

The Start of Your Lean Journey

Learning Objectives

At the end of this module, you will be able to:

- Explain the origins of Lean and Six Sigma
- Explain the "6S" lean tool
- Define Lean, lean enterprise, stakeholders
- Recognize why lean six sigma principles are being implemented in aerospace, healthcare and other sectors
- Express that lean is a "journey" not a "state"

Lean Arises From Japanese Auto Industry

Selected Metrics for US & Japan				
Automobile Manufacturers				
Product Development (mid 1980s)				
	Japanese	American		
	Producers	Producers		
Avg. Engineering Hrs	1.7	3.1		
per New Car (millions)				
Avg. Development Time	46.2	60.4		
per New Car (months)				
Employees in Project	485	903		
Team				
Supplier Share of	51%	14%		
Engineering				
Ratio of Delayed	1 in 6	1 in 2		
Projects				
Summary of Assembly Plant Characteristics for				
Volume Producers, 1989				
	Japanese	American		
	in Japan	in N Am		
Productivity (hrs/veh)	16.8	25.1		
Quality (defects/100	60	82.3		
veh)				
Inventory (days for 8	0.2	2.9		
sample parts)				
Work Force on Teams	69.3%	17.3%		
Suggestions per	61.6	0.4		
employee				
Number of Job	11.9	67.1		
Classifications				
Training Hrs of New	380.3	46.4		
Production Workers				

Trends have continued since this 1989 data reported in *The Machine That Changed The World*

Lean Thinking Introduced

Lean emerged from post-WWII Japanese automobile industry as a fundamentally more efficient system than *mass* production.

	Craft	Mass Production	Lean Thinking
Focus	Task	Product	Customer
Operation	Single items	Batch and queue	Synchronized flow and pull
Overall Aim	Mastery of craft	Reduce cost and increase efficiency	Eliminate waste and add value
Quality	Integration (part of the craft)	Inspection (a second stage after production)	Inclusion (built in by design and methods)
Business Strategy	Customization	Economies of scale and automation	Flexibility and adaptability
Improvement	Master-driven continuous improvement	Expert-driven periodic improvement	Worker-driven continuous improvement

Lean thinking is the dynamic, knowledge-driven, and customerfocused process through which all people in a defined enterprise continuously eliminate waste and create value.

Adapted from Murman, et. al, Lean Enterprise Value,, Palgrave, 2002.

Comparison of Lean & Six Sigma

Six Sigma was developed by Motorola in the 1980s to systematically improve quality by elimination of defects.

	Six Sigma	Lean
Objective	Deliver value to customer	Deliver value to customer
Theory	Reduce variation	Remove waste
Focus	Problem focused	Flow focused
Assumptions	 A problem exists Figures and numbers are valued System output improves if variation in all processes inputs is reduced 	 Waste removal will improve business performance Many small improvements are better than system analysis

Six Sigma is *a data driven philosophy and process* resulting in dramatic improvement in products/service quality and customer satisfaction.

Lean and Six Sigma

- Lean and Six Sigma are synergistic
 - Lean optimizes flow and strives to eliminate waste
 - Six Sigma stresses quality through the elimination of variation in all enterprise processes
- A unified framework called Lean Six Sigma has emerged
- Enterprises usually adopt their own name. Some examples:
 - Textron *Textron Six Sigma*
 - Pratt & Whitney ACE
 Boeing Lean+
 - New York City Health & Hospitals Corp Breakthrough
 - Virginia Mason Medical Center Virginia Mason Production System

The LAI Lean Academy[®] curriculum focuses on the fundamental concepts which underpin these and other transformation initiatives.

