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additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. OK. Today we
have a new topic, and we are going to start to learn about vector fields and line integrals. Last week we had been
doing double integrals. For today we just forget all of that, but don't actually forget it. Put it away in a corner of
your mind. It is going to come back next week, but what we do today will include line integrals. And these are
completely different things, so it helps, actually, if you don't think of double integrals at all while doing line integrals.
Anyway, let's start with vector fields. What is a vector field? Well, a vector field is something that is of a form, while
it is a vector, but while M and N, the components, actually depend on x and y,on the point where you are. So, they
are functions of x and y. What that means, concretely, is that every point in the plane you have a vector. In a corn
field, every where you have corn. In a vector field, everywhere you have a vector. That is how it works. A good
example of a vector field, I don't know if you have seen these maps that show the wind, but here are some cool
images done by NASA. Actually, that is a picture of wind patterns off the coast of California with Santa Ana winds,
in case you are wondering what has been going on recently. You have all of these vectors that show you the
velocity of the air basically at every point. I mean, of course you don't draw it every point, because if you drew a
vector at absolutely all the points of a plane then you would just fill up everything and you wouldn't see anything.
So, choose points and draw the vectors at those points. Here is another cool image, which is upside down. That is
a hurricane off the coast of Mexico with the winds spiraling around the hurricane. Anyway, it is kind of hard to see.
You don't really see all the vectors, actually, because the autofocus is having trouble with it. It cannot really do it,
so I guess I will go back to the previous one. Anyway, a vector field is something where at each point -- -- in the
plane we have vector F that depends on x and y. This occurs in real life when you look at velocity fields in a fluid.
For example, the wind. That is what these pictures show. At every point you have a velocity of a fluid that is
moving. Another example is force fields. Now, force fields are not something out of Star Wars. If you look at
gravitational attraction, you know that if you have a mass somewhere, well, it will be attracted to fall down because
of the gravity field of the earth, which means that at every point you have a vector that is pointing down. And, the
same thing in space, you have the gravitational field of planets, stars and so on. That is also an example of a
vector field because, wherever you go, you would have that vector. And what it is depends on where you are. The
examples from the real world are things like velocity in a fluid or force field where you have a force that depends
on the point where you are. We are going to try to study vector fields mathematically. We won't really care what
they are most of the time, but, as we will explore with them defined quantities and so on, we will very often use
these motivations to justify why we would care about certain quantities. The first thing we have to figure out is how
do we draw a vector field, you know, how do you generate a plot like that? Let's practice drawing a few vector
fields. Well, let's say our very first vector field will be just 2i j. It is kind of a silly vector field because it doesn't
actually depend on x and y. That means it is the same vector everywhere. I take a plane and take vector . I guess
it points in that direction. It is two units to the right and one up. And I just put that vector everywhere. You just put it
at a few points all over the place. And when you think you have enough so that you understand what is going on
then you stop. Here probably we don't need that many. I mean here I think we get the picture. Everywhere we
have a vector . Now, let's try to look at slightly more interesting examples. Let's say I give you a vector field x times
i hat. There is no j component. How would you draw that? Well, first of all, we know that this guy is only in the i
direction so it is always horizontal. It doesn't have a j component. Everywhere it would be a horizontal vector. Now,
the question is how long is it? Well, how long it is depends on x. For example, if x is zero then this will actually be
the zero vector. x is zero here on the y-axis. I will take a different color. If I am on the y-axis, I actually have the
zero vector. Now, if x becomes positive small then I will have actually a small positive multiple of i so I will be going
a little bit to the right. And then, if I increase x, this guy becomes larger so I get a longer vector to the right. If x is
negative then my vector field points to the left instead. It looks something like that. Any questions about that
picture? No. OK. Usually, we are not going to try to have very accurate, you know, we won't actually take time to
plot a vector field very carefully. I mean, if we need to, computers can do it for us. It is useful to have an idea of
what a vector field does roughly. Whether it is getting larger and larger, in what direction it is pointing, what are the
general features? Just to do a couple of more, actually, you will see very quickly that the examples I use in lecture
are pretty much always the same ones. We will be playing a lot with these particular vector fields just because they
are good examples. Let's say I give you xi yj. That one has an interesting geometric significance. If I take a point
(x, y), there I want to take a vector x, y. How do I do that? Well, it is the same as a vector from the origin to this
point. I take this vector and I copy it so that it starts at one point. It looks like that. And the same thing at every
point. It is a vector field that is pointing radially away from the origin, and its magnitude increases with distance
