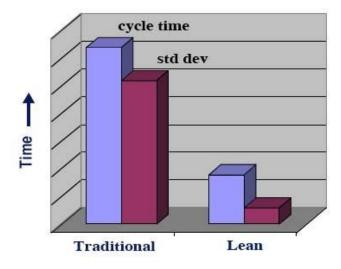


Variability Simulation

Learning Objectives

At the end of this module, you will be able to:


 Discuss the impact that variability has on process performance

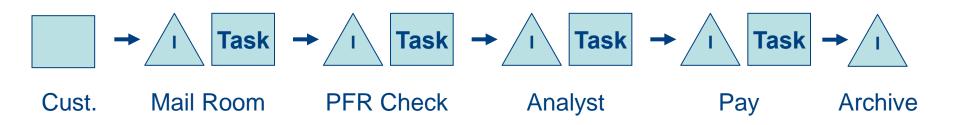
The Impact of Variation

• Variation impacts

- Cycle time & throughput (Accounts Payable module)
- Cost of Quality (Quality module)
- Process capability (Six Sigma module)
- Reducing process variation is a key step in implementing lean practices

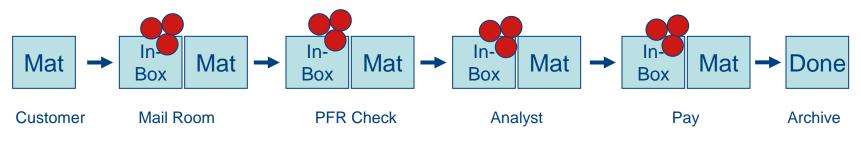
Pre and post lean engineering drawing release data for major aircraft program

Source: Lockheed Martin Corporation


Learning About Variation

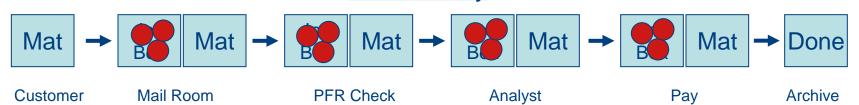
- In this module, we will gain understanding about impact of variation through two simulations
 - Dice game will give experiential encounter
 - Computer simulation will rapidly show impact of process changes
- We'll discover some important connections between variation and WIP, cycle time, throughput and utilization
- The Quality and Six Sigma Modules will introduce tools for controlling variation and its impact on process capability

A "Perfect" System?

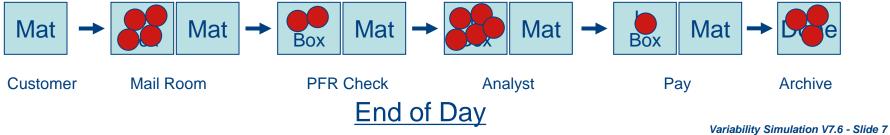

- Imagine a system that is perfectly balanced, has no rework, and has just enough capacity to meet customer demand
 - This module uses labels from the AP case study and/or the Clinic Lego® simulation, but this could be any system!
- The only imperfection we allow is variability in both input and process
- How will this system behave? Let's find out...

Dice Game Setup

- 5-step system
- Mat with record sheet and 6-sided die at each station
- Middle 4 stations have inbox, with 3 chips per in-box



- System processes chips (each time period, move a quantity of chips from one person to the next)
- Roll of dice determines how many chips are moved
- CAN' T PASS MORE CHIPS THAN YOU HAVE IN YOUR "IN" BIN AT THE <u>BEGINNING</u> OF THE ROUND
- Let's work through one cycle



Example - Day1

Start of Day

- Customer rolls a '3', passes $\underline{3}$ chips to Mail Room Mail Room rolls a '2', passes $\underline{2}$ chips to PFR Check PFR Check rolls a '5', passes $\underline{3}$ chips to Analyst Analyst rolls a '1', passes $\underline{1}$ chip to Pay Pay rolls a '6', passes $\underline{3}$ chips to the Archive
- All these actions happen simultaneously
- Don't wait for other players to pass chips before you pick up yours