• US Air Force – AFSO21

Two major pillars of lean thinking:

- **1. Continuous Improvement**
- 2. Respect for People

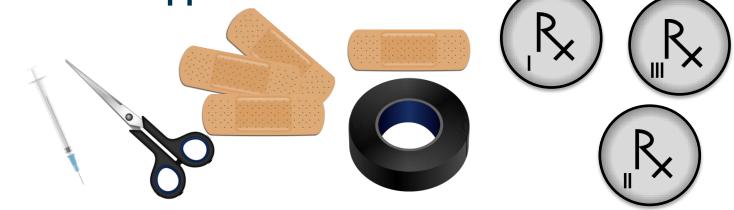
Workers are encouraged to use their full capability to improve their own work environment

5S - A simple "lean tool"

- Safe
- Straighten
- Scrub
- Standardize
- Sustain

Before

After



Courtesy of University of Michigan Health System, Ann Arbor, MI. Used with permission.

6S Exercise - 1

- We will apply 6S to a workplace and measure the improvement in executing our job
- During each 20 second round, your job is to gather needed supplies

- The first page of your exercise represents our current workplace (don't turn the page over yet)
- The next slide is what you have to fetch
- Mark an X on each item you locate

Round I Needs

- 5 syringes
- 5 band aids

• 5 scissors

• 5 medication II

• Ready....Set.....

6S Exercise - 2

Sort

- Safe
- Straighten
- Scrub
- Standardize
- Sustain

- The first "S" is Sort
 - We have removed from the storage area unneeded items

Courtesy of Jefferson Healthcare, Port Townsend, WA. Used with Permission.

• 5 tweezers

- 5 medication III (R
- Ready... Set...

Round 2 Needs

6S Exercise - 3

• Sort

- Safe
- Straighten
- Scrub
- Standardize
- Sustain

The second "S" is Safe

 Making the workplace safe for employees and patients

Courtesy of University of Michigan Health System, Ann Arbor, MI. Used with permission.

Round 3 Needs

5 Syringes

• 5 scissors

- 5 medication II
- Ready... Set...

6S Exercise - 4

- Sort
- Safe
- Straighten
- Scrub
- Standardize
- Sustain

- The third "S" is Straighten or Set in Order or Store
 - We have installed a rack system to help locate similar items

Courtesy of University of Iowa Hospitals and Clinics. Used with permission.

The Start of Your Lean Journey v7.6 - Slide 15 © 2012 Massachusetts Institute of Technology

- 5 syringes
- 5 rolls tape

• 5 tweezers

• 5 medication I

• 5 medication III

Ready... Set...

Round 4 Needs

6S Exercise - 5

- Sort
- Safe
- Straighten
- Scrub
- Standardize
- Sustain

- The fourth "S" is Scrub or Shine or Sweep
 - Cleanliness is important in healthcare workplaces
 - It's tough to scrub a piece of paper, so we'll skip this S

Courtesy of University of Michigan Health System, Ann Arbor, MI. Used with permission.

6S Exercise - 6

- Sort
- Safe
- Straighten
- Scrub
- Standardize
- **Sustain**

- The fifth "S" is Standardize
 - We have developed a standard way of storing things to make them easy to find.

Courtesy of Jefferson Healthcare, Port Townsend, WA. Used with Permission.

The Start of Your Lean Journey v7.6 - Slide 18 © 2012 Massachusetts Institute of Technology

Round 6 Needs

- 5 Syringes
- 5 band aids

• 5 tweezers

5 rolls of tape

• 5 medication III

• 5 medication II

Ready... Set...

The Start of Your Lean Journey v7.6 - Slide 19 © 2012 Massachusetts Institute of Technology

6S Exercise - 7

Sort

- Safe
- Straighten
- Scrub
- Standardize
- Sustain

- The sixth "S" is Sustain or Self-Discipline
- This is your challenge: Sustain your lean activities
- Often the hardest to achieve