from the origin. You don't have to draw as many as me, but the idea is this vector field everywhere points away
from the origin. And its magnitude is equal to the distance from the origin. If these were, for example, velocity
fields, well, you would see visually what is happening to your fluid. Like here maybe you have a source at the
origin that is pouring fluid out and it is flowing all the way away from that. Let's do just a last one. Let's say I give
you minus y, x. What does that look like? That is an interesting one, actually. Let's say that I have a point (x, y)
here. This vector here is . But the vector I want is <- y, x>. What does that look like? It is perpendicular to the
position to this vector. If I rotate this vector, let me maybe draw a picture on the side, and take vector x, y. A vector
with components negative y and x is going to be like this. It is the vector that I get by rotating by 90 degrees
counterclockwise. And, of course, I do not want to put that vector at the origin. I want to put it at the point x, y. In
fact, what I will draw is something like this. And similarly here like that, like that, etc. And if I am closer to the origin
then it looks a bit the same, but it is shorter. And at the origin it is zero. And when I am further away it becomes
even larger. See, this vector field, if it was the motion of a fluid, it would correspond to a fluid that is just going



even larger. See, this vector field, if it was the motion of a fluid, it would correspond to a fluid that is just going
around the origin in circles rotating at uniform speed. This is actually the velocity field for uniform rotation. And, if
you figure out how long it takes for a particle of fluid to go all the way around, that would be actually 2(pi) because
the length of a circle is 2(pi) times the radius. That is actually at unit angular velocity, one radiant per second or
per unit time. That is why this guy comes up quite a lot in real life. And you can imagine lots of variations on these.
Of course, you can also imagine vector fields given by much more complicated formulas, and then you would have
a hard time drawing them. Maybe you will use a computer or maybe you will just give up and just do whatever
calculation you have to do without trying to visualize the vector field. But if you have a nice simple one then it is
worth doing it because sometimes it will give you insight about what you are going to compute next. Any questions
first about these pictures? No. OK. Oh, yes? You are asking if it should be y, negative x. I think it would be the
other way around. See, for example, if I am at this point then y is positive and x is zero. If I take y, negative x, I get
a positive first component and zero for the second one. So, y, negative x would be a rotation at unit speed in the
opposite direction. And there are a lot of tweaks you can do to it. If you flip the sides you will get rotation in the
other direction. Yes? How do know that it is at unit angular velocity? Well, that is because if my angular velocity is
one then that means the actually speed is equal to the distance from the origin. Because the arch length on a
circle of a certain radius is equal to the radius times the angle. If the angle varies at rate one then I travel at speed
equal to the radius. That is what I do here. The length of this vector is equal to the distance of the origin. I mean, it
is not obvious on the picture. But, really, the vector that I put here is the same as this vector rotated so it has the
same length. That is why the angular velocity is one. It doesn't really matter much anyway. What are we going to
do with vector fields? Well, we are going to do a lot of things but let's start somewhere. One thing you might want
to do with vector fields is I am going to think of now the situation where we have a force. If you have a force
exerted on a particle and that particles moves on some trajectory then probably you have seen in physics that the
work done by the force corresponds to the force dot product with the displacement vector, how much you have
moved your particle. And, of course, if you do just a straight line trajectory or if the force is constant that works
well. But if you are moving on a complicated trajectory and the force keeps changing then, actually, you want to
integrate that over time. The first thing we will do is learn how to compute the work done by a vector field, and
mathematically that is called a line integral. Physically, remember the work done by a force is the force times the
distance. And, more precisely, it is actually the dot product between the force as a vector and the displacement
vector for a small motion. Say that your point is moving from here to here, you have the displacement delta r. It is
just the change in the position vector. It is the vector from the old position to the new position. And then you have
your force that is being exerted. And you do the dot product between them. That will give you the work of a force
during this motion. And the physical significance of this, well, the work tells you basically how much energy you
have to provide to actually perform this motion. Just in case you haven't seen this in 8.01 yet. I am hoping all of
you have heard about work somewhere, but in case it is completely mysterious that is the amount of energy
provided by the force. If a force goes along the motion, it actually pushes the particle. It provides an energy to do it
to do that motion. And, conversely, if you are trying to go against the force then you have to provide energy to the
particle to be able to do that. In particular, if this is the only force that is taking place then the work would be the
variation in kinetic energy of a particle along the motion. That is a good description for a small motion. But let's say
that my particle is not just doing that but it's doing something complicated and my force keeps changing.
Somehow maybe I have a different force at every point. Then I want to find the total work done along the motion.
