16.540

Spring 2006

VORTICITY AND CIRCULATION: Concepts and Applications

Lectures 4-9

OUTCOMES

Be able to:

- Define vorticity in several ways
- Use vortex kinematics to provide insight into the structure of internal flow fields
- Use vortex dynamics to provide insight into the structure of internal flow fields
- Use circulation evolution to provide insight into the structure of internal flow fields
- Provide qualitative arguments for the generation of circulation and vorticity by baroclinic torque
- Give explicit arguments concerning the generation of vorticity at solid surfaces
- Provide quantitative linkages between thermodynamic and kinematic quantities in a rotational flow field

WHY DO WE CARE ABOUT VORTICITY?

- Analogy with descriptions of rigid body dynamics
- Angular velocity, angular momentum natural quantities to use (rather than linear velocity, linear momentum)
- No "new" information
- Still Newton's laws but "repackaged" for problem of interest
- Useful to describe fluid motion in terms of local angular velocity
- Useful for insight - vorticity is sometimes easiest way to "explain" phenomena - especially with swirl

PLAN OF SECTION ON VORTICITY

- Some definitions - vorticity, vortex line, vortex tube
- Physical interpretation of vorticity
- Vorticity kinematics
- Vorticity dynamics (evolution of the vorticity field)

Development of concepts

- Description of flow fields in terms of velocity - applications of concepts

VORTICITY $(\vec{\omega}=\nabla \times \overrightarrow{\mathbf{V}})$

- External flows often irrotational
$-\nabla \times \overrightarrow{\mathbf{V}}=\mathbf{0} \Rightarrow \overrightarrow{\mathbf{V}}=\nabla \phi$
- One scalar equation:

Incompressible flow $\nabla \cdot \overrightarrow{\mathbf{V}}=\mathbf{0}$ or $\nabla^{2} \phi=\mathbf{0}$

- Internal flows: $\nabla \times \overrightarrow{\mathbf{V}} \neq \mathbf{0}$
- More surfaces
- Differential energy addition to stream

KINEMATICS: DEFINITIONS OF VORTICITY

- $\quad \dot{\omega}=\nabla \times \dot{u}$
- Stokes' Theorem $\iint_{a r e a} \nabla \times \underset{\text { normal }}{r} \cdot \underset{c}{r} d A=\oint_{c} \underset{u}{u} \cdot d \mathbf{l}^{r}$

- Simple case: Rotating cylinder of fluid For small contour, $\omega \mathrm{dA}=2 \pi \mathrm{au}_{\text {tangential }}$ Rotating cylinder with angular velocity Ω

$$
\begin{aligned}
& u_{\text {tangential }}=\mathrm{a} \Omega \\
& \omega \underbrace{\pi \mathrm{a}^{2}}_{\mathrm{dA}}=2 \pi \mathrm{a} \cdot \mathrm{a} \Omega
\end{aligned}
$$

$$
\Rightarrow \quad \omega=2 \Omega
$$

- Vorticity = twice local angular velocity of fluid
- Is this true only for plane?
- Take small contour in $3 \perp$ planes -
- 3 components of vorticity - a vector
- Physical concept: Solidify small fluid sphere without change in angular momentum:

Angular velocity $=\vec{\omega} / 2$

EXAMINE ONE COMPONENT OF VORTICITY (z-component)

Consider two perpendicular fluid lines, OQ, OP :
Relative to O, the upward
velocity of P is $\frac{\partial u_{y}}{\partial x} \Delta x$.
Velocity of Q to left is $\left(-\frac{\partial u_{x}}{\partial y}\right) \Delta y$.
Rate of rotation is $\frac{\text { Tangential velocity }}{\text { Distance from center }}$.

Rate of rotation of OP is $\frac{\partial u_{y}}{\partial x}$, rate of rotation of OQ is $\left(-\frac{\partial u_{x}}{\partial y}\right)$.
Sum of angular velocities of two perpendicular lines =

$$
\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right)=\omega_{z}=z \text { - component of vorticity }
$$

- Average angular velocity $=\omega_{z} / \mathbf{2}$
- Has same value for any two perpendicular lines
- Generalize to 3-D: vorticity is a measure of fluid angular velocity

OTHER USEFUL CONCEPTS

- Vortex line
- Line in fluid
- Tangent to line has direction of vorticity vector
- Vortex tube
- Vortex lines thru a small closed curve form a vortex tube

- Properties of vortex lines, vortex tubes

$$
\begin{aligned}
& -\dot{\omega}=\nabla \times \dot{u} \\
& -\nabla \cdot \dot{\omega}=\nabla \cdot(\nabla \times \dot{u})
\end{aligned}
$$

- Vector identity $\nabla \cdot(\nabla \times \overrightarrow{\mathbf{b}})=\mathbf{0}$
$-\vec{b}$ is any vector
- So $\nabla \cdot \vec{\omega}=0$
- Divergence Theorem

$$
\mathbf{0}=\iiint_{\text {volume }} \nabla \cdot \vec{\omega} \mathbf{d V}=\iint_{\text {area }} \vec{\omega} \cdot \hat{\mathbf{n}} \mathrm{dA}
$$

- Same number of vortex lines coming in as going out for a closed surface
- Vortex lines cannot end in the fluid (Any fluid)
- Form closed loops, go to ∞, end on solid boundaries in rotating flow

VORTEX TUBE

- Area $d A_{n}$ normal to tube, vorticity uniform across tube
- Quantity $\omega d A_{n}$ is called the "strength" of the vortex tube, is constant along the tube.
- Finite tube with vorticity not uniform; define circulation
- Circulation is the total flux of vortex lines threading through the area A_{n} enclosed by the curve C

$$
\begin{aligned}
& \Gamma=\iint_{A} \vec{\omega} \cdot \hat{n} d A=\iint_{A_{n}} \omega d A_{n} \\
& \Gamma=\oint \vec{u} \cdot \boldsymbol{d} \vec{l}
\end{aligned}
$$

Γ is constant along a vortex tube

CIRCULATION FOR A VORTEX TUBE

VORTICITY-VELOCITY RELATIONSHIP

- Straight, infinite vortex tube, constant vorticity, $\vec{\omega}$
- Radius of tube, a
- Circular contour of radius, $r>a$

$$
\Gamma=\iint \vec{\omega} \cdot \hat{n} \mathrm{~d} \mathbf{A}=\pi \mathrm{a}^{2} \omega_{\mathbf{o}}
$$

also

$$
\Gamma=u_{\theta} \cdot 2 \pi r=\pi a^{2} \omega_{o}
$$

so

$$
u_{\theta}=\frac{\omega_{o} a^{2}}{2 r}=\frac{\Gamma}{2 \pi r}
$$

- Velocity outside tube decays as $1 / \mathrm{r}$
- Velocity inside tube ($\mathrm{r} \leq \mathrm{a}$)
$-\Gamma=u_{\theta} \cdot 2 \pi r=\pi \mathbf{r}^{2} \omega_{0}$
$-\mathbf{u}_{\theta}=\omega_{0} \mathbf{r} / 2$
- Sense of velocity - right hand rule

VELOCITY FIELD NEAR VORTEX TUBE

Sketch of velocity associated with curved vortex tube

VORTICITY AND STREAMLINE CURVATURE

- Vorticity can be present even if streamlines are straight

-Have rotation rate of vertical fluid line of $-\frac{\partial u_{y}}{\partial x}$, no rotation horiz. line
- Total rotation of 2 perpendicular lines is $-\frac{\partial u_{x}}{\partial y}+0=\omega_{z}$

VORTICITY IS NOT NECESSARILY PRESENT IF STREAMLINES ARE CURVED

- Consider 2-D flow with $u_{\theta} \propto 1 / r, \quad u_{r}=0$

Horizontal leg rotates $\mathbf{d} \theta$ in clockwise direction

$$
\boldsymbol{d} \theta=\frac{\boldsymbol{u}_{\theta}}{\boldsymbol{r}} \delta \boldsymbol{t}
$$