Sustain

е

F

6S Standard Sheet

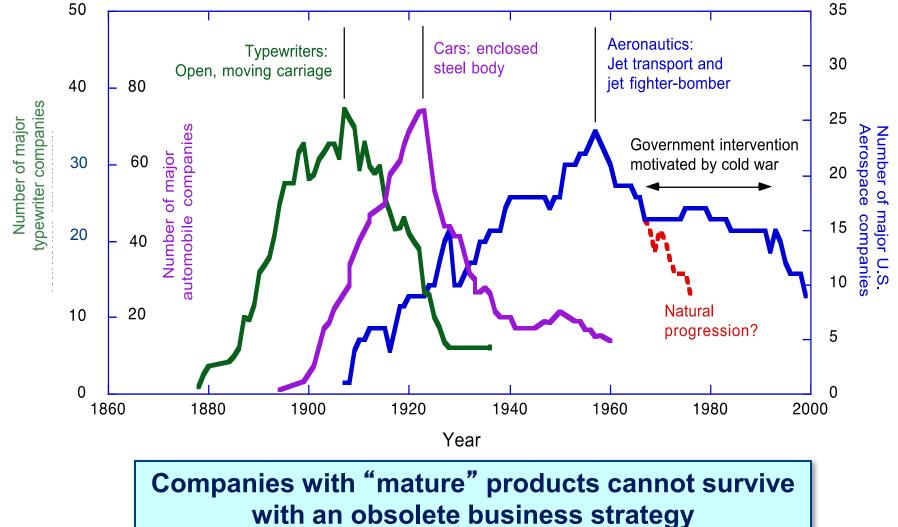
t е 7 а a 3 1 р 3 а Example of part of a daily ED outside hallway checklist Initials at bottom 0 0 с

Courtesy of University of Michigan Health System, Ann Arbor, MI. Used with permission.

Aerospace - A Flagship Industry...

Enabling the global movements of people and goods

Enabling the global acquisition and dissemination of information and data


Advancing national security interests

Providing a source of inspiration by pushing the boundaries of exploration and innovation

Industry Innovation Linked to Product Evolution

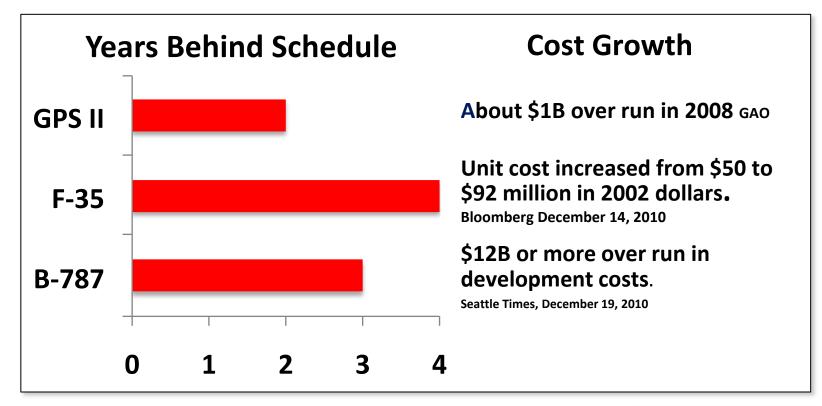
References: For typewriters, George Nichols Engler; for cars, Entry and Exit of Firms in the U.S. Auto Industry: 1894-1992, National Academy of Science; for aerospace, S. Weiss and A. Amir, "The Aerospace Industry", in Encyclopedia Britannica.

The Start of Your Lean Journey v7.6 - Slide 23 © 2012 Massachusetts Institute of Technology

Cost-Price Relationship

The fundamental cost –price relationship changes as industries mature

price charged

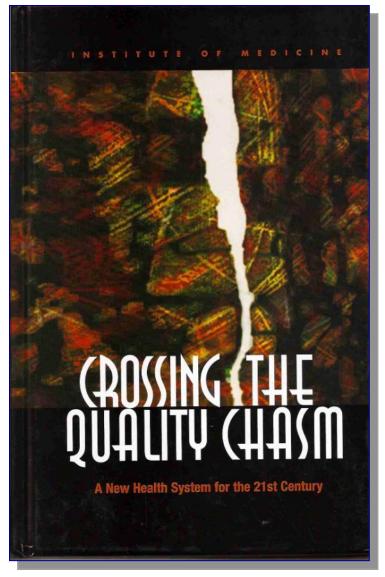


Emerging industry: cost plus profit equals price Mature Industry: customers and competition determined price

Mature industries must lower costs and/or increase perceived value to achieve profit!

