

Teaching Lean Thinking Principles Through Hands-On Simulation

Hugh McManus

Metis Design

Eric Rebentisch and Earll M. Murman

MIT Lean Aerospace Initiative

Alexis Stanke

Eclipse Aviation

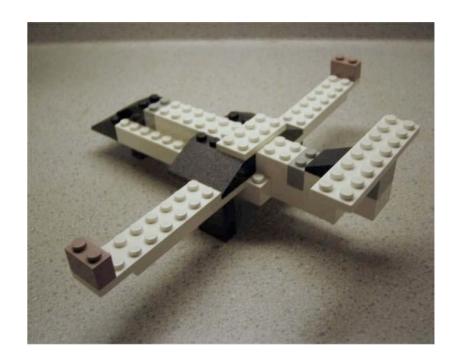
3rd International CDIO Conference Cambridge, MA, June 13, 2007

Note for OCW viewers

- This talk presents an overview of the teaching simulation used in 16.660 / 16.853 / ESD.62J Introduction to Lean Six Sigma Methods
- It cannot replace the simulation experience, but outlines the goals, process, and basic lessons of the simulation
- It was written for a conference on "Conceive, Design, Implement, and Operate" (CDIO) teaching methods, and the second half of the talk relates the simulation experience (and this course in general) to the CDIO method.
- See Crawley E, Malmqvist J, Ostlund S, Brodeur D, 2007, Rethinking Engineering Education: The CDIO Approach, New York, Springer, for more information on CDIO.

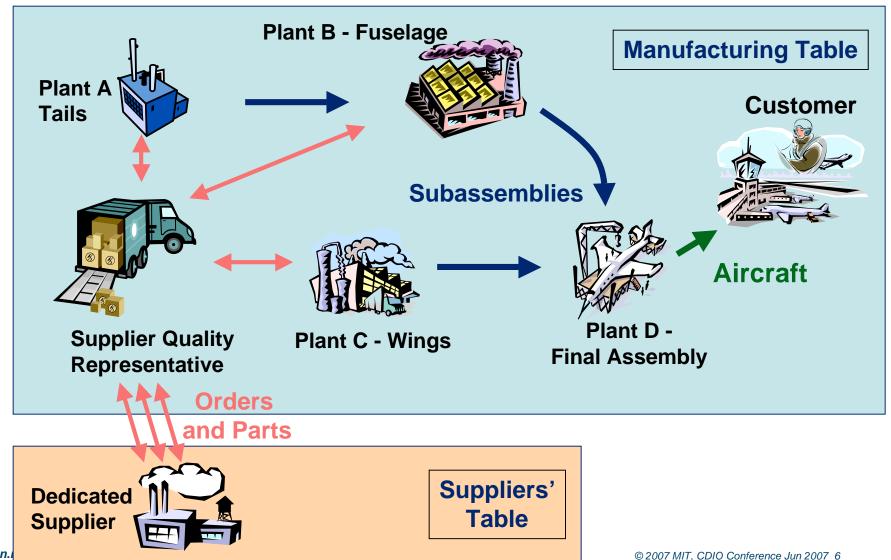
Overview

- Description of Lean Enterprise Simulation
- Use in Simulation-based learning
- Simulations as a CDIO practice field
- Evaluation of the simulation in the Lean Academy
- Caveats and Conclusions


Simulation Goals

- Teaching Lean applied to complex enterprises challenges traditional teaching modes
 - Experience based
 - Depends strongly on complex context not familiar to students
- Use Simulation-based learning for:
 - Increased comprehension of the curriculum
 - Better understanding of context and holistic, systemspanning nature of lean changes
 - Learning through experience a practice field for lean change
 - Increase student involvement and excitement

Simulation Objective: Build Lego Airplane

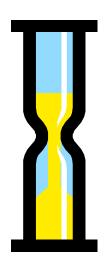

- Lego aircraft starts as a non-lean product
 - Excessive part count
 - Too many part types
 - Weak tail
- Built in a non-lean way
 - Unbalanced production system (bottlenecks, unused capacity)
 - Long supply chain
 - Excessive paperwork
 - Unclear communication