© 2012 Massachusetts Institute of Technology

Accounting Example – Analyst

- Each round, record invoices completed and Work In Progress (WIP) level on your sheet
- From our example
 - Analyst at start of Day 1 had 3 WIP
 - Rolls a 1 and completes 1 invoice
 - Receives 3 invoices from PFR check and ends day with 5 WIP

DAY	Invoices Completed	WIP
4	1	35
1		5
<u>2</u> 3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
A Total Invoices Completed		
B Invoices per day = A /20		
C Utilization =B/3.5		
D Ending WIP		
E Estimate cycle time =D/B		

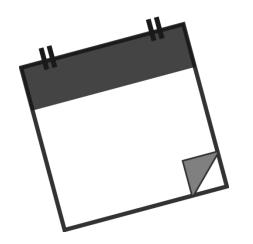
Customer Worksheet

- Customer records new invoices from die roll
- Get Invoices Completed from Archive-Done
- Records total WIP by adding up all WIP or using mathematical shortcut below

Shortcut Total WIP (new) = Total WIP (previous) + New Invoices - Invoices Complete

DAY	New Invoices Put Into the Process	Invoices Completed (Archive-Done)	<u>Total</u> WIP
			12 12
1	3	3	12
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
A Totals		A1	A2
B Invoices per day =A1/20			
C Utilization = B /3.5			
D Average WIP=A2/20			
E Average cycle time =D/B			

What Should happen?


- Consider 20 time periods, or "days"
- Each day, 3.5 chips are processed on average (the average of 1, 2, 3, 4, 5, 6)
- Intuitively, what should be the average throughput? Over 10 days? Over 20?
- What is the ideal flow (elapsed) time?

Let's find out what really happens...

Ready, Set, Play!

Variability Simulation V7.6 - Slide 11 © 2012 Massachusetts Institute of Technology

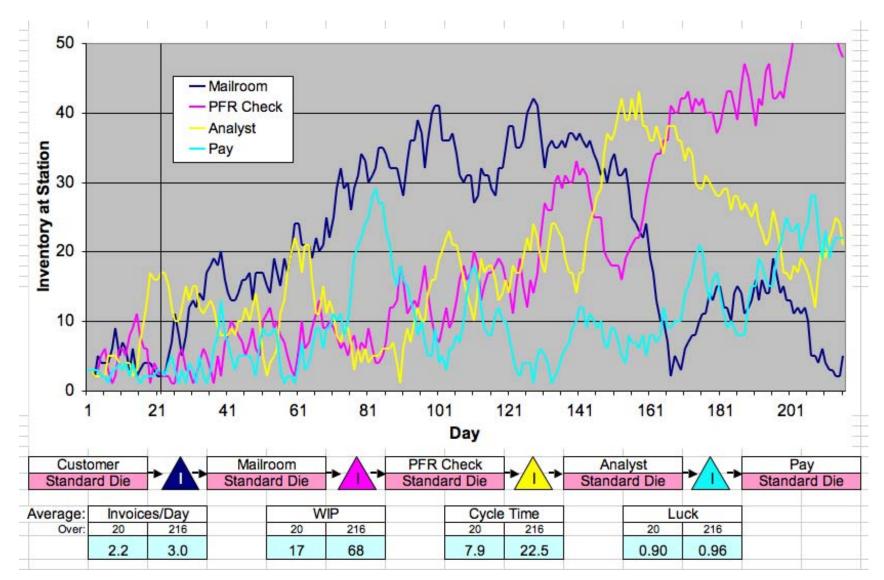
Accounting

- After 20 days, each person should add the appropriate columns to carry out the calculations at the bottom of their tally sheet
- The customer does slightly more complex calculations (use calculator if needed)