Recent Aerospace Programs

Other programs with cost and schedule growth: F-22, A-380, B747-8, A400M, SBIRS, EELV



Source: Flickr. Ben Gertzfield. CC BY-NC

The Start of Your Lean Journey v7.6 - Slide 25 © 2012 Massachusetts Institute of Technology

Six Aims for Healthcare Improvement

Courtesy of the National Academy Press. Used with Permission.

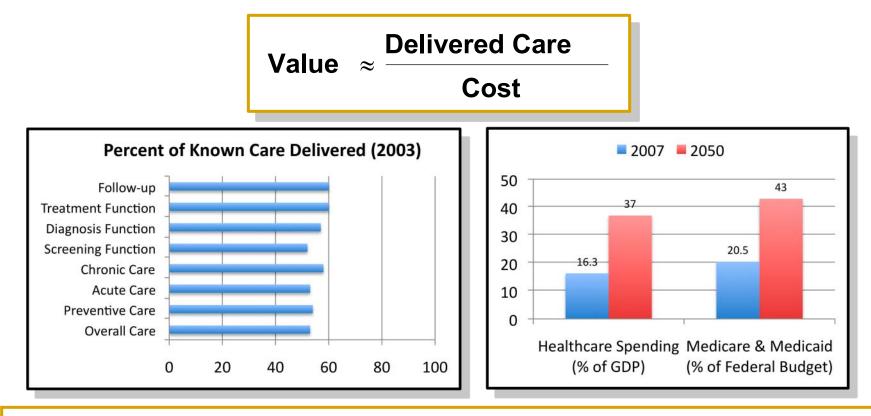
- "Health care should be:
- •Safe
- Effective
- Patient -centered
- •Timely
- Efficient
- Equitable

These aims are not new.... Yet American health care fails far too often with respect to these aims, despite enormous cost and dedication and good efforts of millions of American healthcare workers"

US Healthcare Warning Signs

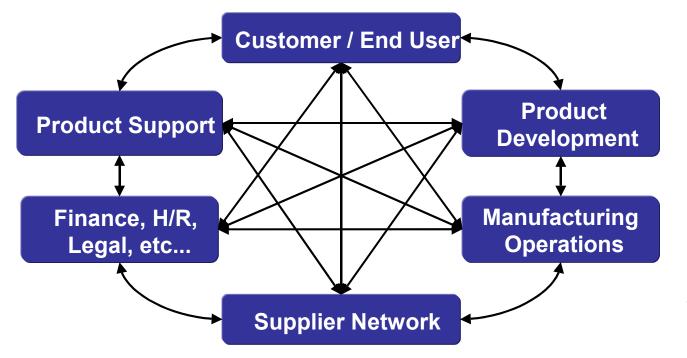
- Over 16% of GDP spent in healthcare expenses (2007)
 117% increase in worker insurance premiums, (1999-2008)
 119% increase in employer insurance premiums, (1999-2008)
 US spends 75% more on healthcare than G-5 countries (2006)
 - 44,000 98,000 deaths attributed to medical errors (1999)
 - 32% of patients report medical mistake, medication error or lab error in past two years (2007)
 - 12-79% gap between delivered vs recommended care (2003)
 - 45 million Americans are uninsured
 - Individuals over 65 expected to increase over 50% by 2020
 - Fragmented provider network, IT systems, insurance, etc.
 - 40% of patients not treated or medicated due to cost (2004)
 - 60% of doctors would not recommend career to young people
 - 50% of ED caregiver time spent on paperwork (2001)
 - 315,250 shortage of RNs predicted for 2015

