

Lean Thinking Part II

Make Value *Flow*

Image by MIT OpenCourseWare.

Creating flow:

- Focus on what is flowing through the process
- Don't be limited by organizational boundaries
- Eliminate bottlenecks, minimize buffers

Time

Value Value Stream Flow Pull Perfection

• Time is an essential metric for improving flow

- There are different ways to measure time
 - Wait time
 - Processing time
 - Cycle time
 - Customer demand or lead time

 The key is to understand the local definition of how time is measured

Wait and Process Time

Value Value Stream Flow Pull Perfection

• Wait time

- The time Work in Process (WIP) is idle in queues, buffers or storage
- Other Names: queue time, delay time

Processing time

- The time that activities are being performed on WIP
- Processing time may consist of Value Added Time (VAT) and Non Valued Added Time (NVAT) activities.
- Other names: Touch Time (TT), In Process Time (IPT), Response Time (RT), Activity time

Wait Time	VAT	NVAT		Wait Time
→ Time	├ <i>Р</i>	Processing Tin	ne →	Lean T

Cycle Time

Value Value Stream Flow Pull Perfection

- The time required to execute activities in a process
- It can be measured for:
 - A single task or activity
 - A group of tasks or activities
 - A single process
 - A group of processes, e.g., customer order to customer delivery
- Cycle time includes processing time and wait time
- Other names: lead time or span time or throughput time

←	─────────────────────────────────────					
Wait Time	VAT	NVAT	VAT	Wait Time		
──→ Time		Process Time	;	Lean		

Lean Thinking V7.6 - Slide 5 © 2012 Massachusetts Institute of Technology

Hot Dog Stand Times

Sasha

- Calculate the time in seconds for the 11 process steps and the total cycle time.
 - Make sure to convert everything to time per order
 - Don't forget effects of rework
- Sum times to calculate an average cycle time for the customer to get a hotdog (order to delivery)
- Use the sheet provided
 - You will be reporting your total cycle time to the instructor
 - Record all times on a flip chart for presentation to the class if instructed to do so

Time Value Charts

Value Value Stream Flow Pull Perfection

- Visual display of the breakdown in time for a given process
- Actual numbers must be measured or estimated

Big cycle time savings comes from removing wait and non-value added time out of a process!

Value Value Stream Flow Pull Perfection

- Push system each activity delivers its output when it is done
 - Results in build up of batches with lots of inventory; defective goods pile up
- Pull system each activity delivers its output just as the next activity needs its input
 - Triggered by the customer (external & internal)
 - Results in smooth flow with no batches or voids
 - Minimizes inventory and rework due to defects
- Inherently, there is very little waste in a pull system
- Pull systems are agile and responsive to customer demand

Moving from Flow to Pull

Value Value Stream Flow Pull Perfection

Pull requires flow plus predictable cycle time, using

- Takt time
- Balanced work
- Standard work
- Single piece flow
- Kanban system
- Just in time delivery of all material and information

Creating pull:

- Start with the customer and work backwards through the system
- If cycle time <= customer expectation time then pull can be accomplished
- If cycle time > customer expectation time then buffer inventory is needed (or cycle time must be reduced!)

Pull System: Dell Computer

Value Value Stream Flow Pull Perfection

- Dell developed the selling highly customized computer systems direct to customers
- Customer order initiates the pull process
- Orders can ship same day
- Partnerships with suppliers allow very quick replenishment of *vendor-owned* Dell inventory
- Dell ships 110,000 systems/day with very low inventory costs

Aspects of the Dell system have become standard practice for many consumer products

Measure of Customer Demand

Value Value Stream Flow Pull Perfection

Takt Time is...

- From the German word "Taktzeit"
 - "takt" is German for "stroke"
 - "zeit" is German for "time"
- A reference number that provides a drum beat for the process

Available time

Takt Time -

Takt time = Customer demand rate for available time

Example:

The available time is a year or 235 days. There are 40 orders for this year.

What is the takt time?

235/40 ~ 6 days

Hot Dog Stand Takt Time

Sasha

Andy

- What is the takt time for S&A Hot dogs for
 - 50 customers?
 - 75 customers?
- Time available is 4 hours (240 minutes)
 - 50 customers takt time is 240 / 50 = 4.8 min
 - 75 customers takt time is 240 / 75 = 3.2 min

Little's Law

 For most systems, average values of work in progress (WIP), cycle time and takt time satisfy Little's Law

WIP = <u>Cycle Time</u> = (Throughput Rate) X (Cycle Time) Takt Time

• For example, for a specified takt time, large amounts of WIP implies a long cycle time, as each article spends a lot of time in inventory!

Cycle time, WIP and takt time or throughput rate are interdependent.

Balanced Work

Value Value Stream Flow Pull Perfection

Takt time example, continued...

To meet takt time, a product has to be delivered every 6 days. But if it takes 30 days to build, how is this possible?

