE IN A
ROTATING STRAIGHT CHANNEL

ωrel = -2Ω

C

H

Y X

Ω (Rotation rate)

Center of rotation
u(y)

Figure by MIT OCW. 
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FLOWS WITH NON-UNIFORM DENSITY

  

DΓc
Dt

= −
∇p
ρ

⋅d
 
 ⌠ 

⌡ ⎮ =
∇ρ × ∇p

ρ2 ⋅ ˆ n dA

A

⌠ 
⌡ ⎮ 

⌠ 
⌡ ⎮ 

• Circulation is produced when density gradients are not 
aligned with pressure gradients

• Example:  Flow from reservoir

• Where ∆pab is change in pressure from one end of the 
contour to the other, a → b

  

−
∇p
ρ

⋅ d
 
 

c

⌠ 
⌡ ⎮ ≅

1
ρ2

2 −
1

ρ1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ∇p ⋅ d

 
 

a

b
⌠ 
⌡ 
⎮ =

1
ρ2

−
1

ρ1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∆pab
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Sense of circulation
produced at exit

B

B'
uexit

uinlet

C

A'

A

∆

ρ

∆

p

ρ1

ρ2

Change in circulation in a fluid of non-uniform density; channel with inlet area >> exit area

a b

Figure by MIT OCW. 
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INVISCID COMPRESSIBLE FLOW

DΓc
Dt

= −
∇p
ρ

⌠ 
⌡ ⎮ 

=
∇ρ × ∇p

ρ2 ⋅ ˆ n dA

A

⌠ 
⌡ ⎮ 

⌠ 
⌡ ⎮ 

= ∇T × ∇s ⋅ ˆ n dA

A

⌠ 
⌡ ⎮ 

⌠ 
⌡ ⎮ 
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EXAMPLE:  SHOCK-ENHANCED MIXING

Shock

∇p

∇ρ

H2

Air
On surface 
have a density 
discontinuity

∇p

∇ρ

Generate 
vorticity at 
interface

“Rolls up”
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Expansion fan

ρ

∆

p

∆

ρ1

θ
R

Two-dimensional, unsteady interaction of a shock with a light gas inhomogeneity

Vs Vs

Figure by MIT OCW. 
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COMPARISON OF NUMERICAL AND
COMPUTATIONAL RESULTS (JACOBS)

Figure by MIT OCW. 
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THREE-DIMENSIONAL, STEADY INTERACTION OF A 
COLUMN OF LIGHT GAS WITH AN OBLIQUE SHOCK 

[Waitz et al]

Figure by MIT OCW. 
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CONTOURS OF HELIUM MASS FRACTION 
DOWNSTREAM OF A SCRAMJET INJECTOR FOR 

M = 1.7 INJECTION INTO M - 6 AIR [53], [54]

Figure by MIT OCW. 



98

FLOW DESCRIPTION IN TERMS OF
VORTICITY AND CIRCULATION

• Inviscid, incompressible flow

• We have derived ω/dl = const
− ω is vorticity magnitude
– dl is length of line element on vortex line 

(vortex tube)

• Apply to non-uniform flow in diffuser or nozzle

ω
ω

d�

d�′
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STREAMWISE VORTICITY IN NOZZLE

Figure by MIT OCW. 
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STREAMWISE VORTICITY

• Component of vorticity in streamwise direction (swirl non-uniformity)

• Assume vortex filaments carried (convected) by mean (background) 
flow

• What happens   1 → 2 ?

• Along a streamline 1 2
dl1 dl2

  

d 1
d 2

=
u1
u2 u1 u2
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STREAMWISE VORTICITY CHANGE IN NOZZLE

• So                            (streamwise vorticity)

• increases

• What is often of more interest is relative
uniformity of flow - swirl angle

ω2
ω1

=
u2
u1

tan α1 ~ swirl velocity
axial velocity

ω
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FLOW ANGLE CHANGE IN NOZZLE

• Suppose vortex tube is circular, radius r

• Continuity:  r2u = constant along a streamtube

• Thus:

• Nozzles increase flow uniformity with regard to swirl angularity

• Diffusers worsen it

α1 ~ ω1r1
2u1

α1 << 1( )

α2
α1

~ r2
r1

~ u1
u2

= Area ratio ; Area ratio = A2
A1
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EFFECT OF NORMAL VORTICITY

X

Y Z

u1

u1
u2

1

2

ω1
ω2

ω ωz ez ~Transverse (normal) vorticity in a nozzle,

Figure by MIT OCW. 
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VELOCITY NON-UNIFORMITY
DUE TO NORMAL VORTICITY

• Vorticity normal to flow:  Non-uniformity in streamwise velocity

• 2-D nozzle ⇒ length of vortex lines is constant

• = constant along a mean streamline

• Parallel flow at inlet and exit

• Channel width decreases, ω1 → ω2

• Local velocity gradient remains same

ω1 =
du1
dy

= ω2

ωz
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EFFECT OF NOZZLE ON VELOCITY NON-UNIFORMITY

∆ux2
∆ux1

≈
ω2
ω1

= Area ratio

• Look at relative velocity non-uniformity

• Nozzles suppress velocity non-uniformities

• Diffusers worsen them

• Suppose vorticity is in y-direction
– Then “width” is constant

• Is velocity non-uniformity altered?