Cost


Quality

Access

Trouble

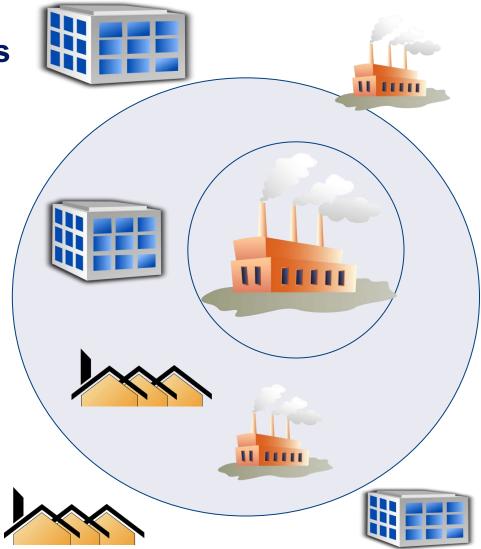

US Healthcare - A Value Crisis

- Lean Six Sigma can increase healthcare value delivery by:
 - Improving healthcare quality
 - Decreasing healthcare costs
- It is one piece of a puzzle to solve the US healthcare crisis

What is an Enterprise?

"One or more organizations having related activities, unified operation, and a common business purpose"

Black's Law Dictionary, 1999


The global economy is a complex web of enterprises of many kinds. You need to understand YOUR enterprise in order to improve it.

> The Start of Your Lean Journey v7.6 - Slide 29 © 2012 Massachusetts Institute of Technology

What are the Boundaries of an Enterprise?

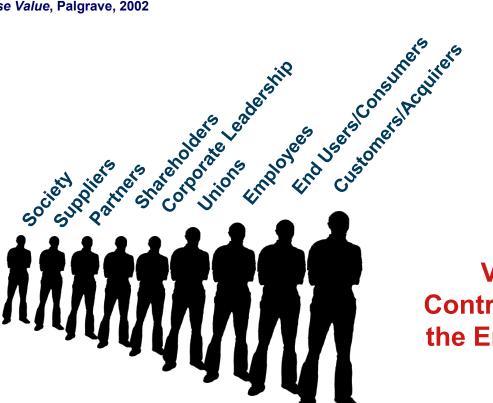
- The enterprise boundaries need to be identified: Definition is contextual
- <u>Core enterprise:</u> Entities tightly integrated through direct or partnering agreements.
- Extended enterprise: From customer's customer to supplier's supplier.

The Start of Your Lean Journey v7.6 - Slide 30 © 2012 Massachusetts Institute of Technology

Who Are The Enterprise Stakeholders?

"Any group or individual who can affect or is affected by the achievements of the organization's objective"

Freeman, Strategic Management: A Stakeholder Perspective, Pittman, 1984

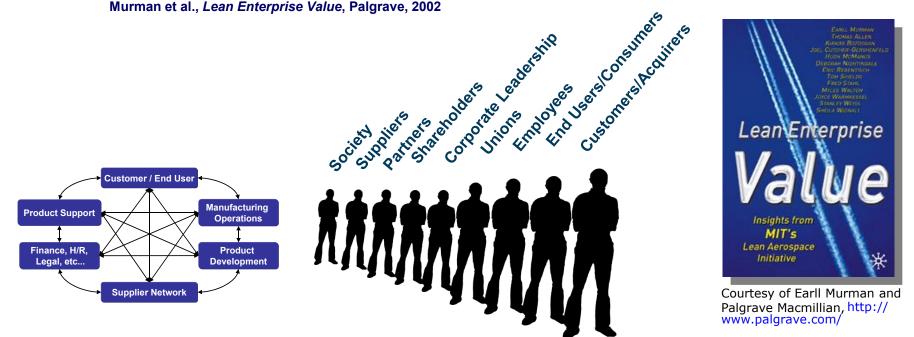


Stakeholder Value

"Value - how various stakeholders find particular worth, utility, benefit, or reward in exchange for their respective contributions to the enterprise."