Let's tabulate some results

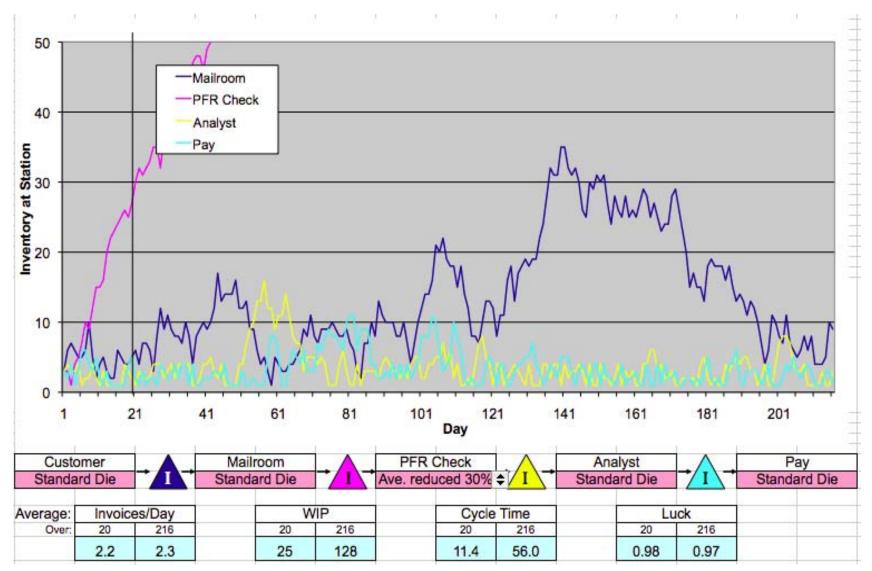
Questions

- Why are fewer jobs processed than expected? Why is cycle time longer?
 - Statistical fluctuations
 - Information that cannot be precisely predicted, varies from one instance to the next
 - System dependencies
 - Doing one task depends on having done another
 - Can't make up for lost capacity
- How might the performance of this system be improved?

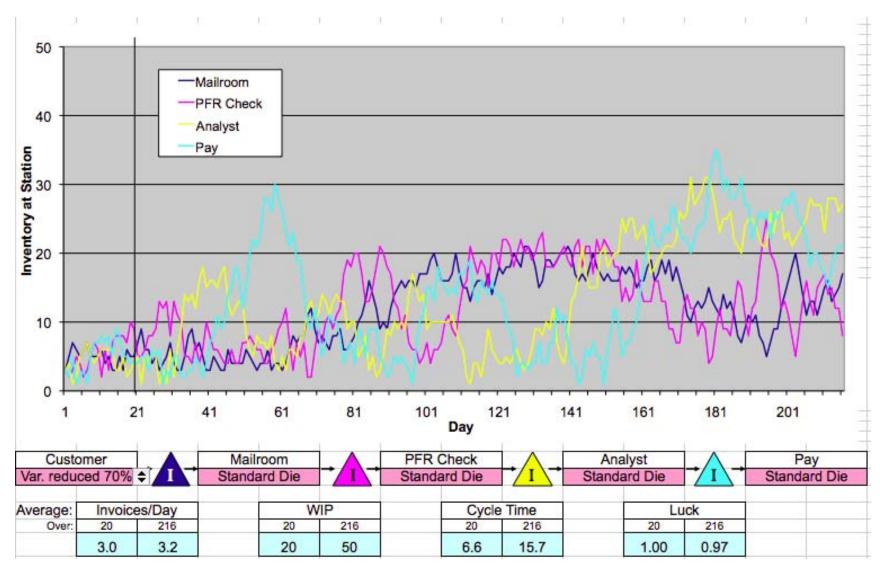


Computer Simulation

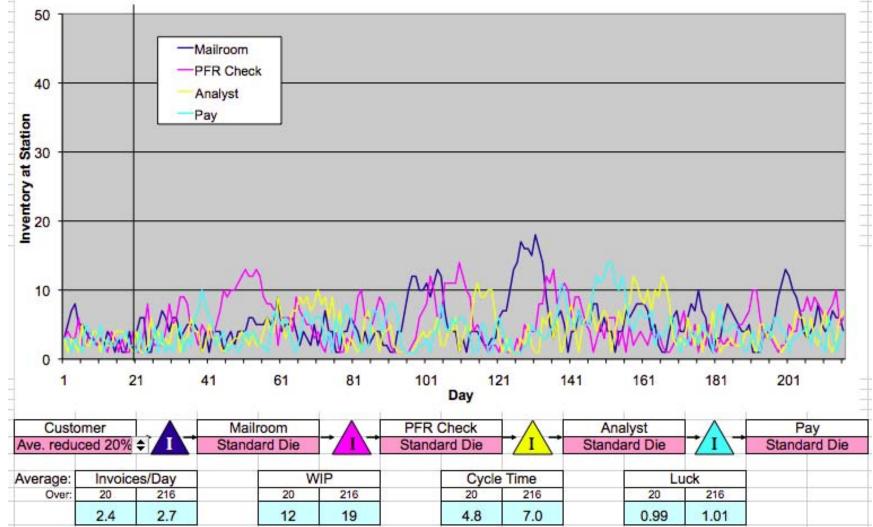
- We can more rapidly gather experimental data with a computer simulation of the dice game
- We can easily change customer input and process step variation to see the impact.
- Look at the impact of input and process variability on cycle time after 20 and 216 days