Vertical leg rotates $\frac{\boldsymbol{u}_{\theta}}{\partial r} \delta t$ in anti-clockwise direction
Net rotation in anti-clockwise direction is $\left(\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right) \delta t$

If $u_{\theta} \propto 1 / r,\left(\frac{\partial \mathbf{u}_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right)=0$, NO NET ROTATION, $\omega=0$

VORTICITY DYNAMICS: CHANGES IN VORTICITY IN A FLOW

- Want to be able to describe how vorticity distribution evolves in a general situation
- Need to develop expression for rate of change of vorticity

MOMENTUM EQUATION \Rightarrow EXPRESSION FOR RATE OF CHANGE OF VORTICITY

- Vorticity is $\nabla \mathbf{x}$ so take $\nabla \mathbf{x}$ [Momentum Eq.]

$$
\nabla \times\left[\frac{D \vec{u}}{D t}=-\frac{1}{\rho} \nabla p+\vec{F}_{\text {visc }}+\vec{F}_{\text {body }}\right]
$$

- Get:

$$
\begin{aligned}
& \frac{\partial \vec{\omega}}{\partial \mathbf{t}}+(\overrightarrow{\mathbf{u}} \cdot \nabla) \vec{\omega}-\vec{\omega}(\nabla \cdot \overrightarrow{\mathbf{u}})=(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{u}}-\nabla \times\left(\frac{1}{\rho} \nabla \mathbf{p}\right)+\nabla \times \overrightarrow{\mathbf{F}}_{\text {visc }}+\nabla \times \overrightarrow{\mathbf{F}}_{\text {body }} \\
& \frac{\mathbf{D} \vec{\omega}}{\mathbf{D t}}=\text { lots of } \\
& \text { terms }
\end{aligned}
$$

- Different physical meaning for each term
- Build up general case by looking at simple situation and adding effects

CASE 1 - INVISCID, CONSTANT DENSITY FLOW WITH CONSERVATIVE BODY FORCE

- Note: Incompressible \neq constant density

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\text {body }}=\nabla \Psi \quad \text { Force is gradient of a potential } \\
& \nabla \times \nabla \Psi \equiv \mathbf{0} \\
& \nabla \times\left(\frac{1}{\rho} \nabla \mathbf{p}\right)=\frac{1}{\rho} \nabla \times \nabla \mathbf{p}=\mathbf{0} \\
& \nabla \cdot \overrightarrow{\mathbf{u}}=\mathbf{0} \quad \text { incompressible }
\end{aligned}
$$

- Vorticity equation

$$
\begin{aligned}
& \frac{\mathbf{D} \vec{\omega}}{\mathbf{D t}}=(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{u}}
\end{aligned}
$$

- Vorticity change in inviscid, constant density flow conservative
- Body forces

PHYSICAL INTERPRETATION OF VORTICITY CHANGE EQUATION

- What does $(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{u}}$ mean?
- ω times derivative of $\vec{u} i n$ direction along $\vec{\omega}$
$-\mathbf{d} \vec{\ell}$ is element of vortex line - quantity is $\frac{\omega \partial \overrightarrow{\mathbf{u}}}{\partial \ell}$
- If there is a velocity variation along a vortex line, the vorticity changes

BEHAVIOR OF FLUID LINE (MATERIAL LINE)

- At $t, d l$ is $P Q$
- \mathbf{P} moves $\mathbf{u} \delta t \mathbf{i n} \delta \mathbf{t}$
- \mathbf{Q} moves $\left(\overrightarrow{\mathbf{u}}+\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell} \mathbf{d} \ell\right) \delta \mathbf{t}$
- Change in line element $P Q$ is

$$
\left(\overrightarrow{\mathbf{u}}+\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell} \mathbf{d} \ell\right) \delta \mathbf{t}-\overrightarrow{\mathbf{u}} \delta \mathbf{t}=\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell} \mathbf{d} \ell \delta \mathbf{t}
$$

CHANGE OF LENGTH OF A FLUID LINE

- Change of length over a time $\delta \mathbf{t}$

$$
\left.\delta(\mathbf{d} \vec{\ell})=\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell} \mathbf{d} \ell \delta \mathbf{t} \quad \text { or } \quad \frac{\delta(\mathbf{d} \vec{\ell})}{\delta \mathbf{t}}=\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell} \mathbf{d} \ell\right] \quad \begin{gathered}
\text { Rate of change of } \\
\text { length of line element }
\end{gathered}
$$

- Fractional rate of change of length:

$$
\frac{\mathbf{1}}{\mathbf{d} \ell} \frac{\mathbf{D} \mathbf{d} \vec{\ell}}{\mathbf{D} \mathbf{t}}=\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell}
$$

- Vorticity equation

$$
\frac{1}{\omega} \frac{\mathrm{D} \vec{\omega}}{\mathrm{Dt}}=\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \ell}
$$

- So if $\mathbf{d} \vec{\ell}$ is a line element on a vortex line

$$
\frac{1}{\omega} \frac{\mathrm{D} \vec{\omega}}{\mathrm{Dt}}=\frac{1}{\mathrm{~d} \ell} \frac{\mathrm{Dd} \vec{\ell}}{\mathrm{Dt}}
$$

A solution is $\vec{\omega}=\underbrace{\mathrm{K} d \vec{\ell}}_{\text {constant }}$

- Vortex lines and fluid lines behave the same way
- VORTEX LINES MOVE WITH THE FLUID

VORTEX LINES MOVE WITH THE FLUID

- Vortex line stretched $\Rightarrow \vec{\omega}$ increases
- Vortex line "tipped" \Rightarrow new component
- This is a true 3-D effect; not present in 2-D
- So:
- Inviscid flow, incompressible, uniform density, conservative body forces
- Vortex lines are "locked" to fluid particles

INTERPRETATION OF $(\vec{\omega} \cdot \nabla) \vec{\mu}$

- Examine x-component of vorticity equation to see physical meaning of terms

$$
\begin{aligned}
& \frac{D \omega_{x}}{D t}=\omega_{x} \frac{\partial u_{x}}{\partial x}+\omega_{y} \frac{\partial u_{x}}{\partial y}+\omega_{z} \frac{\partial u_{x}}{\partial z} \\
& \begin{array}{ll}
\mid \longleftarrow & \Delta x \longrightarrow \\
\stackrel{t}{\bullet} & t \\
\bullet & \bullet--\underset{P}{P}--\bullet Q^{\prime}
\end{array} \\
& t+\delta t
\end{aligned}
$$

- Change in length of $P Q$ is $\left(\frac{\partial \mathbf{u}_{\mathbf{x}}}{\partial \mathbf{x}} \Delta \mathbf{x}\right) \delta t$
- Fractional change is $1 / \Delta x$ times this
- Rate of change of x-vorticity is rate of change of length of vortex line element $\frac{1}{\omega_{\mathbf{x}}} \frac{D \omega_{\mathbf{x}}}{D t}=\frac{\partial u_{\mathbf{x}}}{\partial \mathbf{x}}$ vortex stretching

- Vortex lines move with the fluid
- ω_{y} gets tipped into x-direction, creating an x-component of vorticity
-Rate of creation of x-vorticity can be found as follows:
Relative to P, Q moves $\frac{\partial u_{x}}{\partial y} \Delta y d$
Small angle α is $\tan \alpha \approx \alpha=\frac{\partial u_{x}}{\partial y}$
Small change in vorticity is $\frac{\delta \omega_{\mathrm{x}}}{\omega_{\mathrm{y}}}=\tan \alpha \approx \frac{\partial u_{x}}{\partial y}$