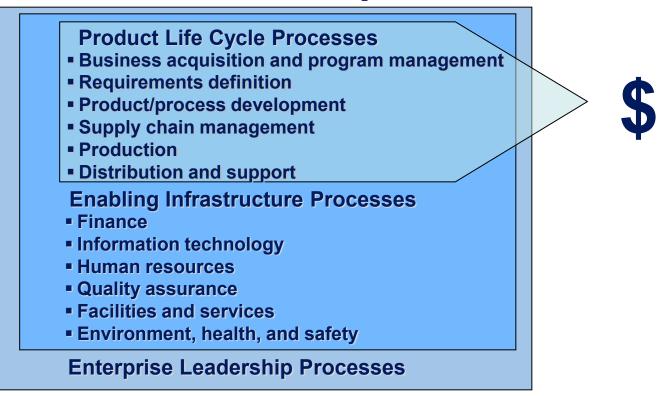
Murman et al., Lean Enterprise Value, Palgrave, 2002

Value Expected from the Enterprise


Value Contributed to the Enterprise

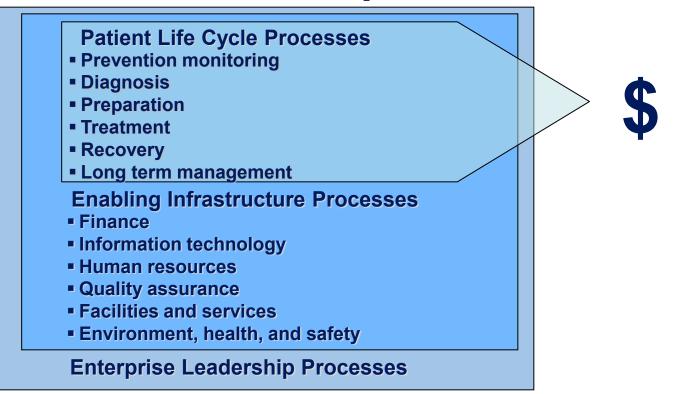
What is A Lean Enterprise?

"A lean enterprise is an integrated entity that efficiently creates value for its multiple stakeholders by employing lean principles and practices."


Murman et al., Lean Enterprise Value, Palgrave, 2002

The Start of Your Lean Journey v7.6 - Slide 33 © 2012 Massachusetts Institute of Technology

Lean Applies to All Product Enterprise Processes

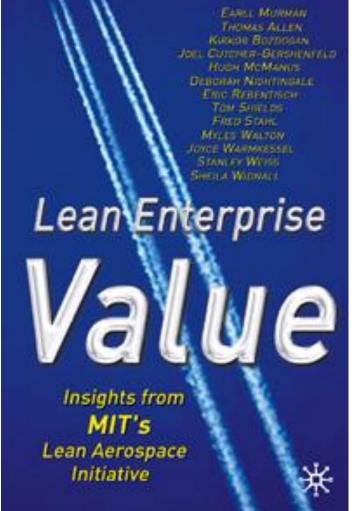


Lean applies to production and all other life cycle processes that deliver value to the customer and revenue to the enterprise

Lean also applies to enabling infrastructure and enterprise leadership processes required to deliver program value

Lean Applies to All Healthcare Enterprise Processes

Lean applies to treatment and all other life cycle processes that deliver value to the customer and revenue to the enterprise


Lean also applies to enabling infrastructure and enterprise leadership processes required to deliver program value

Lean Produces Results in Aerospace

In 1992 US Air Force asked:

principles, and practices

of the Toyota Production System be applied to the military aircraft industry? Today we can say:

Can the concepts,

Yes...

...if Lean is focused on enterprise value creation

Courtesy of Earll Murman and Palgrave Macmillian, http://www.palgrave.com/.