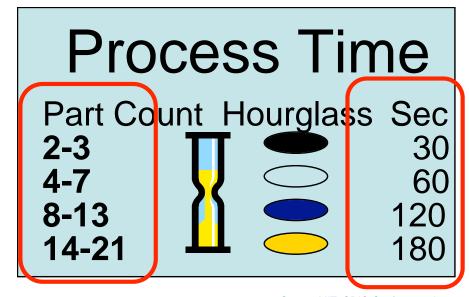
Lean Academy simulation is a subset of the Lean Enterprise Value (LEV) simulation

Simulated Production System

lean.

Simulation Features: Visual Instructions


- Shows you how to put a sub-assembly of the plane together
- If organized (as shown) provides a visual cue to obtain needed parts
- Easy to learn
- May be changed



Timers Represent Process Times and Capacity

- Legos are assembled by the pace of an hourglass (time depends on part count)
- Prevents racing, dexterity contests
- Focuses attention on the process

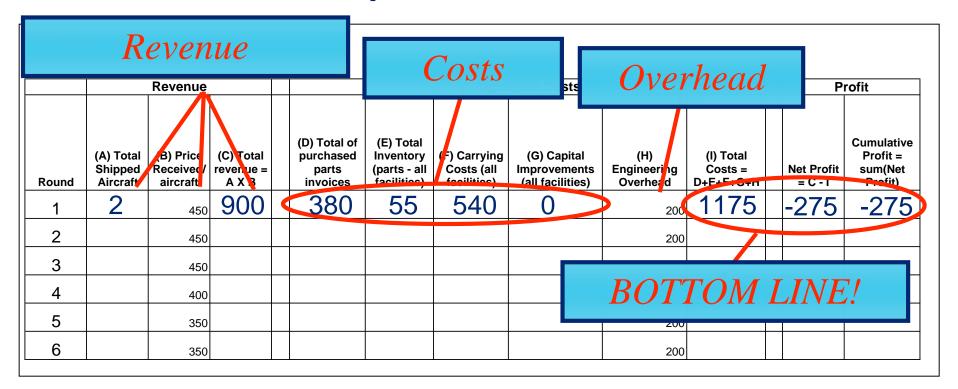
Deliver to: Parts Order Form Part Description Quantity Size Color Type Brick **Light Grey** 1x2 1x2 Brown 1x2 Sand Red 2x2 White White 2x4 White 2x8 White 1x6 Plate 4 White 2x4 White 2x8 Slope 2x3 Black Black 4x3

To be completed by supplier when order is fulfilled:

Total number of	
parts shipped:	

Parts Ordering: Clumsy Paper System, Long Supply Chain

Supplier Quality Representative


Supplier

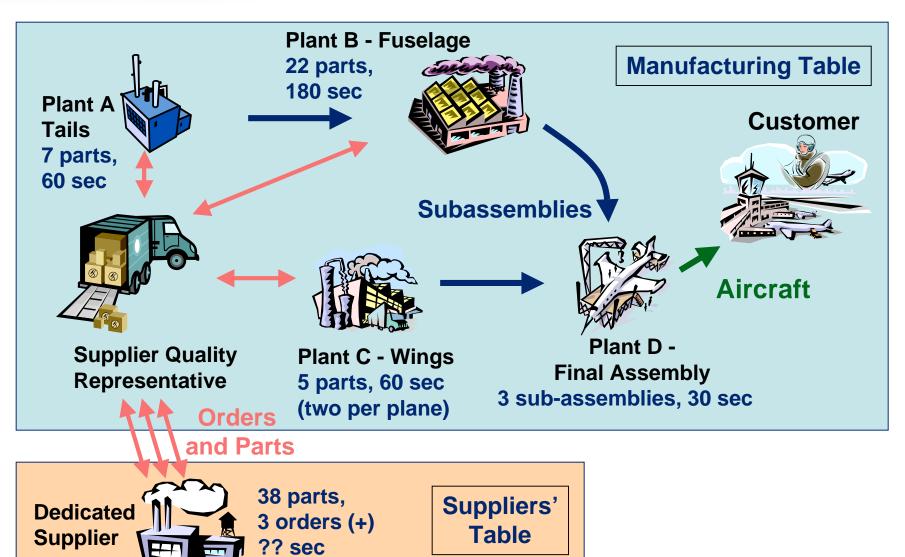
Fulfillment Receipt	Delivered to:
Invoice 45	Fulfilled by:

Enterprise Accounting

- Complete cash-flow accounting system
- Tracks Revenue, Fixed and Variable Costs, OH
- Provides direct measure of effectiveness of simulated enterprise

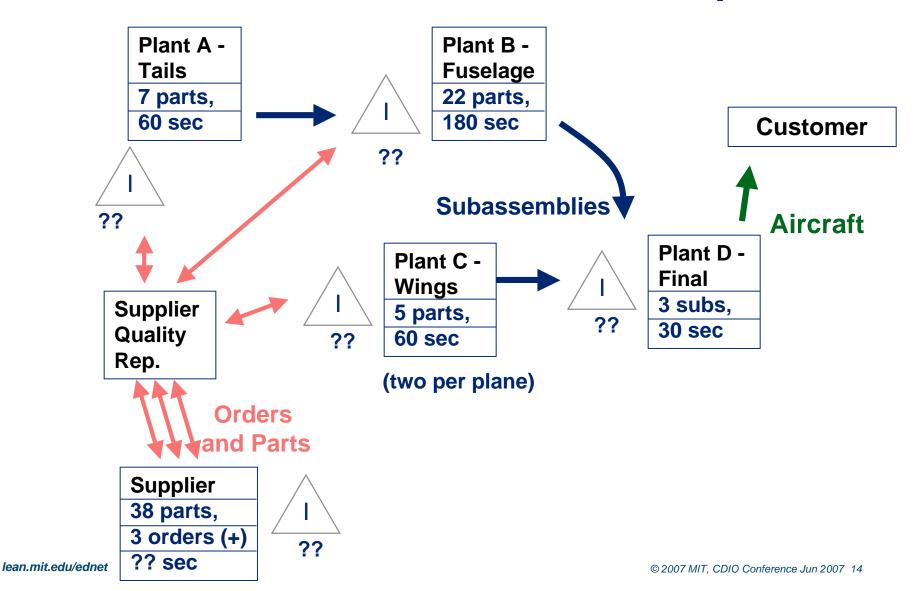
Use of Simulation

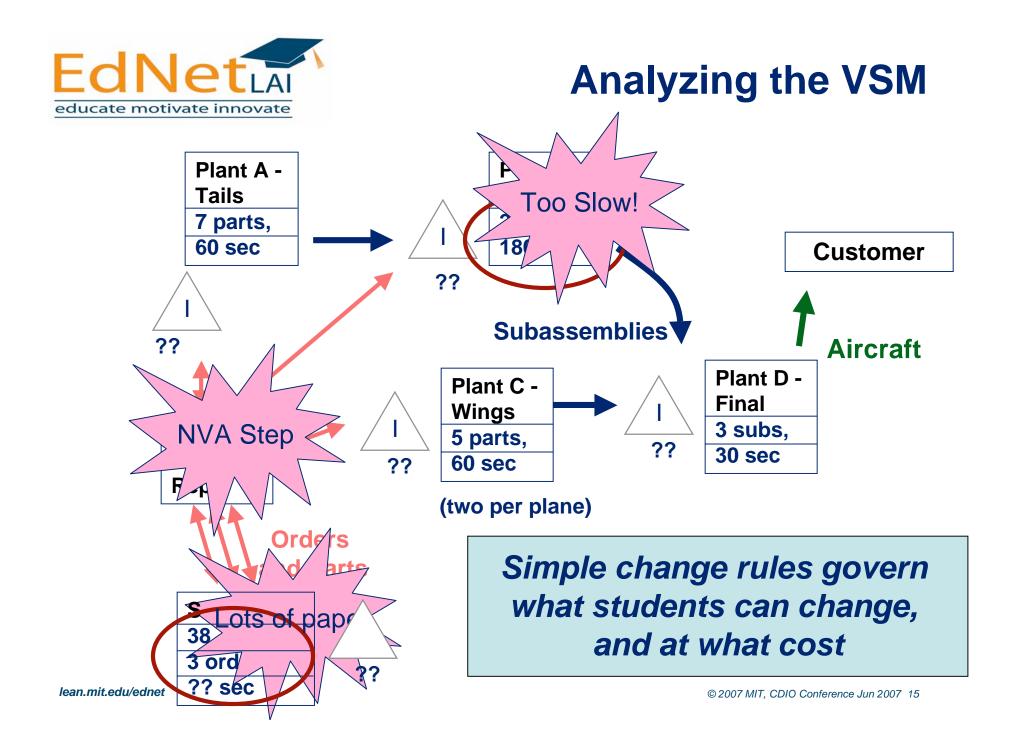
- One day (about 2/3s of the teaching time) dedicated to simulation
- Simulation played in 12 minute active rounds, interspersed with time for reflection, planning, and and analysis
- Round 1-2: Learn and Baseline
- Round 3-4: Process Improvements
- Round 5: Enterprise Lean