INTERPRETATION OF $(\vec{\omega} \cdot \nabla) \vec{\mu}$

- This term represents the tipping of y (or $z-$-) components of vorticity into the x-direction.
-This is TRULY A 3-D EFFECT. It does not occur in 2-D flow.
-FOR 2-D FLOW, the vorticity and the velocity are both functions of x and y. Plug into the vorticity equation and find that

$$
\frac{D \omega_{y}}{D t}=\frac{D \omega_{z}}{D t}=0
$$

$$
\frac{D \omega_{z}}{D t}=\frac{D \omega}{D t}=0
$$

APPLICATIONS TO SOME RELEVANT FLOWS

- Can predict changes in vorticity by examining kinematics of vortex lines
- Example: Secondary flow in a bend, blade passage

GENERATION OF STREAMWISE VORTICITY (AND SECONDARY FLOW) BY CONVECTION OF VORTEX LINES THROUGH A BEND

Inlet Streamwise Velocity

Secondary Streamlines
at Passage Exit

- Note: Can also understand in terms of pressures and accelerations
- In free stream

$$
\frac{\partial \mathbf{p}}{\partial \mathbf{n}}=\rho \frac{U_{\text {freestream }}^{2}}{r_{c}} \quad \begin{aligned}
& \text { Local radius of } \\
& \text { curvature }
\end{aligned}
$$

- In boundary layer on floor,

- So more curvature, sharper turn, in boundary layer \Rightarrow radially inward acceleration
- Boundary layer - less centrifugal force, same $\frac{\partial p}{\partial n}$
\Rightarrow Radially inward accelerationof fluid

HORSESHOE VORTEX
 (Strut, Turbomachinery Blade)

HORSESHOE VORTEX UPSTREAM OF WEDGE [Schwind]

SKETCH OF TURBINE SECONDARY FLOW [Langston]

Figure by MIT OCW.

SECONDARY FLOW IN TURBINE BLADES [Gostelow]

FLOW ROUND A LOG (MY BACK YARD)

BEHAVIOR OF A VORTEX RING

- Consider two infinite vortex tubes

Sense of vorticity
So two vortices will move with constant velocity, $u=$?

Vortex ring has some similarities to vortex pair

Translates along With velocity = ?

Seems easier to "understand" using vorticity arguments than using pressure (force) description

VORTICITY MEASURES ANGULAR VELOCITY NOT ANGULAR MOMENTUM

Spherical fluid particle with $\omega_{\mathrm{x}}=\omega_{\mathrm{z}}=\omega_{0}$ at time \boldsymbol{t}
Motion with u_{z} outwards, u_{z}, u_{y} inwards
Suppose $\frac{\partial u_{z}}{\partial z}=\varepsilon$ and symmetric about z-axis

$$
\frac{\partial u_{x}}{\partial x}=\frac{\partial u_{y}}{\partial y}=-\varepsilon / 2
$$

Vorticity vector is at 45° to x, z, axes initially
What happens to vorticity vector with time?
ω_{z} is increased (stretched) by the motion
ω_{x} is decreased (contracted) by the motion

(a)

(b)

$$
\frac{D \vec{\omega}}{D t} \neq 0
$$

The vorticity vector is "tipped" by the deformation of the particle.
This is change in vorticity. What about change in angular momentum?

CHANGES IN ANGULAR MOMENTUM?

- Only pressure forces act.
- Pressure forces are normal to surface of a spherical particle
- Pressure forces act through the center of mass of the particle and exert no torque
- No torque => No change in angular momentum

Torque $=$ rate of change of angular momentum

- Conclusion is that vorticity $(\vec{\omega})$ changes but angular momentum (\vec{H}) does not.
- How does this happen? (What is going on physically?)
- To see this, let's look at the changes in angular velocity and angular momentum using the tools familiar from 3-D dynamics

ANGULAR MOMENTUM AND VELOCITY CHANGES

$\overrightarrow{\boldsymbol{H}}=\overline{\bar{I}} \bar{\omega}$; $\overline{\boldsymbol{I}}$ is the inertia tensor-9 quantities
$\bar{I}=\left[\begin{array}{ccc}I_{x} & 0 & 0 \\ 0 & I_{y} & 0 \\ 0 & 0 & I_{z}\end{array}\right]$ for a sphere, where $I_{x}=I_{y}=I_{z}=I$

$$
\frac{d \vec{H}}{d t}=\vec{\omega} \frac{d \bar{I}}{d t}+\bar{I} \frac{d \vec{\omega}}{d t}
$$

This is worked out in the notes in detail, but can see here one component, $\boldsymbol{H}_{x}=I_{x} \omega_{x}$.

$$
\frac{\boldsymbol{d} \boldsymbol{H}_{x}}{\boldsymbol{d} t}=\omega_{x} \frac{\boldsymbol{d} I_{x}}{\boldsymbol{d} \boldsymbol{t}}+I_{x} \frac{\boldsymbol{d} \omega_{x}}{\boldsymbol{d} \boldsymbol{t}}
$$

ω_{x} decreases and moment of inertia (I_{x}) about x -axis increases
As shown in notes, there are equal and opposite terms so that

$$
\frac{d H_{x}}{d t}=0
$$

ANGULAR VELOCITY CHANGES

- For a 2-D flow we can calculate the change in angular momentum by considering torques

Torque $=\frac{d(\text { Angular momentum })}{d t}=\frac{d(I \Omega)}{d t}$
Torque $=I \frac{d \Omega}{d t}+\Omega \frac{d I}{d t}$
I for a small cylinder $=M R^{2} / 2 ; M=$ mass, $R=$ radius
Cylinder deforms to an ellipse with $I=\frac{M}{4}\left(c^{2}+b^{2}\right)$

$$
\begin{aligned}
& b=R+\frac{\partial u_{x}}{\partial x} \delta t ; \quad c=R-\frac{\partial u_{y}}{\partial y} \delta t \\
& \delta I=\frac{M}{4} R^{2}\left[2 R\left(\frac{\partial u_{x}}{\partial x}\right)+2 R\left(-\frac{\partial u_{y}}{\partial y}\right)\right] \delta t=0 \quad ; \quad \text { Continuity }
\end{aligned}
$$

CASE 2 - VORTICITY CHANGES IN INVISCID, INCOMPRESSIBLE FLOW WITH NON-UNIFORM DENSITY

$$
\begin{aligned}
& \frac{\mathbf{D} \vec{\omega}}{\mathbf{D t}}=(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{V}}-\nabla \times\left(\frac{1}{\mathbf{p}} \nabla \rho\right) \\
& \frac{\mathbf{D} \vec{\omega}}{\mathbf{D t}}=(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{V}}+\frac{1}{\rho^{2}} \nabla \mathbf{p} \times \nabla \rho \\
&
\end{aligned}
$$

- Gradient is normal to surfaces having constant value
- If $\nabla \mathbf{p} \times \nabla \rho \neq \mathbf{0} \quad \nabla \mathbf{p}$ not parallel to $\nabla \rho$

PHYSICAL MECHANISM FOR VORTICITY PRODUCTION

- Constant density surfaces not aligned with constant pressure surfaces leads to vorticity production
- Look at two-dimensional example (We already understand the ($\vec{\omega} \cdot \nabla) \vec{u}$ term)

$$
\frac{\mathrm{D} \omega}{\mathrm{Dt}}=\frac{1}{\rho^{2}} \nabla \rho \times \nabla p
$$

- If surfaces of constant ρ and constant p are not aligned, there is a torque about the center of mass

