

Airline Operations Control

Dr. Peter P. Belobaba

16.75J/1.234J Airline Management March 22, 2006

Airline Operations Control

System Operations Control

- □ Real-time coordination of all operations and decisions
- □ Aircraft flow management and resource (re-)allocation under irregular operating conditions.

Dispatch Control

□ Flight planning, given ATC preferred routes and company constraints/policies.

Station Control

□ Turnaround management of aircraft arrivals/departures on the ground.

- Coordinates the daily operations of the airline on a dynamic basis.
- Objective is to ensure that all flights are operated as close to the schedule plan as possible.
- Subject to additional goals and constraints:
 - □ Safety of passengers, crew and aircraft
 - □ On time performance measures
 - □ Most economical routings and procedures
 - □ Provide aircraft for "swaps", extra sections and charter operations

- Corporate Command Center
- Flight Dispatch
- Weight and Balance Planning
- Weather Services
- Navigation Database
- Corporate Complaint Resolution
- Crisis Management
- Crew Scheduling and Tracking
- Cargo Operations

- Ensure a safe, on-time and efficient operation
- Monitor weather conditions worldwide; issue weather alerts
- Implement Severe Weather Action Plan (SWAP) as necessary
- Monitor flight irregularities, implement recovery plans
- Quickly return the schedule to on-time after major disruptions
- Communicate effectively with all entities
- Make notifications to senior management and others in a timely manner
- Use Voice Mail System to broadcast routine operational updates

Major SOC Functional Groups

• Flight Dispatch

- □ Co-responsible with Captain for flight operations
- □ Determines route of flight and fuel required
- □ Provides weather briefing to pilots
- Monitors flight operation from origin to destination; provides en route updates as necessary

• Weight and Balance (Load) Planning

- □ Develops load plan based on forecast passengers, bags, and cargo
- □ Plans payload to optimize center of gravity, reducing fuel burn
- Provides ideal Takeoff Power Settings (TPS) to crew, reducing engine wear and maintenance costs

Major SOC Functional Groups (cont'd)

• Weather Services

- □ Monitors weather conditions that might affect operations
- Develops own forecasts predicting time, location and duration of weather events

Navigation Database

Develops alternative feasible routes between city pairs on network
 Maintains accuracy of thousands of routings in database

Crisis Management

Assist individuals affected by incidents involving airline operations
 Coordinate company-wide response to emergency situations

- Decision support system that monitors airport temperature, runways in use, changes to payload and passenger bookings.
- Automatic re-calculation of load plan to account for weather and load changes:
 - □ Increases load planner productivity to 45 flights per day
 - □ Increases airline revenue from added passengers and/or cargo
 - □ Enhances fuel efficiency
 - □ Results in more consistent load planning decisions
 - □ Provides early warning of potential problems

SOC Automation – Aircraft Tracking

Aircraft Situation Display

- Visual display of airborne commercial and general aviation traffic
 Provides position, altitude, speed and route of flight
- □ Direct data feed from FAA (excludes military traffic)

Global Flight Management System

- □ Global Positioning System (GPS) consists of 24 satellites in orbit around the earth at an altitude of 10,900 NM
- □ Developed and controlled by US Defense Department
- Initially to be used for en route navigation requires signal reception from minimum of 4 satellites
- □ Future use for approach capability

Irregular Operations – Causes

- Weather/ATC/maintenance delays
- Diversions weather/mechanical/medical
- Weight restrictions
- Planned/unplanned fuel stops
- Civil unrest/strikes
- Fuel shortages/facilities problems
- Capacity constraints/airport configurations

Recovery Considerations (CO)

- Number of customers inconvenienced
- Re-protection for the customers
- Special considerations air/sea groups, sports groups
- Downline impact on other customers
- Complexity of balancing aircraft rotations and crew routings
- Maintenance requirements (Line and/or Base)
- Market integrity (completion factor, on-time performance)
- ATC slot protection (LGA/ORD/DCA)
- Weather considerations Severe Weather Action Plan
- Route profitability, all else being equal

Ground Operations (Station Control)

- Overall objective is to ensure completion of schedule plan within company goals for on-time performance without compromising safety.
- Process passengers, baggage and cargo subject to numerous operational constraints:
 - □ Limited number of gates, many with constraints on aircraft size
 - □ Airport flow limitations on taxiways and runways
 - □ Availability of airport and ground crew resources
 - □ Weather (both local and en route) as well as airport field conditions
 - □ Air traffic control (ATC) congestion and delays

Station Control Challenges at Airline Hubs

- Ensuring that passengers and baggage make connecting flights.
- Decisions to hold or release flights without connecting passengers and/or bags depend on:
 - □ Number of flights from hub to destination
 - □ Seats available on subsequent flights to destination
 - □ Aircraft schedule/routing for remainder of the day
 - □ Local hotel availability and costs for misconnects
- Some airlines now use optimization tools to make hub operational decisions.

- To achieve on-time performance, efficient turnaround of aircraft at stations is essential:
 - "Minimum Objective Ground Time" (MOGT) sets a standard for minimum time necessary to prepare an arriving aircraft for departure on its next flight.
 - Determined with time studies by industrial engineers, and specified for each aircraft type, perhaps differently by airport.
 - Planned schedules typically exceed MOGT at least periodically to allow for additional buffer in case of unexpected delays, to preserve acceptable average on-time performance.

Aircraft Arrival Activities

"Above The Wings"

□ Pre-position the jet bridge 5 minutes before planned arrival time

- Open door and deplane passengers
- □ Cabin interior cleaning

"Below The Wings"

- □ Ensure aircraft ramp is clear of equipment
- □ Stage required ground equipment (baggage carts given aircraft load)
- □ Direct aircraft to gate
- □ Chock wheels
- Position baggage conveyors and carts
- □ Unload bags or containers from aircraft holds
- □ Service aircraft lavatories
- □ Replenish potable water

"Above The Wings"

□ Check in passengers and perform required security screening

- □ Cater aircraft with food and beverages
- □ Process upgrade and standby requests; board passengers
- □ Perform flight close-out updates passenger records and loads

"Below The Wings"

□ Load baggage or containers

□ Perform "walk-around" (visual check of entire aircraft)

□ Update load plans given final passenger count and cargo volume

Pushback and start aircraft engines

□ Stage ground equipment for next arrival