Process Improvements

Simulation Improvements	Lean Principles	Typical Student Actions
Organize Activity	5S, Visual Control,	Clean up worksite, organize
	Standard Work	inventory, standardize
		sequence of ordering,
		assembly, and paperwork
Balance Workload between	Takt time, Single-piece Flow,	Move work between plants to
Facilities – this requires an	Balanced Work	balance work at 120 sec and
"engineering request"		12-13 parts
(approved by instructor)		
Change (improve, eliminate,	Eliminate Unnecessary Tasks,	Demolish "warehouse;" freed
or move) facilities – this	Single-piece Flow, Just-in-	student moves orders and parts
requires "corporate approval"	Time Delivery	
(also by instructor)		
Modernize parts order system	Eliminate Unnecessary Tasks,	Upgrade parts ordering system
by eliminating paperwork –	Standard work	and standardize orders to
requires "corporate approval"		single-plane sets

Students use Lean Process Improvement Tools to make Simulation Process Effective

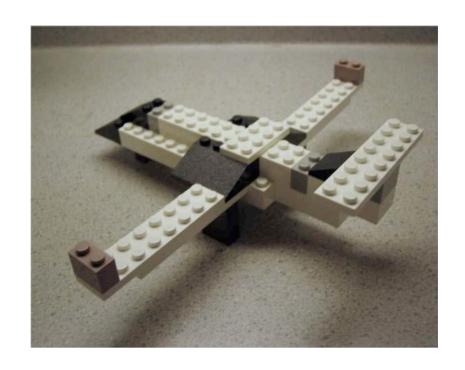



Adding Data

Using standard symbols - a simple VSM

Lean Enterprise

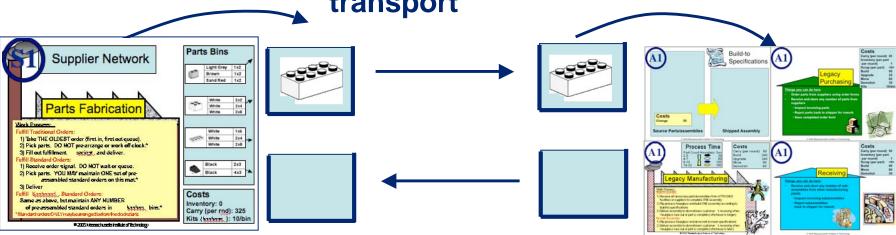
Simulation Improvements	Lean Principles	Typical Student Actions
Airplane may be redesigned	Lean Engineering, DFMA,	Reduce part count by 10 (to 28
within a constant exterior	Supplier Integration	per plane) using large Lego
mold-line		blocks available to suppliers
Balance Workload between	<i>Takt</i> time,	Move work between plants to
Facilities (again)	Single-piece Flow	balance work at 60 sec and 7-9
		parts, including using excess
		capacity at final assembly to
		install some exterior parts
		(e.g. landing gear)
Change (improve, eliminate,	Takt time,	Students find they must
or move) Facilities	Single-piece Flow	increase capacity at some
		manufacturing plants (but can
		now justify it economically)
Further Modernize Supply	Standard work, Just-in-Time,	Implement a two-bin Kanban
Chain	Kanban	inventory management system
		throughout enterprise