TORQUE IN A NON-UNIFORM DENSITY FLUID

Generation of ω

Generation of vorticity due to the interaction of pressure and density gradients: pressure force torque about the center of mass of a fluid particle
$\delta I=0$ for this problem (2-D, incompressible spherical)
Torque directly related to changes in angular velocity

$$
\begin{aligned}
& \text { Torque }=I \frac{\boldsymbol{d} \Omega}{\boldsymbol{d} \boldsymbol{t}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}} \\
& \overrightarrow{\boldsymbol{r}}=-\frac{1}{\rho_{o}} \nabla \rho \boldsymbol{R}^{2} / 4 \quad ; \quad \overrightarrow{\boldsymbol{F}}=-\nabla \boldsymbol{p}\left(\pi \boldsymbol{R}^{2}\right) \\
& \qquad \vec{r} \times \overrightarrow{\boldsymbol{F}}=\left\{\frac{1}{\rho_{o}^{2}} \nabla \rho \times \nabla \boldsymbol{p}\left[\left(\pi \rho_{o} \boldsymbol{R}^{2}\right) \frac{\boldsymbol{R}^{2}}{2}\right]\right\}
\end{aligned}
$$

Underlined term is I

$$
\begin{aligned}
& \text { Torque }=I \frac{d \Omega}{d t} \text { becomes } \\
& \frac{1}{\rho_{o}} \nabla \rho \times \nabla p=2 \frac{d \Omega}{d t}=\frac{d \omega}{d t}
\end{aligned}
$$

Fluid dynamics is a branch of dynamics; the connections are useful and helpful

EXAMPLES OF VORTICITY PRODUCTION DUE TO " $\nabla \rho \times \nabla \mathbf{p}$ "

1) Flow round a bend

- Initial conditions: $\overrightarrow{\mathbf{u}}=$ constant, $\vec{\omega}=\mathbf{0}$
$-\rho=\rho(z)$
- $\nabla \rho$ points down
- ∇ p points radially outward
$-\nabla \rho \mathbf{x} \nabla \mathbf{p}$ is in streamwise direction; leads to secondary circulation

Denser fluid

- "Primitive variable" explanation:
- Pressure gradient set by free stream $\rho ; \partial p / \partial r=\rho u^{2}$
- Fluid near bottom is denser, won't follow free streamlines (too much inertia to be turned), flows to outside of bend

Inlet Streamwise Velocity: $\vec{\omega}_{\text {inlet }}=0$

$\rho(z)$ inlet

Secondary Streamlines at Passage Exit

Generation of streamwise vorticity (and secondary flow) due to interaction of pressure and density gradients

OUTFLOW FROM RESERVOIR OF THERMALLY STRATIFIED FLUID (COMBUSTOR)

VORTICITY PRODUCTION IN STRATIFIED FLOW

- Alternative explanation
- High and low density streams have same $\Delta \mathrm{p}$ - same force
- Low density stream has less mass
- $\mathrm{Aa}=\mathrm{F} / \mathrm{m} \Rightarrow$ acceleration of low density stream is higher
- Final velocity for ρ_{1} stream > than for ρ_{2} stream

CASE 3 - VISCOUS FLOW

Incompressible, const ρ, conservative $\vec{F}_{\text {body }}$
Look at basic problem: Viscous flow near infinite flat plate which we impulsively start -2-D flow $\frac{\partial}{\partial \boldsymbol{x}}=0$
Equations for velocity, vorticity
Generation of vorticity due to the action of viscous forces: impulsively started plate: $U(0, t)=0, t<0 ; U(0, t)=U, t>0$

$$
\frac{\partial u_{x}}{\partial t}=v \frac{\partial^{2} u_{x}}{\partial y^{2}} \longleftarrow \text { net viscous forces }
$$

and

$$
\frac{\partial \omega}{\partial t}=v \frac{\partial^{2} \omega}{\partial y^{2}} \longleftarrow \text { net viscous torque }\left(\nabla x \vec{F}_{\text {visc }}\right)
$$

Vorticity is altered due to viscous effects
Viscous forces can exert a torque
Dynamic correspondence worked out in notes
Note time and length scales from form of solution $\frac{\omega}{U / \sqrt{v t}} \propto e^{y^{2} / 2 v t}$
$\delta \sim$ distance of appreciable vorticity:

$$
\frac{y^{2}}{v t} \sim 1 \Rightarrow \delta \sim \sqrt{v t}
$$

VISCOUS STRESSES AND TORQUES ON A

 FLUID ELEMENT

Figure by MIT OCW.

VISCOUS STRESSES AND TORQUES ON A FLUID ELEMENT

- Region near wall of appreciable vorticity scales as $\sqrt{v t}$.
- Flow along a stationary wall

$$
\begin{aligned}
& t \sim x / U \\
& \delta \sim \sqrt{v X / U}
\end{aligned}
$$

- We have been looking at effects one-by-one. Now put two together: vortex stretching plus effects of viscosity

VORTEX STRAINED (STRETCHED) ALONG ITS AXIS

Conditions

Axisymmetric flow
Constant strain rate, α
Use cylindrical coordinate system
Velocity components: $u_{z}=\alpha Z$ (Strain rate is z)
Continuity -

$$
\boldsymbol{u}_{r}=-\alpha \boldsymbol{r} / \mathbf{2}
$$

ALTERNATIVE VIEW OF PROCESS

Consider volume fixed in space

Write expression for changes of vorticity in fixed volume, v

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{v} \vec{\omega} d v=\int_{s}(\vec{\omega} \cdot \nabla) \vec{u} d v-\int_{s}\left(n^{\prime} \cdot \vec{u}\right) \vec{\omega} d s \\
& -\int \hat{n} \times F_{v i s c} d s
\end{aligned}
$$

Steady flow - volume surfaces away form viscous regions

Flux out
Produced inside

$$
\boldsymbol{u}_{\theta}=\frac{\Gamma}{2 \pi r}\left(1-e^{-\alpha r^{2} / 4 v}\right)
$$

Only vorticity is in z direction

$$
\omega_{z}=\frac{\Gamma}{\pi} \boldsymbol{e}^{-\alpha r^{2} / 4 v}
$$

Appreciable vorticity only exists for $r \sqrt{4 v / \alpha}$, say (whatever initial Distribution is)

Vorticity equation

$$
\left.u_{r} \frac{\partial \omega_{z}}{\partial r}=\omega_{z} \frac{\partial}{\partial_{z}}+\downarrow \frac{\partial^{2} \omega_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial\left(r \omega_{z}\right)}{\partial r}\right\rfloor
$$

Change in vorticity as particle (ring of particles) is (are) convected inward due to:
a) Vortex stretching and vorticity production
b) Viscous torques

EXAMINE SMALL ELEMENT

a) As element's radius shrinks, angular velocity increases (ang. mom. is const)

b) But as element "spins up" viscous torques try to decrease its ω.

- A balance between a) and b). Also, strain rate α sets size of vortex (sets radius)

This is a model problem with applications:
Horse shoe vortex
Inlet vortex
One other point: look at control volume of radius $r \gg \sqrt{\eta / \alpha}$

No vorticity on sides - fluid comes in irrotational
Fluid continually leaving thru top and bottom with vorticity
Net outflow of vorticity because vorticity is produced inside by vortex stretching (straining)

INLET VORTEX

Figure by MIT OCW.

INGESTION OF VORTEX LINES INTO INLET

Figure by MIT OCW.

INGESTION OF VORTEX LINES INTO AN INLET: A BASIC QUESTION

- Vortex lines cannot end in fluid. If a vortex line is ingested into an inlet, there are thus two legs of the line that "stick out".
- Only one vortex seems to be observed, however!