∆ux
U

∆ux2
U2

∆ux1
U1

= Area ratio( )2
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PASSAGE OF TURBOMACHINE WAKE THROUGH
SUCCEEDING BLADE ROW (COMPRESSOR)

• View wake as 2-D, inviscid, convected by “mean” flow

• Compare length of wake segment at inlet and at exit

• Length increases because
– 1) Width of mean streamtube increases
– 2) Net circulation around blades (A,B)

• ~ wake length x velocity difference freestream – wake

• = constant, length ↑ ⇒ ∆V freestream – wake ↓

• Wake gets attenuated in compressor

Γ

Γ
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PASSAGE OF STATOR WAKE THROUGH ROTOR 
[Argument due to L. H. Smith]

Wake section at
rotor exit

Pathlines for rotor fluid
(seen in rotor frame)

Rotor

A'

B'
r

A B

Wake section at
rotor inlet

Stator wake ΩR

Figure by MIT OCW. 
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BEHAVIOR OF VORTICITY AT SOLID SURFACES

• Viscous flow, no slip condition,                  on the surface

• Stationary surface,           at surface 

• What is circulation on surface (any contour) 

 

 
u =

 
u solid

surface

 

Γc =
 

u ∫ ⋅d
 

l 
but  u = 0 on surface
Γc = 0 for any contour

Γ =
 

ω ⋅ ˆ n dA
A
∫∫ = ωnormal

to surface

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dA

A
∫∫

Result:  on stationary surface ωnormal = 0 vorticity (vortex lines) 
are tangent to surface - cannot end in fluid 

 
 

u = 0

c

surface
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BEHAVIOR OF VORTEX LINES AT A SOLID 
SURFACE

Bulk swirling motion

Vortex lines

Solid surface

Figure by MIT OCW. 
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• What about rotating surface: can vortex lines end on these?

• To see generation of vorticity on solid surfaces start with

momentum equation (viscous, const. ρ)

On surface:            on stationary surface   
 

u = 0

1
ρ

∇p = ν∇2u
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

surface

look at 2 -D case -  surface is plane y = 0
1
ρ

∂p
∂X

= ν
∂2ux

∂y 2

1
ρ

∂p
∂X

= −ν
∂ω
∂y

Whenever there is a pressure gradient along the solid boundary there 
is a gradient of tangential vorticity at the surface - a diffusion of 
vorticity into fluid
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Analogy with heat transfer

ν
∂ω
∂y−k ∂T

∂y
= Heat flux

gradient of
vorticity

temperature
gradient

Boundary layer flow

dp set by changes in free stream velocity, ue

∂ue

∂t
+ ue

∂ue

∂x
= ν

∂ω
∂y

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

surface

∇p

Solid boundary

Source of vorticity (sign = ?)
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NET CIRCULATION/UNIT LENGTH IN BOUNDARY LAYER

Look at contour

C B

AD δ

Edge of b.l.ue

dx

  
 

u ⋅dl = 0∫

on CD ≈ uy δ

on AB ≈ uy δ +
d

dx
uy δ( )dx

on BC ≈ −uedx
Γ = d

dx
uy δ( )− ue

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ dx

But d
dx

uy δ( )~ δ
L

ratio :  
uy δ
LU

~
uy

U
δ
L

∂uy

∂y
+

∂ux

∂x
= 0

uy

ux
~

uy

U
~ δ

L

ratio ~ δ L( )2 << 1

Length in X direction

on DA

Boundary layer circulation/unit length = - ue
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FLOW IN A CONTRACTION

X

X

Pp

Velocity increases ⇒ p decreases
Vorticity diffused into flow
∂p
∂X

< 0 so vorticity is same sign

as existing vorticity

New vorticity has short time to diffuse (be spread by viscosity)
away from wall - is concentrated near wall 

Velocity gradient large near wall profile is "fuller"
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CONTOUR USED FOR EVALUATION OF 
CIRCULATION IN BOUNDARY LAYER; ΓABCD = -ue

dx

A B

D C

Y

X

ue

Figure by MIT OCW. 
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FLOW IN A 2:1 CONTRACTION; 
(A) OVERALL VELOCITY PROFILES; (B) BLOWUP OF 

(A) AT STATIONS 1 AND 2.  
HYDROGEN BUBBLE FLOW VISUALIZATION

Station 1 Station 2

Flow in a 2:1 contraction; 
(a) Overall velocity profiles; (b) Blowup of (a) at station 1 and 2. Hydrogen bubble 
flow visualization.

 At Station 1  At Station 2

h

h

δ

δ = .66

h δ

h
δ = .53

a

b

Figure by MIT OCW. 
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Free stream velocity increases ⇒ implies that more vorticity has 
entered flow

Flat plate boundary layer Γ = - ue = constant!
No vorticity put in anywhere except at leading edge.