Students use Lean Enterprise Tools to make Simulation Process Outstanding

Key: Redesign Airplane

Practice Lean Engineering:

- Cut part count
- Reduce part types
- Fix weak tail
- Easy to assemble
- Obeys constraint of unchanged moldline

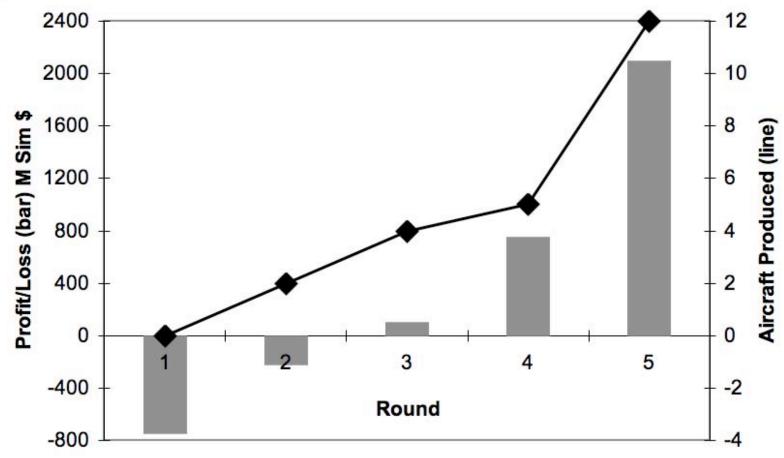


Example learning by doing:Kanban System

- Implement pull inventory and production control system
- Learn complex, context-dependent tool through simulated exerience

Full Kanban bin cues transport

Empty receiving cues emptying Kanban bin



Empty Kanban bin cues order fulfillment

Empty Kanban bin cues transport

Results

Students get simulated experience of process improvement

Simulation-Based Learning and our Learning Objectives

- Increased comprehension of the curriculum
 - Controlled studies show increased comprehension using "games" vs. lectures or static web-based learning
 - Controlled studies also show improved outcomes measured by behavior
- Better understanding of context and holistic, system-spanning nature of lean changes
- Learning through experience a practice field for lean change
 - Supported as goals, improved outcomes unproven
- Increase student involvement and excitement
 - Observed!

Most literature on computer-based simulations

Non-computer Peer Efforts

- Simple simulation to make one learning point
 - Beer game
 - Dot games
 - Dice games
- Lean Manufacturing Simulations
 - Timewise clock manufacturing
 - Various lego games cars, etc.
 - Lean Shipbuilding
- Design and Analysis Simulations
 - Requirements and concept design
 - Engineering processes

Mostly simple systems designed to teach specific lessons

CDIO and Continuous Process Improvement

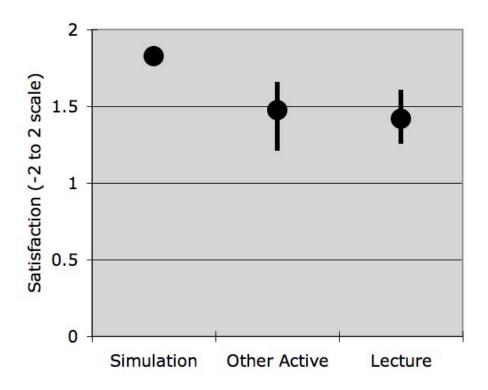
- Typical Continuous Process Improvement methods have structures very similar to CDIO!
 - Plan-Do-Check-Act (PDCA)
 - Shewhart, Deming
 - Define-Measure-Analyze-Improve-Control (DMAIC)
 - Six-Sigma
 - Mobilization-Diagnosis-Redesign-Transition
 - Hammer (Re-Engineering)
- CPI is about designing and operating business systems!
- We avoid favoring any one camp