CASE 4 - COMPRESSIBLE FLOW

- Inviscid, conservative body force (these act as in incompressible case)
- Start with general vorticity equation

$$
\frac{\mathbf{D} \vec{\omega}}{\mathbf{D} \mathbf{t}}=(\vec{\omega} \cdot \nabla) \overrightarrow{\mathbf{u}}+\vec{\omega}(\nabla \cdot \overrightarrow{\mathbf{u}})-\nabla \times\left(\frac{1}{\rho} \nabla \mathbf{p}\right)
$$

ANALOGY WITH INCOMPRESSIBLE FLOW

- $\vec{\omega} / \rho$ for a compressible flow behaves like $\vec{\omega}$ for an incompressible flow

$$
\frac{\mathbf{D}(\vec{\omega} / \rho)}{\mathbf{D t}}=\left(\frac{\vec{\omega}}{\rho} \cdot \nabla\right) \overrightarrow{\mathbf{u}}-\frac{1}{\rho}(\nabla \mathbf{T} \times \nabla \mathbf{s})
$$

- For a compressible flow, $\vec{\omega} / \rho$ can be altered if $\rho \neq \rho(\mathbf{p})$ or, equivalently, S $=\mathbf{S}(\mathrm{T})$
- 2-D isentropic flow: $\omega / \rho=$ const ; $\rho \uparrow \Rightarrow \omega \uparrow$

Flow in a high speed boundary layer with adverse pressure gradient (2-D)

Fluid near wall has same P, higher \boldsymbol{T} than outside boundary layer

Vorticity
$\frac{D}{D t} \vec{\omega} / \rho=\frac{1}{\rho^{3}} \nabla \rho \times \nabla P$
Shape of boundary layer Profile changes

Simpler model problem

$U=$ cons

Another view
Neglecting visc.

$$
\begin{aligned}
& d \mathbf{P}=\rho_{\text {ts }} u_{e} d u_{e} \\
& d P_{b . I .}=d P_{f s}=\rho_{b . I I} u_{b . I .} d u_{b . I .} . \\
& \frac{d u_{b . I .}}{d u_{e}}=\frac{\rho_{t s} u_{e}}{\rho_{b . I} u_{b . I .}} \\
& \text { "Double whammy" } \\
& \text { on deceleration }
\end{aligned}
$$

CIRCULATION AND VORTICITY

- Circulation around a contour C is equal to the flux of vorticity through A bounded by C
- Circulation - a more global quantity than vorticity
- Often are more interested in overall effects than in details
- Circulation - a scalar
- Wish to find rate of change of circulation for a fluid contour closed curve composed of the same fluid particles

DEFINITION OF CIRCULATION

$$
\begin{aligned}
& \Gamma_{\mathbf{c}}=\oint_{\mathbf{c}} \overrightarrow{\mathbf{u}} \cdot \mathbf{d} \vec{\ell} \curvearrowright \begin{array}{c}
\text { Closed } \\
\text { contour, } \mathbf{C}
\end{array} \\
&=\iint_{\mathbf{A}} \nabla \times \overrightarrow{\mathbf{u}} \cdot \hat{\mathbf{n}} \mathbf{d A} \\
& \text { (Stokes) }
\end{aligned}
$$

$$
\Gamma=\iint_{\mathbf{A}}(\vec{\omega} \cdot \hat{\mathbf{n}}) \mathrm{d} \mathbf{A}
$$

Flux of vorticity through area A, bounded by C

CHANGE IN CIRCULATION FOR A FLUID CONTOUR

C at t_{1}
$\Gamma=\Gamma_{1}$
C at t_{2}
$\Gamma=$?

Want to find $\frac{D \Gamma_{c}}{D t}$

$$
\frac{\mathrm{D} \Gamma_{\mathbf{c}}}{\mathrm{Dt}}=\frac{\mathrm{D}}{\mathrm{Dt}} \oint \overrightarrow{\mathbf{u}} \cdot \mathbf{d} \vec{\ell}
$$

CHANGE IN CIRCULATION (cont.)

- Can think of this as

$$
\frac{D}{D t} \sum_{i=1}^{N} \vec{u}_{i} \cdot d \vec{\ell}_{i} \cong \frac{D \Gamma_{c}}{D t}
$$

- Always consider "same" \mathbf{N} fluid particles, so can say

$$
\frac{\mathrm{D}}{\mathrm{Dt}} \sum \mathbf{u}_{\mathbf{i}} \cdot \mathbf{d} \ell_{\mathbf{i}}=\sum \frac{\mathbf{D}}{\mathrm{Dt}}\left(\overrightarrow{\mathrm{u}}_{\mathbf{i}} \cdot \mathbf{d} \overrightarrow{\mathrm{l}}_{\mathbf{i}}\right)
$$

- Can do this with integral because consider contour of same particles

$$
\frac{\mathrm{D} \Gamma_{\mathbf{c}}}{\mathrm{Dt}}=\oint_{\mathbf{c}} \frac{\mathbf{D}}{\mathbf{D t}}(\overrightarrow{\mathbf{u}} \cdot \mathbf{d} \vec{\ell})
$$

CHANGE IN CIRCULATION (cont.)

$$
\begin{gathered}
\frac{D \Gamma_{\mathbf{c}}}{D t}=\oint_{\mathbf{c}} \frac{\mathrm{D} \overrightarrow{\mathrm{u}}}{\mathrm{Dt}} \cdot \mathrm{~d} \vec{\ell}+\oint_{\mathbf{c}} \overrightarrow{\mathrm{u}} \cdot \frac{\mathrm{Dd} \vec{\ell}}{\mathrm{Dt}} \\
\text { (1) }
\end{gathered}
$$

- Look at (2):
$-\mathbf{d} \vec{\ell}$ is $\overrightarrow{P Q}$ at \mathbf{t}
$\delta \mathbf{d} \vec{\ell}$
$-\mathbf{d} \vec{\ell}$ is $P^{\prime} Q^{\prime}$ or $\overrightarrow{P Q}+\overbrace{\mathbf{d u} \delta t}^{d t} \mathbf{t}+\delta \mathbf{t}$
- Rate of change of $\mathbf{d} \vec{\ell}$ is $\frac{\delta(\mathbf{d} \vec{\ell})}{\delta \mathbf{t}}$

Or dü so:

$$
\frac{\mathrm{Dd} \vec{\ell}}{\mathrm{Dt}}=\mathrm{d} \overrightarrow{\mathrm{u}}
$$

CHANGE IN CIRCULATION (cont.)

Rate of change, in length and orientation, of a vortex line element $\mathrm{d} \vec{\ell}$ of fluid contour

CHANGE IN CIRCULATION (cont.)

$$
\text { Hence } \begin{aligned}
& \quad(2)=\oint_{c} \overrightarrow{\mathbf{u}} \cdot d \vec{u} \vec{u}=\oint_{c} \mathbf{d}\left(\frac{\mathbf{u} \cdot \vec{u}}{2}\right) \\
&=\mathbf{0} \quad \begin{array}{l}
\text { Integral of an } \\
\text { exact differential } \\
\text { round a closed } \\
\text { contour }
\end{array}
\end{aligned}
$$

RATE OF CHANGE OF CIRCULATION (concluded)

$$
\frac{\frac{\mathbf{D} \Gamma_{\mathbf{c}}}{\mathbf{D t}}=\oint_{\mathbf{c}}\left[-\frac{\nabla \mathbf{p}}{\rho}+\overrightarrow{\mathbf{F}}_{\text {visc }}+\overrightarrow{\mathbf{F}}_{\text {body }}\right] \cdot \mathbf{d} \vec{\ell}}{\longrightarrow \text { Kelvin's Theorem }}
$$

- Rate of change of circulation round a fluid contour, C
- Constant density, inviscid, conservative body force

$$
\frac{\mathrm{D} \Gamma_{\mathrm{c}}}{\mathrm{Dt}}=0
$$

IMPLICATIONS OF KELVIN'S THEOREM
 (Constant Density, Inviscid, Conservative Body Force)

- If a fluid contour once has $\Gamma_{\mathrm{c}}=0$, it always has $\Gamma_{\mathrm{c}}=0$
- If fluid comes from reservoir with $\Gamma_{\mathrm{c}}=0$, then $\Gamma_{\mathrm{c}}=0$ everywhere
\Rightarrow Potential flow