Horseshoe vortex
Consider contour as shown
Vortex lines from upstream keep coming into contour.  Does
circulation continually increase?
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Convection and diffusion of vorticity into contour ABCD on plane
of symmetry upstream of a strut

A B

D C

Convection of vorticity (    )
across AD

Diffusion of vorticity (    )
across AB

Stagnation line (strut
leading edge)

Direction of increasing static
pressure along plane of symmetry

Strut

Figure by MIT OCW. 



118

For horseshoe vortex have a balance between convection of      and 
diffusion in of       .  Net vorticity in contour (net circulation) remains 
constant

Note also in vortex - balance between stretching, diffusion sets scale 
of vortex (radius of vortex)

We have been working in 2-D, but arguments can be extended to 3-D.
Pressure field (gradients) not one-dimensional so two components of 
vorticity can be diffused into flow from vorticity sources at wall
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RELATION BETWEEN KINEMATIC AND
THERMODYNAMIC QUANTITIES

• These relate vorticity and ∇pt, ∇Tt, ds

• Most useful for “inviscid” flows

• Momentum equation

Fbody

  
∇

u2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

 
u ×  

ω = −
∇p
ρ

− ∇Ψ

T∇s = ∇h −
1
ρ

− ∇p

  
−

 
u ×  

ω = T∇s − ∇h − ∇
u2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ∇Ψ

  

 
u ×  

ω = ∇ h +
u2

2
+ Ψ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

− T∇s
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STAGNATION QUANTITIES

In internal flow situations often work with stagnation quantities

1) Convient to measure,  2) Relate directly to loss

Stagnation temperature defined

Adiabatic process, no work - bring stream to rest

First law (steady flow energy equation)

Along a streamtube:
Ý m 1ht 1 = Ý m 2ht 2

but  Ý m 1 = Ý m 2 ⇒ ht 1 = ht 2

1
2

If station 2 has velocity = 0

ht = CpTt = CpT +
u 2

2
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Tt = T +
u2

2Cp
= T 1+

u 2

2CpT

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= T 1+
γ − 1

2
u 2

γRT
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Tt = T 1+ γ − 1
2

M 2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

Stagnation
temperature

Note: Nothing yet about "frictionless" 
Now: If frictionless

p pinitial = T Tinitial( )γ γ −1

pt = p 1+
γ − 1

2
M 2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

γ γ −1
Stagnation
pressure

Any two states

Low speed flow, 

  

pt = p 1+ γ − 1
2

M 2 ⋅ γ
γ − 1

+
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

≅ p +
γ
2

u 2p
γRT

= p +
ρu 2

2

pt for low speed
"incompressible"
flow



• If no body forces

• Consequences of Crocco’s Theorem
1) If a steady flow has constant entropy and stagnation enthalpy, 

ω = 0 or vorticity is parallel to velocity

2) Vorticity can be produced by phenomena which generate 
gradients of entropy or stagnation enthalpy

3) In an irrotational flow with uniform entropy, ht can vary only if 
the flow is unsteady

  
 

u ×  
ω = ∇ht − T∇s “Crocco’s Theorem”

  
−∂

 
u 

∂t
+

 
u ×  

ω = ∇ht − T∇s
0 0
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EXAMPLES

1) Flow downstream of a curved shock
– ht is constant across shock
– ∇sa < ∇sb

– downstream of shock

2) Flow downstream of an ideal inlet guide vane row
– ∇ht = ∇s = 0

– so           parallel
(trailing vorticity as on a finite wing)

  
 

ω ≠ 0

  
 

u ×  
ω = 0   

 
u ,  

ω 

ω = 0→ ω ≠ 0→

b

a
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FLOW DOWNSTREAM OF A CURVED SHOCK

• Geometry - M=2 flow round an airfoil

• Static and stagnation pressure

• Axial velocity profiles for 

different static pressure rise
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Figure by MIT OCW. 
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ROTATIONAL FLOW DOWNSTREAM OF IGV
What approximations are made in showing this figure?

IGV

Γ = Γ1

Γ ∼ 0
Γ = Γ1

Turbomachine Annulus and Inlet
Guide Vane (IGV); Uniform Entropy

and Stagnation Enthalpy

Rotational Swirl Flow
Distribution

Downstream of IGV
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INCOMPRESSIBLE FLOW FORM

• Incompressible, inviscid flow, ρ uniform

• Steady flow

  

∂
 

u 
∂t

−
 

u ×  
ω = −

∇pt
ρ

  

 
u ×  

ω =
∇pt

ρ
Incompressible form of
Crocco’s equation
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PERSPECTIVE ON INTERPRETATION AND INSIGHT

• Concepts of vorticity and circulation are useful in understanding 
fluid motions – most notably those with SWIRL, and/or 
UNSTEADINESS, and/or THREE-DIMENSIONALITY

• Focus on vortex line structure often provides clues to overall flow 
field behavior

• Focus on vorticity can give insight for complex motions

• Strongly complementary partner to pressure-acceleration 
approach
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