

Team WERMS (WE Rectify Microwave Signals)

Zack Anderson Darrell Cain

Motivation

Why Microwave?

- Efficient method of transmitting large amounts of energy
- Small wavelength = higher energy
- Passes easily through the atmosphere

Uses

- Orbiting solar "power plant" satellites
- Aircrafts
- Transportation ("Space Elevator")
- Basically anywhere large power sources are not feasible to store, a tether is near impossible, and a high energy demand exists

Requirements

- Provide enough power to the climber over 50 seconds to meet the following requirements from it's capacitor array
 - -24 V
 - -400 W
 - 16.7 amps
- Properly shield the rest of the climber from the microwave source

Parameters

- Must optimize for efficiency Power Out/Power In Constraints -Size of Beam
 - -Speed of climber
 - -Amount of capacitor energy
 - -Efficiency of Climber

$$0 \leq \int_{0}^{t} (P_{out} - W_{climber} / \varepsilon_{climber}) dt \leq \frac{1}{4} m_{gross} h_{climb} g$$

$$0 \leq \int_{0}^{t} (\rho_{\mu} r_{use/nonuse} A_{panel} \varepsilon_{rect} - \frac{1}{2} m_{gross} v^{2} / \varepsilon_{climber}) dt \leq \frac{1}{4} m_{gross} h_{climb} g$$

Arriving At An Answer

"Rectapenna"

MILAX (Canada)

Texas A&M University Rectenna

- Research into microwave power transmission started after WWII
- NASA got involved in the 70s and 80s
- Currently mostly space-based applications are being explored

Performance Estimate

Key Elements of Current Design

$$0 \leq \int_{0}^{t} (P_{out} - W_{climber} / \varepsilon_{climber}) dt \leq \frac{1}{4} m_{gross} h_{climb} g$$

$$0 \leq \int_{0}^{t} (\rho_{\mu} r_{use/nonuse} A_{panel} \varepsilon_{rect} - \frac{1}{2} m_{gross} v^{2} / \varepsilon_{climber}) dt \leq \frac{1}{4} m_{gross} h_{climb} g$$

$$\frac{1}{4} m_{gross} h_{climb} g = 6125J$$

$$\rho_{\mu} = 254.7 \text{ W/m}^{2}$$

$$A_{panel} = 3.14 \text{ m}^{2}$$

$$v = 2m / s$$

$$r_{use/nonuse} = .2628$$

This leaves only two variables, efficiency of climber and efficiency of rectenna

Possible to now generate a bounding constraint on the efficiencies

Efficiency of Climber

Analysis

- Beam density estimation is both low and idealized
- Ratio is extremely low

Manufacturing

Cost Estimate

Cost Estimate			
DESCRIPTION	RATE	QYT	TOTAL COST
Design and Engineering			
Labor Rate for each Designer	\$60/hr	12	\$720
Labor Rate for CAD/CAM/Altium workstation	\$40/hr	5	\$200
Materials Costs			
Steel Sheet (36"x48"x0.1")	\$36.12	1	\$36.12
Carbon Fiber Sheet (39"x47"x0.25")	\$215	1	\$215
PCB Manufacturing			
Advanced Circuits Quote	\$2.88	156	\$449.28
Waterjet Machining			
Labor Rate	\$30/hr	1.5hr	\$45
Machine Use	125/hr	~. 1hr	\$12.5
Assembly			
Labor Rate	\$10/hr	2	\$20
Testing			
Labor and Test Facility Operating Cost (to be	TBD	-	-
determined)		TTOTTO	
		HOURS	COST
TOTAL		20.5	\$1697.90

Future Work to be done

- Create a simulation of the equations mentioned above so as to accurately reflect the efficiencies envelope with various changes
- Change the rectenna design so it captures more area of the beam per square foot of the rectenna panel
- Do an actual build and test of the equipment, then tweak the tradeoff between efficiency and area of antenna till it's optimal

Lessons Learned

- Variable optimization can be subtle
- Sometimes the fine tuned answer is not necessarily the best answer
- The best way to get results, is to perform tests
- Have very well defined goals that serve the long term