<u>16.810: Team M4</u>

Optimizing Roller Assembly

Ryan McLinko Carolyn O'Brien

IAP 2007

Motivation

- Roller assembly moves
 climber up ribbon
- Rollers, plates, and sidebars all have extra mass
- Purpose
 - Less power needed to climb
 - Increased score

Requirements

- Minimize climber weight
- Minimize climber cost
- Minimize time to attach climber to ribbon
 Must be < 4 min
- Maintain von Mises Factor of Safety > 2

Constraints

- Climber must survive a 2 m drop test
- Climber must lift own weight
- Average speed > 2 m/s
- Material unaffected by 5.8 GHz microwaves
- Climber unaffected by water
- Climber must resist 11.5 mph winds

Initial Sketch

Design Choice

- Initial design was given
- Holes placed in strategic locations
- Refined with FEA software

CAD Model: Side Plate

CAD Model: Drive Roller

CAD Model: Guide Roller

FEA Analysis: Side Plate Left

min: 20

5m

FEA Analysis: Side Plate Right

<u>min: 17</u>

<u>nax: 6.1e-</u> 5m

FEA Analysis: Side Bar

FEA Analysis: Side Bar Belay

FEA Analysis: Drive Roller

4m

FEA Analysis: Guide Roller

Machined Part: Belay Side

Machined Part: Side Plate

Final Specifications

Requirements Minimize Weight

Results

Difference:

Side Bar Cross (x10) 0.124 lbs 0.051 lbs .073 lbs

Side Bar Belay (x2) .066 lbs 0.121 lbs 0.055 lbs

Side Plate Left (x2) 0.89 lbs 0.70 lbs

Side Plate Right (x2) 0.96 lbs .31 lbs 0.65 lbs

Drive Roller (x4) 1.32 lbs .69 lbs 0.63 lbs

Guide Roller (x2) 0.91 lbs 0.47 lbs

.44 lbs

Total 33.7 lbs

5.5 lbs

Final Specifications

Requirement

Keep Cost Low

Result

Cost to team: \$100

Clamp Time

FOS>2

Kept clamp simple

FOS: Belay Side Bar-2.3 Side Bar-2.2 Roller-2.1 Side plate (left)-20 Side plate (right)-17

Design Rationale

Focus

Minimize weight in order to aid in speeding up the climber

Cost was less important, but didn't use strange materials

Wanted something simple and effective

Manufacturing

- Side Bars and Belay Side Bars
 - Water jetted out of 1/2" polycarb
 - Milled holes for screws
- Side plates
 - Water jetted
 - Milled holes for axles and screws
- Rollers
 - Cut on bandsaw
 - Lathed
 - Drill pressed holes for screws

Assembly

- Side Bars and Belay Side Bars
 - Screwed into the slots on the side plates
 - Belay hook will be added to the central two holes
 - Side bars will be mounted to the motor
- Side plates
 - Attached to the motor, side bars, rollers, and clamps by screws or simply pressed together
- Roller
 - Attached by screws and an axle to the side plates

Section		Rate	Qty		Total Cost
I. Design and Engineering					
Labor Rate for Each Designer		\$75/hour	5		375
Labor Rate for Each Cad/Cam Machine		\$40/hour	4		160
II. Materials Cost					
Polycarbonate Sheet		\$19.47/sqft	3		58.41
Polycarbonate Rod		\$62.50/ft	2		125
III. Waterjet Manufacturing					
Labor Rate		\$55/hour	1		55
Machine Use Rate		\$100/hour	1		100
IV. Other Machining					
Labor Rate		\$35/hour	4		140
V. Assembly Rate					
Assembly Work Labor F	Rate	\$55/hour	2		110
Miscellaneous Test Rate	9	\$55/hour	4		220
			Hours	Cost	
		Total	21		1343.41

Future Work

- Not everything could be completed during IAP
 - Work will continue after the class ends
 - The side plates will be finished
 - Rollers will be hollowed out
 - Side bars will be created
- After all this occurs, the new pieces will be put together and tested as a new recursion of the climber

Final Conclusions

- The weight drop is significant
- Will alter the performance of the climber for the better
- Cut large pieces out of the materials while maintaining a good FOS
- Further iterations of this process will be necessary to achieve the ideal parts
 - Continued shaving off of material may occur
 - Many of the pieces achieved a radical new design
 - Sign of the evolution of a project

Lessons Learned

- Do not trust random other students regarding the operation of machinery
- If it can go wrong, it will—over and over again.
- The iterative process is effective and can be repeated infinitely
 - There's always something better out there
- Double checking position of hole before optimizing

Lessons Learned

- Peel the plastic off before water jetting
- When doing large water jet parts, pause water jet periodically to make sure the piece hasn't shifted
- Standard truss ribs are very inefficient for side bars, ribs connecting forces make much more sense