The Start of Your Lean Journey v7.6 - Slide 36 © 2012 Massachusetts Institute of Technology

F/A-18E/F Super Hornet "An Evolving Lean Enterprise"

Requirements

- 25% greater payload
- 3 times greater ordnance bringback
- 40% increase in unrefueled range
- 5 times more survivable
- Designed for future growth
- Replace the A-6, F-14, F/A-18 A/B/C/D

Reconnaissance

- Reduced support costs
- Strike fighter for multi-mission effectiveness

Program Execution

- Development budget capped at \$4.88B
- Completed on schedule 8.5 years from "go-ahead" to IOC
- Program was never re-baselined
- High correlation of program management practices and LAI's Lean Enterprise Model

Air Defense

Suppression

Day/Night

Precision

Strike

All

Weather

Attack

Highly capable across the full mission spectrum

Aerial

Refueling

Adapted from 2000 slide provided by F/A-18E/F Program

Fighter

Escort

Air

Superiority

Courtesy of Boeing. Used with permission.

Close Air

Support

Lean Electronics: Our Operating Philosophy

Building trust every day

Results In the Office:

- Reduced Publishing Cycle Time 72%
- 70% Work In-Process Reduction
- 38% Productivity Improvement
- 77% Manuals Inventory Reduction

Results In the Factory:

- 25% Improvement in Productivity
- 46% Reduction in Inventory
- Cycle Time Reductions of up to 75%

Courtesy of Rockwell Collins. Used with permission.

Lean Produces Results in Healthcare

On the Mean Base Lives and Transform the Industry

Courtesy of Lean Enterprise Institute.

<section-header>

Courtesy of Mark Graban. Used with Permission.

Waiting time for orthopedic surgery reduced from 14 weeks to 31 hours (from first call to surgery) – *ThedaCare, WI*

A few of many examples

48% readmission rate reduction for COPD patients - UPMC St. Margaret Hospital, PA

\$180M capital spending cost avoidance from lean improvements – *Children's Hospital, WA*

72% reduction in lab results turnaround time from 2004-2010 without addition of head count or instrumentation – *Alegent Health, NE*

Lean Produces Results in Other Sectors

Metric	Pre Lean	Lean	Change
Work in Process Time	8 days	3 hours	- 98%
Value Added Time	0.2 %	12.8%	+ 6400%
Inventory Turns	3.5	13	+ 371%
Order to Ship time		1-3 days	
Floor space	2 floors	1 floor	- 30%
Annual Production	105K	155K	+ 48%
Sources: LAI EdNet New Balance Plant Tour Video, 2008. LEI "For Athletic Shoe Company the Soul of Lean Management is Problem Solving", Chet Marchwinski 2008			

Photos by Earll Murman

Kanban - A Lean Tool

- Kan(card) + ban(signal)
- Visual cuing system to indicate material, parts, and/or information is/are authorized to move downstream

Examples

Back No:	Kanban no:	Customer
1072	000119817	A1234567
	Container type: Container Oty. PACDUN 0057 5	
Loc: D-6-2	Description:	Loc: D-6-2
Bin: A1	LCS (LH) 21061072	Bin: A1
From:	Item No Revision 76A071-0000L 0001	To:

www.glovia.com/pdf/datasheets/GloviaKanban.pdf

A card signaling replenishments of material are needed.

Courtesy of Glovia. Used with permission.

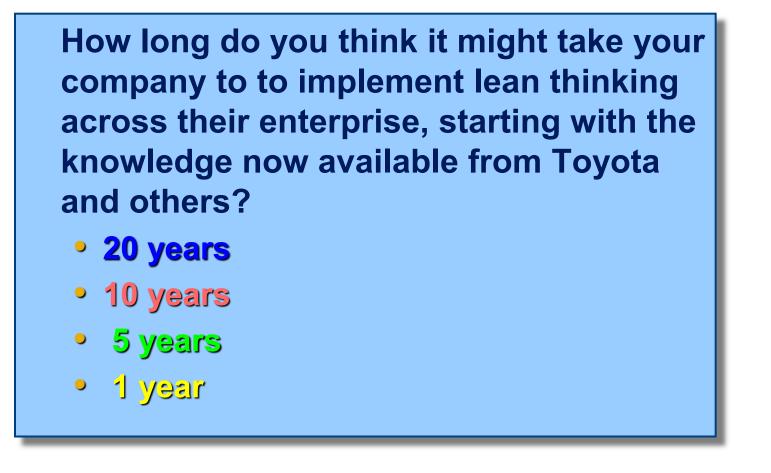
Adapted from: Hovav, M, Khattar, S, Katzen, J, "Kanban/Supply Chain Sequencing", Presentation to MIT ESD.60 Lean/Six Sigma Systems. Summer 2004