Well, what I have to do is cut my trajectory into these little pieces. And, for each of them, I have a vector along the
trajectory. I have a force, I do the dot product and I sum them together. And, of course, to get the actual answer, I
should actually cut into smaller and smaller pieces and sum all of the small contributions to work. So, in fact, it is
going to be an integral. Along some trajectory, let's call C the trajectory for curve. It is some curve. The work adds
up to an integral. We write this using the notation integral along C of F dot dr. We have to decode this notation.
One way to decode this is to say it is a limit as we cut into smaller and smaller pieces of the sum over each piece
of a trajectory of the force of a given point dot product with that small vector along the trajectory. Well, that is not
how we will compute it. To compute it, we do things differently. How can we actually compute it? Well, what we can
do is say that actually we are cutting things into small time intervals. The way that we split the trajectory is we just
take a picture every, say, millisecond. Every millisecond we have a new position. And the motion, the amount by
which you have moved during each small time interval is basically the velocity vector times the amount of time. In
fact, let me just rewrite this. You do the dot product between the force and how much you have moved, well, if I
just rewrite it this way, nothing has happened, but what this thing is, actually, is the velocity vector dr over dt. What
I am trying to say is that I can actually compute by integral by integrating F dot product with dr / dt over time.
Whatever the initial time to whatever the final time is, I integrate F dot product velocity dt. And, of course, here this
F, I mean F at the point on the trajectory at time t. This guy depends on x and y before it depends on t. I see a lot
of confused faces, so let's do an example. Yes? Yes. Here I need to put a limit as delta t to zero. I cut my
trajectory into smaller and smaller time intervals. For each time interval, I have a small motion which is, essentially,
velocity times delta t, and then I dot that with a force and I sum them. Let's do an example. Let's say that we want
to find the work of this force. I guess that was the first example we had. It is a force field that tries to make
everything rotate somehow. Your first points along these circles. And let's say that our trajectory, our particle is
moving along the parametric curve. x = t, y = t^2 for t going from zero to one. What that looks like -- Well, maybe I
should draw you a picture. Our vector field. Our trajectory. If you try to plot this, when you see y is actually x
squared, so it a piece of parabola that goes from the origin to (1,1). That is what our curve looks like. We are
trying to get the work done by our force along this trajectory. I should point out; I mean if you are asking me how
did I get this? That is actually the wrong question. This is all part of the data. I have a force and I have a trajectory,
and I want to find what the work done is along that trajectory. These two guys I can choose completely
independently of each other. The integral along C of F dot dr will be -- Well, it is the integral from time zero to time
one of F dot the velocity vector dr over dt times dt. That would be the integral from zero to one. Let's try to figure it



one of F dot the velocity vector dr over dt times dt. That would be the integral from zero to one. Let's try to figure it
out. What is F? F, at a point (x, y), is <- y, x>. But if I take the point where I am at time t then x is t and y is t
squared. Here I plug x equals t, y equals t squared, and that will give me negative t squared, t. Here I will put
negative t squared, t dot product. What is the velocity vector? Well, dx over dt is just one, dy over dt is 2t. So, the
velocity vector is 1,2t dt. Now we have to continue the calculation. We get integral from zero to one of, what is this
dot product? Well, it is negative t squared plus 2t squared. I get t squared. Well, maybe I will write it. Negative t
squared plus 2t squared dt. That ends up being integral from zero to one of t squared dt, which you all know how
to integrate and get one-third. That is the work done by the force along this curve. Yes? Well, I got it by just taking
the dot product between the force and the velocity. That is in case you are wondering, things go like this. Any
questions on how we did this calculation? No. Yes? Why can't you just do F dot dr? Well, soon we will be able to.