VORTEX TUBE

Vortex tube showing contour C_{1}, which encloses all vortex lines in tube, and C_{2}, which has zero circulation

VORTEX TUBE IN CONSTANT DENSITY FLOW

- $\Gamma_{\mathrm{c}_{1}}$ is constant, C_{1} is a fluid contour
- C_{1} always encloses vortex lines
- $\Gamma_{c_{2}}=0 \quad\left(C_{2}\right.$ on wall of tube)
- Vortex lines never permeate A_{2}
- Remain confined in tube
\Rightarrow Vortex lines move with the fluid

EXTENSION TO COMPRESSIBLE FLOW

- $\frac{D \Gamma_{\mathbf{c}}}{D t}=0$ for $\rho=$ constant
- Suppose $\rho=\rho(\mathbf{p}) \quad$ (e.g. isentropic compressible flow)
(still inviscid, conservative forces)

$$
\frac{\mathrm{D} \Gamma_{\mathbf{c}}}{\mathrm{Dt}}=-\oint_{\mathbf{c}} \frac{\nabla \mathbf{p}}{\rho}
$$

"Kelvin's form" of Kelvin's Theorem

- If $\rho=\rho(\mathbf{p})$, r.h.s. is

$$
\oint_{c} \frac{\nabla p}{\rho(p)} \cdot d \vec{\ell}=\oint_{c} \frac{d p}{\rho(p)}=0
$$

- so if $\rho=\rho(\mathbf{p})$

$$
\frac{D \Gamma_{\mathbf{c}}}{\mathrm{Dt}}=0 \Rightarrow \text { Vortex lines move with the fluid }
$$

- Also consider element in vortex tube
a) $\rho \mathrm{dA}$ dl $=$ constant
b) $\omega d A=$ constant
$\frac{\text { b) }}{\text { a) }} \Rightarrow \frac{\omega}{\rho d \ell}=$ cons tant
- ω / ρ for compressible flow plays same role as ω in incompressible flow

FLUID ELEMENT IN VORTEX TUBE

Flow in which $\rho=\rho(\mathbf{p})$

Fluid element in vortex tube; mass $=\rho \mathrm{dA} d 1$

EXAMPLES OF THE USE OF KELVIN'S THEOREM

- Example 1: "Pre-whirl"

Question: What is average C_{θ} upstream of a rotor?
Consider contour, C.
Far upstream Gc = 0 so upstream of rotor

$$
\Gamma_{\mathbf{c}}=\int_{\mathbf{c}} \overrightarrow{\mathbf{C}}_{\theta} \cdot \mathbf{d} \vec{\ell}=\mathbf{0} \Rightarrow\left(\mathbf{C}_{\theta}\right)_{\mathrm{av}}=\mathbf{0}
$$

Unless backflow from separation in rotor

- Example 2: Relative eddy in centrifugal impeller

Flow in rotating passage:

$$
\Gamma_{c}=0 \text { in absolute (fixed) system, } \frac{D \Gamma_{c}}{D t}=0
$$

In rotating system

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}_{\text {abs }}=\overrightarrow{\mathbf{u}}_{\mathrm{rel}}+\vec{\Omega} \times \overrightarrow{\mathbf{r}} \\
& \int_{\mathrm{u}}{ }_{\mathrm{rel}} \cdot \mathbf{d} \vec{\ell}=-\oint_{\mathrm{c}} \vec{\Omega} \times \overrightarrow{\mathbf{r}} \cdot \mathbf{d} \vec{\ell}
\end{aligned}
$$

RELATIVE CIRCULATION

$$
\begin{aligned}
& \Gamma_{\mathbf{c}_{\text {rel }}}=-2 A_{\mathbf{c}} \Omega \quad\left(A_{\mathbf{c}} \perp \vec{\Omega}\right) \\
& \omega_{\text {rel }}=\frac{\Gamma_{\mathbf{c}_{\text {rel }}}}{A_{\mathbf{c}}}=-2 \Omega \quad \text { (relative vorticity) }
\end{aligned}
$$

- So-called "relative eddy"

RELATIVE VELOCITY PROFILE IN A ROTATING STRAIGHT CHANNEL

$$
\omega_{\mathrm{rel}}=-2 \Omega
$$

Figure by MIT OCW.

FLOWS WITH NON-UNIFORM DENSITY

$$
\frac{\mathbf{D} \Gamma_{\mathbf{c}}}{\mathrm{Dt}}=-\oint \frac{\nabla \mathbf{p}}{\rho} \cdot \mathbf{d} \vec{\ell}=\iint_{\mathbf{A}} \frac{\nabla \rho \times \nabla \mathbf{p}}{\rho^{2}} \cdot \hat{\mathbf{n}} \mathbf{d A}
$$

- Circulation is produced when density gradients are not aligned with pressure gradients
- Example: Flow from reservoir

$$
-\oint_{\mathbf{c}} \frac{\nabla \mathbf{p}}{\rho} \cdot \mathbf{d} \vec{\ell} \cong\left(\frac{1}{\rho_{2}^{2}}-\frac{1}{\rho_{1}}\right) \int_{\mathbf{a}}^{\mathbf{b}} \nabla \mathbf{p} \cdot \mathbf{d} \vec{\ell}=\left(\frac{1}{\rho_{2}}-\frac{1}{\rho_{1}}\right) \Delta \mathbf{p}_{\mathrm{ab}}
$$

- Where $\Delta p_{a b}$ is change in pressure from one end of the contour to the other, $\mathbf{a} \rightarrow \mathbf{b}$

Change in circulation in a fluid of non-uniform density; channel with inlet area \gg exit area

Figure by MIT OCW.

INVISCID COMPRESSIBLE FLOW

$$
\begin{aligned}
\frac{\mathbf{D} \Gamma_{\mathbf{c}}}{\mathrm{Dt}} & =-\oint \frac{\nabla \mathbf{p}}{\rho} \\
& =\iint_{\mathbf{A}} \frac{\nabla \rho \times \nabla \mathbf{p}}{\rho^{2}} \cdot \hat{\mathbf{n}} \mathbf{d A} \\
& =\iint_{\mathbf{A}} \nabla \mathbf{T} \times \nabla \mathbf{s} \cdot \hat{\mathbf{n}} \mathbf{d A}
\end{aligned}
$$

EXAMPLE: SHOCK-ENHANCED MIXING

On surface have a density discontinuity

Generate vorticity at interface

Two-dimensional, unsteady interaction of a shock with a light gas inhomogeneity

Figure by MIT OCW.

COMPARISON OF NUMERICAL AND COMPUTATIONAL RESULTS (JACOBS)

(a) $\mathrm{t}=0.102 \mathrm{~ms}$ $\mathrm{t}^{*}=1.39$

(b) $\mathrm{t}=0.427 \mathrm{~ms}$ $\mathrm{t}^{*}=5.81$

(c) $t=0.983 \mathrm{~ms}$
$\mathrm{t}^{*}=13.4$

Figure by MIT OCW.

THREE-DIMENSIONAL, STEADY INTERACTION OF A COLUMN OF LIGHT GAS WITH AN OBLIQUE SHOCK
[Waitz et al]

Figure by MIT OCW.

CONTOURS OF HELIUM MASS FRACTION DOWNSTREAM OF A SCRAMJET INJECTOR FOR M = 1.7 INJECTION INTO M-6 AIR [53], [54]

FLOW DESCRIPTION IN TERMS OF VORTICITY AND CIRCULATION

- Inviscid, incompressible flow
- We have derived $\omega / \mathrm{dl}=$ const
- ω is vorticity magnitude
- dl is length of line element on vortex line (vortex tube)

- Apply to non-uniform flow in diffuser or nozzle

STREAMWISE VORTICITY IN NOZZLE

Figure by MIT OCW.