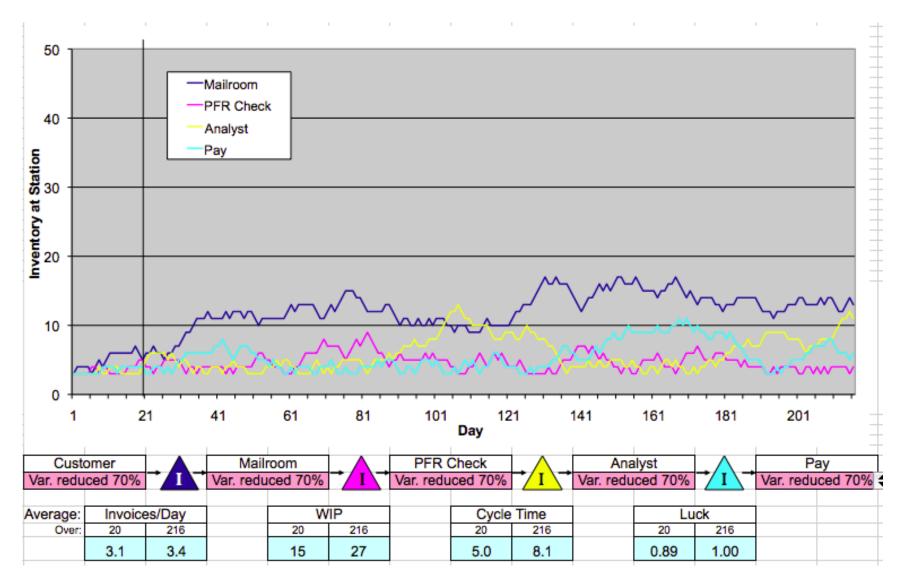
Spreadsheet Simulation



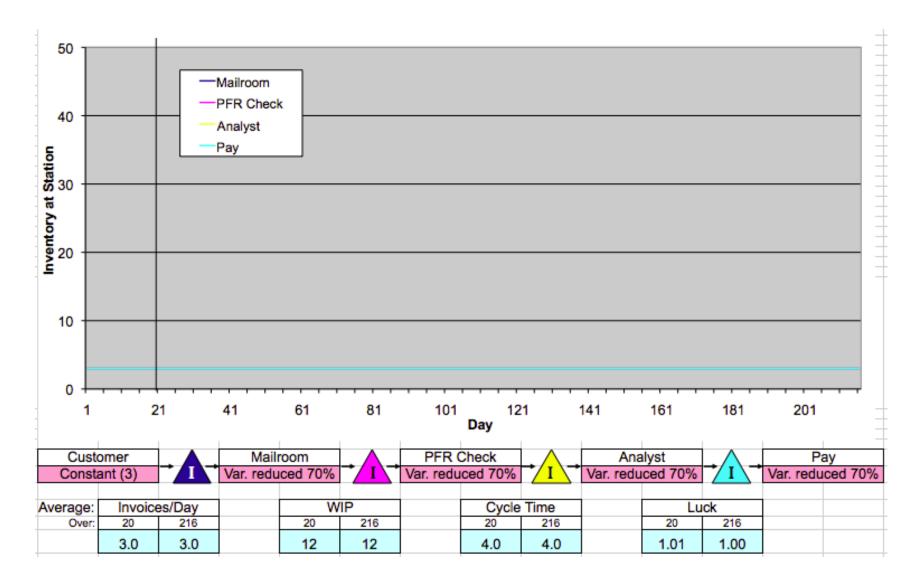
Bottleneck


Reduced Input Variation

Variability Simulation V7.6 - Slide 17 © 2012 Massachusetts Institute of Technology