We don't know yet what dr means or how to use it as a symbol because we haven't said yet, I mean, see, this is a
d vector r. That is kind of strange thing to have. And certainly r is not a usual variable. We have to be careful about
what are the rules, what does this symbol mean? We are going to see that right now. And then we can do it,
actually, in a slightly more efficient way. I mean r is not a scalar quantity. R is a position vector. You cannot
integrate F with respect to r. We don't know how to do that. OK. Yes? The question is if I took a different trajectory
from the origin to that point (1,1), what will happen? Well, the answer is I would get something different. For
example, let me try to convince you of that. For example, say I chose to instead go like this and then around like
that, first I wouldn't do any work because here the force is perpendicular to my motion. And then I would be going
against the force all the way around. I should get something that is negative. Even if you don't see that, just accept
it at face value that I say now. The value of a line integral, in general, depends on how we got from point a to point
b. That is why we have to compute it by using the parametric equation for the curve. It really depends on what
curve you choose. Any other questions. Yes? What happens when the force inflects the trajectory? Well, then,
actually, you would have to solve a differential equation telling you how a particle moves to find what the trajectory
is. That is something that would be a very useful topic. And that is probably more like what you will do in 18.03, or
maybe you actually know how to do it in this case. What we are trying to develop here is a method to figure out if
we know what the trajectory is what the work will be. It doesn't tell us what the trajectory will be. But, of course, we
could also find that. But here, see, I am not assuming, for example, that the particle is moving just based on that
force. Maybe, actually, I am here to hold it in my hand and force it to go where it is going, or maybe there is some
rail that is taking it in that trajectory or whatever. I can really do it along any trajectory. And, if I wanted to, if I knew
that was the case, I could try to find the trajectory based on what the force is. But that is not what we are doing
here. Let's try to make sense of what you asked just a few minutes ago, what can we do directly with dr? dr
becomes somehow a vector. I mean, when I replace it by dr over dt times dt, it becomes something that is a
vector with a dt next to it. In fact -- Well, it is not really new. Let's see. Another way to do it, let's say that our force
has components M and N. I claim that we can write symbolically vector dr stands for its vector whose components
are dx, dy. It is a strange kind of vector. I mean it is not a real vector, of course, but as a notion, it is a pretty good
notation because it tells us that F of dr is M dx plus N dy. In fact, we will very often write, instead of F dot dr line
integral along c will be line integral along c of M dx plus N dy. And so, in this language, of course, what we are
integrating now, rather than a vector field, becomes a differential. But you should think of it, too, as being pretty
much the same thing. It is like when you compare the gradient of a function and its differential, they are different
notations but have the same content. Now, there still remains the question of how do we compute this kind of
integral? Because it is more subtle than the notation suggests. Because M and N both depend on x and y. And, if
you just integrate it with respect to x, you would be left with y's in there. And you don't want to be left with y's. You
want a number at the end. See, the catch is along the curve x and y are actually related to each other. Whenever
we write this, we have two variables x and y, but, in fact, along the curve C we have only one parameter. It could
be x. It could be y. It could be time. Whatever you want. But we have to express everything in terms of that one
parameter. And then we get a usual single variable integral. How do we evaluate things in this language? Well, we
do it by substituting the parameter into everything. The method to evaluate is to express x and y in terms of a
single variable. And then substitute that variable. Let's, for example, redo the one we had up there just using these
new notations. You will see that it is the same calculation but with different notations. In that example that we had,
our vector field F was negative . What we are integrating is negative y dx plus x dy. And, see, if we have just this,
we don't know how to integrate that. I mean, well, you could try to come up with negative x, y or something like
that. But that actually doesn't make sense. It doesn't work. What we will do is we will actually have to express
everything in terms of a same variable, because it is a single integral and we should only have on variable. And
what that variable will be, well, if we just do it the same way that would just be t. How do we express everything in
terms of t? Well, we use the parametric equation. We know that x is t and y is t squared. We know what to do with
these two guys. What about dx and dy? Well, it is easy. We just differentiate. dx becomes dt, dy becomes 2t dt. I
am just saying, in a different language, what I said over here with dx over dt equals one, dy over dt equals 2t. It is
the same thing but written slightly differently. Now, I am going to do it again. I am going to switch from one board
to the next one. My integral becomes the integral over C of negative y is minus t squared dt plus x is t times dy is
2t dt. And now that I have only t left, it is fine to say I have a usual single variable integral over a variable t that
goes from zero to one. Now I can say, yes, this is the integral from zero to one of that stuff. I can simply it a bit and
it becomes t squared dt, and I can compute it, equals one-third. I have negative t squared and then I have plus 2t
squared, so end up with positive t squared. It is the same as up there. Any questions? Yes? dy is the differential of
y, y is t squared, so I get 2t dt. I plug dt for dx, I plug 2t dt for dy and so on. And that is the general method. If you
are given a curve then you first have to figure out how do you express x and y in terms of the same thing? And
you get to choose, in general, what parameter we use. You choose to parameterize your curve in whatever way
you want. The note that I want to make is that this line integral depends on the trajectory C but not on the
parameterization. You can choose whichever variable you want. For example, what you could do is when you
know that you have that trajectory, you could also choose to parameterize it as x equals, I don't know, sine theta, y



know that you have that trajectory, you could also choose to parameterize it as x equals, I don't know, sine theta, y
equals sine square theta, because y is x squared where theta goes from zero to pi over two. And then you could
get dx and dy in terms of d theta. And you would be able to do it with a lot of trig and you would get the same
answer. That would be a harder way to get the same thing. What you should do in practice is use the most
reasonable way to parameterize your curve. If you know that you have a piece of parabola y equals x squared,
there is no way you would put sine and sine squared. You could set x equals, y equals t squared, which is very
reasonable. You could even take a small shortcut and say that your variable will be just x. That means x you just
keep as it is. And then, when you have y, you set y equals x squared, dy equals 2x dx, and then you will have an
integral over x. That works. So, this one is not practical. But you get to choose. Now let me tell you a bit more
about the geometry. We have said here is how we compute it in general, and that is the general method for
computing a line integral for work. You can always do this, try to find a parameter, the simplest one, express
everything in terms of its variable and then you have an integral to compute. But sometimes you can actually save
a lot of work by just thinking geometrically about what this all does. Let me tell you about the geometric approach.