STREAMWISE VORTICITY

- Component of vorticity in streamwise direction (swirl non-uniformity)
- Assume vortex filaments carried (convected) by mean (background) flow
- What happens $1 \rightarrow 2$?
- Along a streamline

$$
\frac{d \ell_{1}}{d \ell_{2}}=\frac{u_{1}}{u_{2}}
$$

STREAMWISE VORTICITY CHANGE IN NOZZLE

- So $\frac{\omega_{2}}{\omega_{1}}=\frac{u_{2}}{u_{1}} \quad$ (streamwise vorticity)
- ω increases
- What is often of more interest is relative uniformity of flow - swirl angle

$$
\tan \alpha_{1} \sim \frac{\text { swirl velocity }}{\text { axial velocity }}
$$

FLOW ANGLE CHANGE IN NOZZLE

- Suppose vortex tube is circular, radius \mathbf{r}

$$
\alpha_{1} \sim \frac{\omega_{1} r_{1}}{2 u_{1}} \quad\left(\alpha_{1} \ll 1\right)
$$

- Continuity: $r^{2} \mathbf{u}=$ constant along a streamtube
- Thus:

$$
\frac{\alpha_{2}}{\alpha_{1}} \sim \frac{r_{2}}{r_{1}} \sim \sqrt{\frac{u_{1}}{u_{2}}}=\sqrt{\text { Area ratio }} ; \quad \text { Area ratio }=\frac{A_{2}}{A_{1}}
$$

- Nozzles increase flow uniformity with regard to swirl angularity
- Diffusers worsen it

EFFECT OF NORMAL VORTICITY

Figure by MIT OCW.

VELOCITY NON-UNIFORMITY DUE TO NORMAL VORTICITY

- Vorticity normal to flow: Non-uniformity in streamwise velocity
- 2-D nozzle \Rightarrow length of vortex lines is constant
- $\omega_{z}=$ constant along a mean streamline
- Parallel flow at inlet and exit

$$
\omega_{1}=\frac{d u_{1}}{d y}=\omega_{2}
$$

- Channel width decreases, $\omega_{1} \rightarrow \omega_{2}$
- Local velocity gradient remains same

EFFECT OF NOZZLE ON VELOCITY NON-UNIFORMITY

$$
\frac{\Delta u_{x_{2}}}{\Delta u_{x_{1}}} \approx \frac{\omega_{2}}{\omega_{1}}=\text { Area ratio }
$$

- Look at relative velocity non-uniformity $\frac{\Delta \mathbf{u}_{\mathbf{x}}}{\mathbf{U}}$

$$
\frac{\Delta u_{\mathrm{x}_{2}}}{\mathrm{U}_{2}} / \frac{\Delta \mathrm{u}_{\mathrm{x}_{1}}}{\mathrm{U}_{1}}=(\text { Area ratio })^{2}
$$

- Nozzles suppress velocity non-uniformities
- Diffusers worsen them
- Suppose vorticity is in y-direction
- Then "width" is constant
- Is velocity non-uniformity altered?

PASSAGE OF TURBOMACHINE WAKE THROUGH SUCCEEDING BLADE ROW (COMPRESSOR)

- View wake as 2-D, inviscid, convected by "mean" flow
- Compare length of wake segment at inlet and at exit
- Length increases because
- 1) Width of mean streamtube increases
- 2) Net circulation around blades (A,B)
- $\Gamma \sim$ wake length x velocity difference freestream - wake
- $\Gamma=$ constant, length $\uparrow \Rightarrow \Delta \mathbf{V}$ freestream - wake \downarrow
- Wake gets attenuated in compressor

PASSAGE OF STATOR WAKE THROUGH ROTOR

[Argument due to L. H. Smith]

BEHAVIOR OF VORTICITY AT SOLID SURFACES

- Viscous flow, no slip condition, $\vec{u}=\vec{u}_{\text {solid }}^{\text {surface }}$ on the surface
- Stationary surface, $\vec{u}=0$ at surface
- What is circulation on surface (any contour)

$$
\left.\begin{array}{l}
\Gamma_{c}=\oint \vec{u} \cdot d \vec{l} \\
\text { but } \vec{u}=0 \text { on surface } \\
\Gamma_{c}=\mathbf{0} \text { for any contour } \\
\Gamma=\iint_{A} \vec{\omega} \cdot \hat{n} d A=\iint_{A}\left[\omega_{\text {normal }}\right. \text { to surface }
\end{array}\right] d A
$$

Result: on stationary surface $\omega_{\text {normal }}=0$ vorticity (vortex lines) are tangent to surface - cannot end in fluid

BEHAVIOR OF VORTEX LINES AT A SOLID SURFACE

Figure by MIT OCW.

- What about rotating surface: can vortex lines end on these?
- To see generation of vorticity on solid surfaces start with
momentum equation (viscous, const. ρ)
On surface: $\vec{u}=0$ on stationary surface

$$
\left\lfloor\frac{1}{\rho} \nabla \boldsymbol{p}=\nabla^{2} \boldsymbol{u}\right\rfloor_{\text {surface }}
$$

look at $2-\mathrm{D}$ case - surface is plane $\boldsymbol{y}=0$
$\frac{1}{\rho} \frac{\partial p}{\partial x}=v \frac{\partial^{2} u_{x}}{\partial y^{2}}$
$\frac{1}{\rho} \frac{\partial p}{\partial X}=-v \frac{\partial \omega}{\partial y}$

Whenever there is a pressure gradient along the solid boundary there is a gradient of tangential vorticity at the surface - a diffusion of vorticity into fluid

Analogy with heat transfer

$-k \frac{\partial T}{\partial y}=$ Heat flux

$$
v \frac{\partial \omega}{\partial y} \underbrace{}_{\substack{\text { gradient of } \\ \text { vorticity }}}
$$

Boundary layer flow

$d p$ set by changes in free stream velocity, u_{e}

$$
\frac{\partial u_{e}}{\partial t}+u_{e} \frac{\partial u_{e}}{\partial \mathbf{x}}=\downarrow\left\lfloor\frac{\partial \omega}{\partial \boldsymbol{y}}\right\rfloor_{\text {surface }}
$$

Solid boundary

$$
\longrightarrow \nabla \boldsymbol{p}
$$

Source of vorticity (sign = ?)

NET CIRCULATION/UNIT LENGTH IN BOUNDARY LAYER

$$
\begin{aligned}
& \text { Look at contour } \\
& \int \vec{u} \cdot \boldsymbol{d l}=\mathbf{0} \text { on DA } \\
& \text { on } \mathrm{CD} \approx u_{y} \delta \\
& \text { on } \mathrm{AB} \approx u_{y} \delta+\frac{d}{d x}\left(u_{y} \delta\right) d x \\
& \text { on } B C \approx-u_{e} d x \\
& \Gamma=\left\lfloor\frac{d}{d x}\left(u_{y} \delta\right)-u_{e}\right\rfloor d x \\
& \text { But } \frac{d}{d x}\left(u_{y} \delta\right) \sim \frac{\delta}{L} \text { Length in } X \text { direction } \\
& \text { ratio: } \frac{u_{y} \delta}{L U} \sim \frac{u_{y}}{U} \frac{\delta}{L} \quad \frac{\partial u_{y}}{\partial y}+\frac{\partial u_{x}}{\partial x}=0 \\
& \frac{\boldsymbol{u}_{y}}{\boldsymbol{u}_{x}} \sim \frac{\boldsymbol{u}_{\boldsymbol{y}}}{\boldsymbol{U}} \sim \frac{\delta}{\boldsymbol{L}} \\
& \text { ratio } \sim(\delta / L)^{2} \ll 1
\end{aligned}
$$

Boundary layer circulation/unit length $=-u_{e}$

FLOW IN A CONTRACTION

Velocity increases $\Rightarrow p$ decreases
Vorticity diffused into flow
$\frac{\partial p}{\partial X}<0$ so vorticity is same sign
as existing vorticity

New vorticity has short time to diffuse (be spread by viscosity) away from wall - is concentrated near wall

Velocity gradient large near wall profile is "fuller"

CONTOUR USED FOR EVALUATION OF CIRCULATION IN BOUNDARY LAYER; $\Gamma_{A B C D}=-u_{e}$

Figure by MIT OCW.