Other Examples

- Empty parts bin with spaces for predetermined parts
- Marked open space on production floor
- Marked line on storage rack
- Empty inbox in engineering

The Start of Your Lean Journey v7.6 - Slide 41 © 2012 Massachusetts Institute of Technology

Lean is a "Journey" Not a "State"


- It took close to 30 years for Toyota to develop all of the aspects of the Toyota Production System (TPS), including the lean thinking that goes with that system.
- Consider the kanban
 - 1950s First kanban experiments
 - 1960s Kanban introduced company-wide
- Revision To: 76A071-0000L 0001 Description Loc: D-6-2 Loc: D-6-2 LCS (LH) 21061072 Bin: A1 Bin: A1 Container type: Container Qty PACDUN 0057 Kanban no: Back No. Customer 000119817 1072 A1234567

www.glovia.com/pdf/datasheets/GloviaKanban.pdf Courtesy of Glovia. Used with permission.

- 1970s Kanban distributed across suppliers
- And Toyota continues to develop and perfect the TPS, and to share their knowledge with others

Question

Hold up the colored 3 x 5 card of your choice

WELCOME to The Start of Your Lean Journey!

The Start of Your Lean Journey v7.6 - Slide 44 © 2012 Massachusetts Institute of Technology

Take Aways

- Lean six sigma practices emerged from the Japanese auto & US electronics industries
- 6S is a simple and effective lean tool
- Lean thinking applies across an enterprise
- An enterprise has a core and extended boundaries, and many stakeholders.
- Lean has been successfully demonstrated in aerospace, healthcare, and other enterprises
- Lean is a "journey" not a "state"

What is the most important thing you learned from this module?

Write a short answer on a 3 x 5 card

The Start of Your Lean Journey v7.6 - Slide 46 © 2012 Massachusetts Institute of Technology

Reading List

Dertouzous, M.L., Lester, R.K. and Solow, R.M., *Made in America: Regaining The Productive Edge*, MIT Press, Cambridge 1989

Graban, Mark, *Lean Hospitals: Improving Quality, Patient Safety, and Employee Satisfaction*,2nd Ed, Productivity Press, 2012

Harry, M, and Schoeder, R., Six Sigma, Currency, New York, 2000

Kenny, Charles, *Transforming Health Care: Virginia Mason Medical Center's Pursuit of the Perfect Patient Experience*, CRC Press, New York, 2011

Liker, J. The Toyota Way, McGraw Hill, New York, 2004

Murman, E., Allen, T., Bozdogan, K., Cutcher-Gershenfeld, J., McManus, H., Nightingale, D., Rebentisch, E., Shields, T., Stahl, F., Walton, M., Warmkessel, J., Weiss, S., and Widnall, S., *Lean Enterprise Value: Insights from MIT's Lean Aerospace Initiative*, Palgrave, New York, 2002

Toussaint, J. and Gerard, R., *On the Mend: Revolutionizing Heatlhcare to Save Lives and Transform the Industry*, Lean Enterprise Institute, Cambridge, 2010

Womack, J, Jones, D. and Roos, D., *The Machine That Changed the World*, Rawson Associates, New York, 1990

Womack, J. and Jones, D., Lean Thinking, Simon & Shuster, New York, 1996

Acknowledgements

Contributors

- Hugh McManus Metis Design
- Earll Murman MIT
- Steve Shade Purdue

16.660J / ESD.62J / 16.853 Introduction to Lean Six Sigma Methods IAP 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.