© 2012 Massachusetts Institute of Technology

Standard Work

Value Value Stream Flow Pull Perfection

- Best process currently known, understood, and used today (evidence based)
- Tomorrow it can be better based on continuous improvement
- Standard work is the key to repeatability and effective innovation

Single Piece Flow

Value Value Stream Flow Pull Perfection

Single Piece Flow

- Processing one unit at a time through all the steps to completion
- Only one unit in work at any step in the process
- Low inventory levels
- Defects immediately found

Photos by Earll Murman

Batch and Queue

- Processing multiple units at the same time
- Optimizes the efficiency at each step in the process
- High inventory levels
- Leads to larger scrap and rework

Lean Thinking V7.6 - Slide 16 © 2012 Massachusetts Institute of Technology

Tools for Pull: Manufacturing Cell

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

Inventory Everywhere – No Work To Do

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

Customer Buys Product

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

> Lean Thinking V7.6 - Slide 19 © 2012 Massachusetts Institute of Technology

Signals Task 4 To Work

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

> Lean Thinking V7.6 - Slide 20 © 2012 Massachusetts Institute of Technology

Signals Task 3 To Work

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

Signals Task 2 To Work

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

> Lean Thinking V7.6 - Slide 22 © 2012 Massachusetts Institute of Technology

Signals Task 1 To Work

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

Operating rule: •Only work if the downstream process needs you to •Sense this by seeing they have no inventory

- Ideally, all tasks are balanced and stop at the same time
- Minor variations absorbed automatically by pull rule
- Major variations immediately obvious for correction

Tools for Pull: Kanban

- Appearance of kanban card (or bin) authorizes action to produce product for downstream processes
- Enabled by and dependent upon standard process
- Provides a quick visual representation of the state of the system

Visual Control and Andon

- Andon is a specific visual control device, typically a group of lights indicating the current status of the process
 - Each step has a set of lights which indicates whether the step is proceeding as planned, needs monitoring, or requires immediate attention
 - In a pull system, if action is required, the entire process stops to correct the problem

Andon Systems Help Prevent Mistakes

Value Stream Flow Pull Perfection Value **Employee has** The employee found a part that pulls on the linedoesn't fit right. stop cord overhead. LINE STOPPED! The team leader **Team leader** sees the lamp has slipped out of and comes to help.

Photographs illustrating each of these steps removed due to copyright restrictions.

The team leader discovers a ring that has slipped out of place. He solves the problem before the production line reaches the next fixed position. The line continues moving.

Lean Thinking V7.6 - Slide 28 © 2012 Massachusetts Institute of Technology

Source: http://www.toyota.co.jp

Virginia Mason Medical Center Patient Safety Alert[™] System

Value Value Stream Flow Pull Perfection

- Inspired by Toyota "stop-the-line" andon system
- Implemented in 2002
- Every one of VMMC's 5000 employees can "stop the line" whenever patient safety is threatened
- 15,000 Patient Safety Alerts, 2002 2010
- Data collected led to root cause analysis prevention of future incidents

Pursue *Perfection*

Value Value Stream Flow Pull Perfection

- Let customer demand pull value through the value stream
- Continuously eliminate waste in every process
- Design and build quality into the product and service
- Ensure transparency to everyone involved
- This is a journey...don't give up!

5 Whys Help Achieve Perfection

Value Value Stream Flow Pull Perfection

5 whys can be used to help determine the root cause of mistakes

Example: The Jefferson Monument is deteriorating!

- Why? It gets washed all the time.
- Why? It always has bird droppings on it.
- Why? Birds come into the monument to feed on spiders.
- Why? The spiders are there feeding on gnats.
- Why? The gnats are there because the lights are left on all time.

Five is only a "rule of thumb" – use as many "whys" as needed to get to root cause.

Five Lean Fundamentals Work Together

Plan-Do-Study-Act

Lean is not a set of tools. It is a continuous improvement mindset using multiple PDSA cycles.

Lean Concepts Introduced So Far

	Value Value	Stream Flo	WC	Pull	Perfection		
•	• Value added		 Single piece flow 				
•	Muda, muri, mura		S	standard	d work		
•	 8 types of waste 		Kitting				
•	Value stream		• k	anban			
•	Cycle time			lisual co	ontrol		
•	Wait time			ndon	Shiron		
•	Processing time		P O				
•	Time value charts		6	5			
•	Takt time		 Mistake proofing 				
•	Balanced work	•	5	Whys			
•	Spaghetti diagram	S ⁽	P	DSA			
•	Process maps	•	• •	Gemba (genba)		
•	Flow and pull		•	Senchi g	genbutsu		
		•	• T	hree ad	tuals		

- The concepts of process, customer and value are essential to lean thinking
- There are fundamental principles behind lean thinking based on making value flow
- A number of simple tools and concepts underlie lean thinking

Reading List

Womack, J. and Jones, D., *Lean Thinking, 2nd Edition*, Simon & Shuster, New York, 2003

Graban, Mark, *Lean Hospitals*, 2nd Ed, CRC Press, New York, 2012

Rother, M. and Shook, J. *Learning to See, v1.2*, The Lean Enterprise Institute, Cambridge, MA June 1999

Liker, Jeffery, The Toyota Way, McGraw-Hill, New York, 2004

Murman, E., Allen, T., Bozdogan, K., Cutcher-Gershenfeld, J., McManus, H., Nightingale, D., Rebentisch, E., Shields, T., Stahl, F., Walton, M., Warmkessel, J., Weiss, S., and Widnall, S., *Lean Enterprise Value: Insights from MIT's Lean Aerospace Initiative*, Palgrave, New York, 2002

"For Athletic Shoe Company, the Soul of Lean Management Is Problem Solving", Lean Enterprise Institute, June 24, 2008 http://www.lean.org/common/display/?o=812

Acknowledgements

Contributors

- Venkat Allada Missouri Institute of Science and Technology
- Sharon Johnson Worcester Polytechnic Inst.
- Hugh McManus, Metis Design
- Earll Murman MIT
- Bo Oppenheim Loyola Marymount University
- Alexis Stanke MIT

Collaborators

- Claudio Gelman New Balance
- Ed Thoms The Boeing Co., IDS

16.660J / ESD.62J / 16.853 Introduction to Lean Six Sigma Methods IAP 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.