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PROFESSOR: Welcome to this recitation on damped harmonic oscillators. So here you're asked to assume

an unforced, overdamped spring-mass-dashpot that started at x dot of 0 equals to 0, so rest,

and to show that it never crosses the equilibrium position, x equal to 0, for t larger than 0.

The second part of the problem asks you to show that regardless of the initial condition, this

overdamped oscillator can not cross the equilibrium position more than one time, or more than

once.

OK. So why don't you pause the video, try to think about this problem, and I'll be right back.

Welcome back. So the system that we're looking at is a spring-mass-dashpot that would be

written in this form-- second order differential equation. Let's assume that we have positive

constant coefficients here.

And basically, to solve this, you would be considering the methods that we saw before. And

the general solution would just be written in the form of c_1 exponential lambda_1, the c_2

exponential lambda_2, with c_1, c_2 just two constants that would be determined by the initial

condition. Lambda_1, lambda_2 would be here the roots of the characteristic polynomial that

you would have found there. Given that we're looking at an overdamped, unforced spring-

mass-dashpot, you can actually show that lambda_1 and lambda_2 would be both real and

negative. And here, we can just say that basically, lambda_1 and lambda_2 would be less

than 1. And we'll keep that aside for now, and I'll use this later.

So this is just setting up the problem. So now, what was the question? The question was to

show that if we start this system with initial condition x dot of 0 equal to 0, which corresponds

to lambda_1*c_1 plus lambda_2*c_2 equals to 0, then the system cannot cross the equilibrium

position x equal to 0 for t larger than 0.

So let's just start by assuming that the system crosses the equilibrium position. So for

example, let's look for t-star such that x of t-star is equal to 0. So x of t-star, we know its form

already. We have the general form of x of t-star. That's basically c_1 exponential lambda_1*t-

star plus c_2 exponential lambda_2*t-star. And so we can massage this equation, and

basically end up with minus c_2 over c_1 equal to exponential of lambda_1 minus lambda_2*t-

star.



So now let's just find our t-star by applying the log of both sides of this equation. So we get t-

star equals to the log of minus c_2 over c_1, and we divide by the lambda_1 minus lambda_2.

So here this tells us that if t-star exists, which means, if the log is defined, and this minus c_2

over c_1 basically is positive, then we only have one value of t-star possible. So here, we

actually are answering the second part of this question, number two, which was telling us that

regardless of the initial condition-- so regardless of the coefficient c_1, c_2 that we would

have-- if t-star exists, there is only one. And so that means that the system would not cross

this equilibrium position more than once. But I'll come back on that.

But now let's go back to what we were asked to do in the first part, where we basically now go

back to our x dot of 0 equals to 0, which basically gave us that minus c_2 over c_1 is equal to

lambda_1 over lambda_2, and the way we defined lambda_1 over lambda_2 here gives us

that minus c_2 over c_1 is less than 1, which means that the log is going to be negative.

What happens in the denominator? Lambda_1 minus lambda_2 would be positive. So with this

initial condition, we would end up with a t-star that would be negative. So basically, x is never

equal to 0 again for t larger than 0, given these initial conditions.

So that finishes this first part of the problem. So I'll go back on the physics of it in a moment

with a graph. So starting from this initial condition, x can never be equal to 0, because the only

t-star we can find would be negative. So for t larger than 0, it does not cross the equilibrium

point.

The second part of the problem-- so this was one-- just comes from the fact that, if I label this

star, star tells us that if minus c_2 over c_1, strictly larger than 0, then only one t-star exists.

So if we have a solution, there is only one. And this is regardless of the initial conditions that

we would be given. So the system cannot cross the equilibrium position more than once.

So now let's look at what we're doing here, graphically. Let's assume that we're, for example,

starting with initial condition here, where we're stretching our spring, but we start with 0

velocity. So x dot of 0 equal to 0. That was the system that we had. Then this is an

overdamped case where both basically exponentials are decaying to 0, and so we would have

a solution that would go to 0 quickly. It would be damped. And so this would be part 1.

Now let's look at what would happen if we started with other initial conditions. So for example,

starting from the same point with a much bigger velocity. Then the system would go up, but



eventually, it has to go down. It wouldn't have this shape, but basically, it would have to go

down to 0's position.

And when it reaches, you can show that again, the derivative of x can reach 0 only once. And

at that point, you're then back to the initial conditions that you had in the first part of the

question, and so you can then, from here, argue again that you cannot cross the zero, the

equilibrium point, after reaching a maximum.

Now what if we had a stretch that would be giving a negative velocity to the mass, and a very

strong negative velocity? Then the system also wants to go back to 0, but could overshoot.

And the overshoot would also generate a unique time at which the derivative would be equal

to 0, and after that point, you would be back to the same argument we had before, where the

solution would have to go toward 0, but never crosses it.

So we can have various configurations. And here I start with this point, but you could also start

with other initial conditions, where you could have, as well, something that would be, for

example, a very strong positive, where again, here you would have an overshoot, but then the

solution would be attracted by the x equal to 0 solution.

And of course you could also start from the equilibrium. If you're not imposing any initial

velocity, you just stay there, because this is not forced. But if you're imposing a velocity, then

you would have other trajectories of the kind, for example, like this, where again, it would go

up, but then be attracted back by the 0 solution.

So that's the typical behavior for a damped oscillator, where basically there's no oscillation, but

the solution is attracted to rest. And you could have cases of overshoot. Then you can show

that after the overshoot, velocity would reach 0, at maximum, and then would be attracted

back to the zero solution with never crossing it. And that ends this recitation.