One thing I want to remind you of first is what is this vector dr? Well, what is vector delta r? If I take a very small
piece of the trajectory then my vector delta r will be tangent to the trajectory. It will be going in the same direction
as the unit tangent vector t. And what is its length? Well, its length is the arc length along the trajectory, which we
called delta s. Remember, s was the distance along the trajectory. We can write vector dr equals dx, dy, but that is
also T times ds. It is a vector whose direction is tangent to the curve and whose length element is actually the arc
length element. I mean, if you don't like this notation, think about dividing everything by dt. Then what we are
saying is dr over dt, which is the velocity vector. Well, in coordinates, the velocity vector is dx over dt, dy over dt.
But, more geometrically, the direction of a velocity vector is tangent to the trajectory and its magnitude is speed ds
over dt. So, that is really the same thing. If I say this, that means that my line integral F to dr, well, I say I can write
it as integral of M dx plus N dy. That is what I will do if I want to compute it by computing the integral. But, if
instead I want to think about it geometrically, I could rewrite it as F dot T ds. Now you can think of this, F dot T is a
scalar quantity. It is the tangent component of my force. I take my force and project it to the tangent direction to a
trajectory and the I integrate that along the curve. They are the same thing. And sometimes it is easier to do it this
way. Here is an example. This is bound to be easier only when the field and the curve are relatively simple and
have a geometric relation to each other. If I give you an evil formula with x cubed plus y to the fifth or whatever
there is very little chance that you will be able to simplify it that way. But let's say that my trajectory is just a circle
of radius a centered at the origin. Let's say I am doing that counterclockwise and let's say that my vector field is xi
yj. What does that look like? Well, my trajectory is just this circle. My vector field, remember, xi plus yj, that is the
one that is pointing radially from the origin. Hopefully, if you have good physics intuition here, you will already
know what the work is going to be. It is going to be zero because the force is perpendicular to the motion. Now we
can say it directly by saying if you have any point of a circle then the tangent vector to the circle will be, well, it's
tangent to the circle, so that means it is perpendicular to the radial direction, while the force is pointing in the radial
direction so you have a right angle between them. F is perpendicular to T. F dot T is zero. The line integral of F
dot T ds is just zero. That is much easier than writing this is integral of x over dx plus y over dy. What do we do?
Well, we set x equals a cosine theta, y equals a sine theta. We get a bunch of trig things. It cancels out to zero. It
is not much harder but we saved time by not even thinking about how to parameterize things. Let's just do a last
one. That was the first one. Let's say now that I take the same curve C, but now my vector field is the one that
rotates negative yi plus xj. That means along my circle the tangent vector goes like this and my vector field is also
going around. So, in fact, at this point the vector field will always be going in the same direction. Now F is actually
parallel to the tangent direction. That means that the dot product of F dot T, remember, if it is the component of F
in this direction that will be the same of the length of F. But what is the length of F on this circle if this length is a? It
is just going to be a. That is what we said earlier about this vector field. At every point, this dot product is a. Now
we know how to integrate that quite quickly. Because it becomes the integral of a ds, but a is a constant so we can
take it out. And now what do we get when we integrate ds along C? Well, we should get the total length of the
curve if we sum all the little pieces of arc length. But we know that the length of a circle of radius a is 2pi a, so we
get 2(pi)a squared. If we were to compute that by hand, well, what would we do? We would be computing integral
of minus y dx plus x dy. Since we are on a circle, we will probably set x equals a times cosine theta, y equals a
times sine theta for theta between zero and 2pi. Then we would get dx and dy out of these. So, y is a sine theta,
dx is negative a sine theta d theta, if you differentiate a cosine, plus a cosine theta times a cosine theta d theta.
Well, you will just end up with integral from zero to 2pi of a squared time sine squared theta plus cosine square
theta times d theta. That becomes just one. And you get the same answer. It took about the same amount of time
because I did this one rushing very quickly, but normally it takes about at least twice the amount of time to do it
with a calculation. That tells you sometimes it is worth thinking geometrically.