FLOW IN A 2:1 CONTRACTION; (A) OVERALL VELOCITY PROFILES; (B) BLOWUP OF (A) AT STATIONS 1 AND 2. HYDROGEN BUBBLE FLOW VISUALIZATION

Flow in a 2:1 contraction;
(a) Overall velocity profiles; (b) Blowup of (a) at station 1 and 2. Hydrogen bubble flow visualization.

Free stream velocity increases \Rightarrow implies that more vorticity has entered flow

Flat plate boundary layer $\Gamma=-u_{e}=$ constant!
No vorticity put in anywhere except at leading edge.
Horseshoe vortex
Consider contour as shown
Vortex lines from upstream keep coming into contour. Does circulation continually increase?

Convection and diffusion of vorticity into contour ABCD on plane

 of symmetry upstream of a strut

For horseshoe vortex have a balance between convection of and diffusion in of \longmapsto. Net vorticity in contour (net circulation) remains constant

Note also in vortex - balance between stretching, diffusion sets scale of vortex (radius of vortex)

We have been working in 2-D, but arguments can be extended to 3-D. Pressure field (gradients) not one-dimensional so two components of vorticity can be diffused into flow from vorticity sources at wall

RELATION BETWEEN KINEMATIC AND THERMODYNAMIC QUANTITIES

- These relate vorticity and $\nabla \mathbf{p}_{\mathrm{t}}, \nabla \mathbf{T}_{\mathrm{t}}$, ds
- Most useful for "inviscid" flows
- Momentum equation

$$
\begin{gathered}
\nabla\left(\frac{\mathbf{u}^{2}}{2}\right)-\overrightarrow{\mathbf{u}} \times \vec{\omega}=-\frac{\nabla \mathbf{p}}{\rho}-\nabla \Psi^{L^{2}} \mathbf{F}_{\text {body }} \\
\mathbf{T} \nabla \mathbf{s}=\nabla \mathbf{h}-\frac{\mathbf{1}}{\rho}-\nabla \mathbf{p} \\
-\overrightarrow{\mathbf{u}} \times \vec{\omega}=\mathbf{T} \nabla \mathbf{s}-\nabla \mathbf{h}-\nabla\left(\frac{\mathbf{u}^{2}}{2}\right)-\nabla \Psi \\
\overrightarrow{\mathbf{u}} \times \vec{\omega}=\nabla\left[\mathbf{h}+\frac{\mathbf{u}^{2}}{2}+\Psi\right]-\mathbf{T} \nabla \mathbf{s}
\end{gathered}
$$

STAGNATION QUANTITIES

In internal flow situations often work with stagnation quantities

1) Convient to measure, 2) Relate directly to loss

Stagnation temperature defined
Adiabatic process, no work - bring stream to rest
First law (steady flow energy equation)

Along a streamtube:

$$
\begin{aligned}
& n Y_{1} h_{t 1}=W_{2} h_{t 2} \\
& \text { but } \boldsymbol{m}_{1}=n Y_{2} \Rightarrow h_{t 1}=h_{t 2} \\
& \text { If station } 2 \text { has velocity }=0 \\
& h_{t}=C_{p} T_{t}=C_{p} T+\frac{u^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& T_{t}=T+\frac{u^{2}}{2 C_{p}}=T\left[1+\frac{u^{2}}{2 C_{p} T}\right\rfloor \\
&=T\left[1+\frac{\gamma-1}{2} \frac{u^{2}}{\gamma R T}\right] \\
& \text { Stagnation } \\
& \text { temperature } \longrightarrow T_{t}=T\left[1+\frac{\gamma-1}{2} M^{2}\right]
\end{aligned}
$$

Stagnation

Note: Nothing yet about "frictionless"
Now: If frictionless
Stagnation $\quad p / p_{\text {initial }}=\left(T / T_{\text {initial }}\right)^{\gamma / \gamma-1} \quad$ Any two states pressure $\longrightarrow p_{t}=\boldsymbol{p}\left[1+\frac{\gamma-1}{2} M^{2}\right]^{\gamma / \gamma-1}$

Low speed flow,

$$
\begin{aligned}
& p_{t}=p\left\lfloor 1+\frac{\gamma-1}{2} M^{2} \cdot \frac{\gamma}{\gamma-1}+\cdots\right] \\
& \cong p+\frac{\gamma}{2} \frac{u^{2} p}{\gamma R T}=p+\frac{\rho u^{2}}{2}
\end{aligned}
$$

p_{t} for low speed "incompressible" flow

- If no body forces

$$
\overrightarrow{\mathbf{u}} \times \vec{\omega}=\nabla \mathbf{h}_{\mathbf{t}}-\mathbf{T} \nabla \mathbf{s}
$$

"Crocco's Theorem"

- Consequences of Crocco's Theorem

1) If a steady flow has constant entropy and stagnation enthalpy, $\omega=0$ or vorticity is parallel to velocity
2) Vorticity can be produced by phenomena which generate gradients of entropy or stagnation enthalpy
3) In an irrotational flow with uniform entropy, h_{t} can vary only if the flow is unsteady

$$
\frac{-\partial \overrightarrow{\mathbf{u}}}{\partial \mathbf{t}}+\overrightarrow{\mathbf{u}} \chi_{\overrightarrow{\hat{\omega}}}^{\mathbf{0}}=\nabla \mathbf{h}_{\mathbf{t}}-\mathbf{T} \nabla \mathbf{s}^{\mathbf{0}}
$$

EXAMPLES

1) Flow downstream of a curved shock

- h_{t} is constant across shock
$-\nabla \mathbf{s}_{\mathrm{a}}<\nabla \mathbf{s}_{\mathrm{b}}$
- $\vec{\omega} \neq 0$ downstream of shock

2) Flow downstream of an ideal inlet guide vane row
$-\nabla h_{t}=\nabla \mathbf{s}=0$
$-\overrightarrow{\mathbf{u}} \times \vec{\omega}=0 \quad$ soü, $\vec{\omega} \quad$ parallel (trailing vorticity as on a finite wing)

FLOW DOWNSTREAM OF A CURVED SHOCK

- Geometry - M=2 flow round an airfoil
- Static and stagnation pressure
- Axial velocity profiles for
different static pressure rise

ROTATIONAL FLOW DOWNSTREAM OF IGV What approximations are made in showing this figure?

Turbomachine Annulus and Inlet Guide Vane (IGV); Uniform Entropy and Stagnation Enthalpy

Distribution
Downstream of IGV

INCOMPRESSIBLE FLOW FORM

- Incompressible, inviscid flow, ρ uniform

$$
\frac{\partial \overrightarrow{\mathbf{u}}}{\partial \mathbf{t}}-\overrightarrow{\mathbf{u}} \times \vec{\omega}=-\frac{\nabla \mathbf{p}_{\mathbf{t}}}{\rho}
$$

- Steady flow

$$
\overrightarrow{\mathbf{u}} \times \vec{\omega}=\frac{\nabla \mathbf{p}_{\mathbf{t}}}{\rho}
$$

Incompressible form of Crocco's equation

PERSPECTIVE ON INTERPRETATION AND INSIGHT

- Concepts of vorticity and circulation are useful in understanding fluid motions - most notably those with SWIRL, and/or UNSTEADINESS, and/or THREE-DIMENSIONALITY
- Focus on vortex line structure often provides clues to overall flow field behavior
- Focus on vorticity can give insight for complex motions
- Strongly complementary partner to pressure-acceleration approach