Reduced Demand (lower average input)



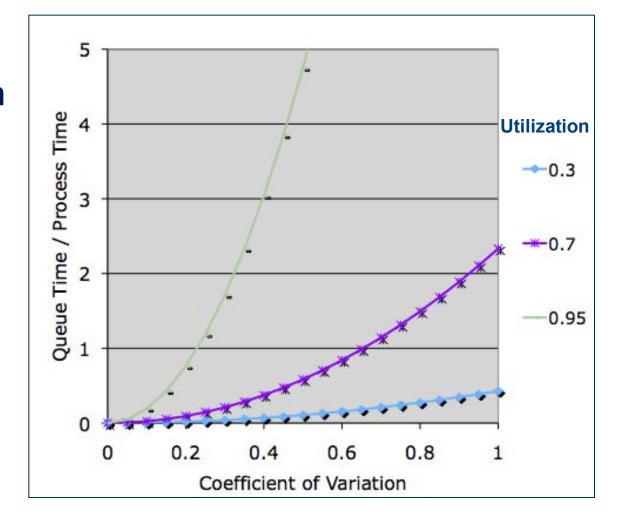
Reduced Total Variation

Constant Demand, Low Variation

Queue Time

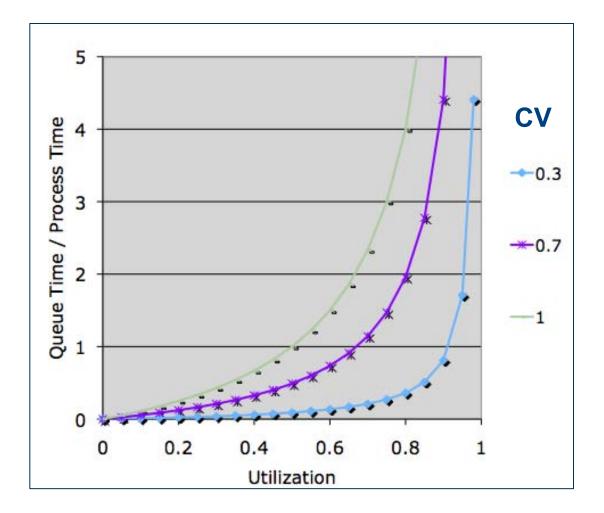
Based on the equation for queue time,

Time_in_Queue=Activity_Time*
$$\left(\frac{\text{Utilization}}{1-\text{Utilization}}\right)*\left(\frac{CV_a^2+CV_p^2}{2}\right)$$


- *CV_a* is input variation
 - Which we may not control
- CV_p is process variation
 - Which we want to minimize
- Utilization is demand/capacity
 - Note to be "efficient" this should be 1...

Time_in_Queue = Wait time Activity_Time = Processing time

Controlling Variability


- Heroic reductions in variability required if utilization is high
- This is the motivation behind the 6-Sigma approach

Controlling Utilization (overburden)

- For any variation level, some level of utilization makes queue time explode
- This is *muri* and *mura* in action
- Often, slight easing makes a dramatic difference

Simulation: Summary

- Simulated the system to examine behavior over a longer time period, more replications
- We made several improvements that demonstrate the power of a lean philosophy:
 - Reduced INPUT and PROCESS variability
 - Reduced average utilization of system slightly
 - Less variability and some "excess" capacity allowed response to customer need - Pull
 - Eliminating variability allowed straight-through flow to customer demand - Perfection

Take Aways

- Variability reduces expected process performance.
- Variability can occur in all processes across an enterprise, from manufacturing to engineering to administrative functions to patient care.

Acknowledgements

Contributors

- Ken Gilbert University of Tennessee at Knoxville
- Sharon Johnson Worcester Polytechnic Institute
- Hugh McManus LAI/Metis Design
- Earll Murman MIT
- Barrett Thomas University of Iowa
- Collaborators
- Sue Siferd Arizona State University
- Alexis Stanke MIT

16.660J / ESD.62J / 16.853 Introduction to Lean Six Sigma Methods IAP 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.