Course CONTENT resembles CDIO

CDIO and Simulation-Based Learning

- Course methods puts students through a CDIO cycle in the simulated world
 - <u>Comprehend:</u> the existing system and its weaknesses, using lean tools and quantitative data found in the simulation
 - <u>Design:</u> the new system, using standard design techniques, and constrained by the "physics" and finances of the simulation
 - Implement: the new system; facing practical challenges (mostly organizational) above and beyond the design
 - <u>Operate (and Iterate)</u>: keep the new system working, face new practical challenges and start the process over again to take it to the next level

Course METHOD is CDIO


Simulations allow CDIO on complex systems

- Most complex systems are not available for students to manipulate for teaching purposes
- Students can get a CDIO experience from manipulating a simulation if:
 - Complex enough to capture the key features of the emergent behavior of the system
 - Simple enough to have an acceptable learning curve
 - Fast enough to allow multiple change cycles within teaching period
 - Credible and Fun

Simulation ENABLES CDIO

Evaluation

- Students asked if Lean Academy Modules "provided positive reinforcement of the concepts"
- Six academies, N=194
- Circle = 90% confidence
- Bars = extremes between means within categories

Simulation assessed significantly higher than other types of learning in ALL cases

Comments Indicate Simulation Goals Met

Increased comprehension of the curriculum

... helped with application of what we learned in lecture

It took a while to get the concepts but it finally clicked during the 2nd segment [of the simulation]

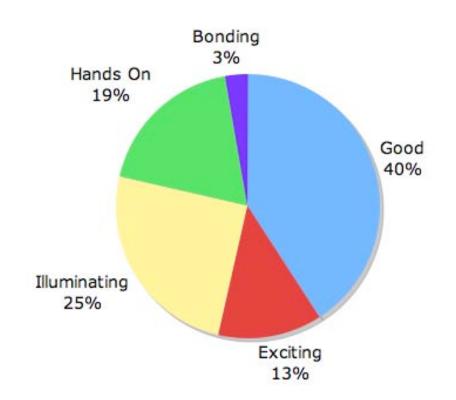
Learning through experience - a practice field for lean change

Hands on – Excellent. Telling someone how something works is fine. Having someone do it teaches it

LOVED the simulations. Figuring stuff out yourself makes things make much more sense

Increase student involvement and excitement

I really enjoyed the simulations with the Legos. This made time fly.


... SO good and SO cool. One of the most enlightening engineering experiences I've had.

Team Building

Created a good sense of camaraderie

Comment Categories

- Types of answers to open question "what did we do well today"
- 106 responses (out of 182) mentioned simulation
- Responses binned by category

Simulation well liked Comments reflect learning objectives

Caveats

- Evaluation based on satisfaction, not outcomes
 - Outcome data for Lean Academy positive, but does not differentiate between modules
- Cost and Time
 - Significant upfront expense (Legos, etc.)
 - Need 6 trained facilitators
- Simulations are vulnerable to disruption
 - Logistic and facilitation errors degrade experience
- Cannot satisfy all learning styles
 - Students asked for more and less simulation time
 - Real stress from simulated process difficulties, competition

Typical issues for teaching simulations

Conclusions

- Unique simulation of an aerospace enterprise created
 - Subset used in Lean Academy
 - Teaches use of lean process improvement tools
 - Gives context and hands-on experience
 - Increases student involvement and enthusiasm
- Simulation provides a laboratory for CDIO of complex systems
 - CDIO teaching methods well aligned with material
 - Process improvement techniques have CDIO structure!
- Feedback indicates simulation is successful
- Caveats typical of learning simulations in general

A CDIO Success Story

16.660J / ESD.62J / 16.53 Introduction to Lean Six Sigma Methods IAP 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.